首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The western Antarctic Peninsula is an extreme low temperature environment that is warming rapidly due to global change. Little is known, however, on the temperature sensitivity of growth of microbial communities in Antarctic soils and in the surrounding oceanic waters. This is the first study that directly compares temperature adaptation of adjacent marine and terrestrial bacteria in a polar environment. The bacterial communities in the ocean were adapted to lower temperatures than those from nearby soil, with cardinal temperatures for growth in the ocean being the lowest so far reported for microbial communities. This was reflected in lower minimum (Tmin) and optimum temperatures (Topt) for growth in water (?17 and +20°C, respectively) than in soil (?11 and +27°C), with lower sensitivity to changes in temperature (Q10; 0–10°C interval) in Antarctic water (2.7) than in soil (3.9). This is likely due to the more stable low temperature conditions of Antarctic waters than soils, and the fact that maximum in situ temperatures in water are lower than in soils, at least in summer. Importantly, the thermally stable environment of Antarctic marine water makes it feasible to create a single temperature response curve for bacterial communities. This would thus allow for calculations of temperature‐corrected growth rates, and thereby quantifying the influence of factors other than temperature on observed growth rates, as well as predicting the effects of future temperature increases on Antarctic marine bacteria.  相似文献   

2.
A detailed understanding of the influence of temperature on soil microbial activity is critical to predict future atmospheric CO2 concentrations and feedbacks to anthropogenic warming. We investigated soils exposed to 3–4 years of continuous 5 °C‐warming in a field experiment in a temperate forest. We found that an index for the temperature adaptation of the microbial community, Tmin for bacterial growth, increased by 0.19 °C per 1 °C rise in temperature, showing a community shift towards one adapted to higher temperature with a higher temperature sensitivity (Q10(5–15 °C) increased by 0.08 units per 1 °C). Using continuously measured temperature data from the field experiment we modelled in situ bacterial growth. Assuming that warming did not affect resource availability, bacterial growth was modelled to become 60% higher in warmed compared to the control plots, with the effect of temperature adaptation of the community only having a small effect on overall bacterial growth (<5%). However, 3 years of warming decreased bacterial growth, most likely due to substrate depletion because of the initially higher growth in warmed plots. When this was factored in, the result was similar rates of modelled in situ bacterial growth in warmed and control plots after 3 years, despite the temperature difference. We conclude that although temperature adaptation for bacterial growth to higher temperatures was detectable, its influence on annual bacterial growth was minor, and overshadowed by the direct temperature effect on growth rates.  相似文献   

3.
Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short‐term temperature dependencies of Antarctic soil bacterial community growth rates, using the leucine incorporation technique, in order to predict future changes in temperature sensitivity of resident soil bacterial communities. Soil samples were collected along a climate gradient consisting of locations on the Antarctic Peninsula (Anchorage Island, 67 °34′S, 68 °08′W), Signy Island (60 °43′S, 45 °38′W) and the Falkland Islands (51 °76′S 59 °03′W). At each location, experimental plots were subjected to warming by open top chambers (OTCs) and paired with control plots on vegetated and fell‐field habitats. The bacterial communities were adapted to the mean annual temperature of their environment, as shown by a significant correlation between the mean annual soil temperature and the minimum temperature for bacterial growth (Tmin). Every 1 °C rise in soil temperature was estimated to increase Tmin by 0.24–0.38 °C. The optimum temperature for bacterial growth varied less and did not have as clear a relationship with soil temperature. Temperature sensitivity, indicated by Q10 values, increased with mean annual soil temperature, suggesting that bacterial communities from colder regions were less temperature sensitive than those from the warmer regions. The OTC warming (generally <1 °C temperature increases) over 3 years had no effects on temperature relationship of the soil bacterial community. We estimate that the predicted temperature increase of 2.6 °C for the Antarctic Peninsula would increase Tmin by 0.6–1 °C and Q10 (0–10 °C) by 0.5 units.  相似文献   

4.
Accurate representation of temperature sensitivity (Q10) of soil microbial activity across time is critical for projecting soil CO2 efflux. As microorganisms mediate soil carbon (C) loss via exo‐enzyme activity and respiration, we explore temperature sensitivities of microbial exo‐enzyme activity and respiratory CO2 loss across time and assess mechanisms associated with these potential changes in microbial temperature responses. We collected soils along a latitudinal boreal forest transect with different temperature regimes (long‐term timescale) and exposed these soils to laboratory temperature manipulations at 5, 15, and 25°C for 84 days (short‐term timescale). We quantified temperature sensitivity of microbial activity per g soil and per g microbial biomass at days 9, 34, 55, and 84, and determined bacterial and fungal community structure before the incubation and at days 9 and 84. All biomass‐specific rates exhibited temperature sensitivities resistant to change across short‐ and long‐term timescales (mean Q10 = 2.77 ± 0.25, 2.63 ± 0.26, 1.78 ± 0.26, 2.27 ± 0.25, 3.28 ± 0.44, 2.89 ± 0.55 for β‐glucosidase, N‐acetyl‐β‐d ‐glucosaminidase, leucine amino peptidase, acid phosphatase, cellobiohydrolase, and CO2 efflux, respectively). In contrast, temperature sensitivity of soil mass‐specific rates exhibited either resilience (the Q10 value changed and returned to the original value over time) or resistance to change. Regardless of the microbial flux responses, bacterial and fungal community structure was susceptible to change with temperature, significantly differing with short‐ and long‐term exposure to different temperature regimes. Our results highlight that temperature responses of microbial resource allocation to exo‐enzyme production and associated respiratory CO2 loss per unit biomass can remain invariant across time, and thus, that vulnerability of soil organic C stocks to rising temperatures may persist in the long term. Furthermore, resistant temperature sensitivities of biomass‐specific rates in spite of different community structures imply decoupling of community constituents and the temperature responses of soil microbial activities.  相似文献   

5.
6.
Determining soil carbon (C) responses to rising temperature is critical for projections of the feedbacks between terrestrial ecosystems, C cycle, and climate change. However, the direction and magnitude of this feedback remain highly uncertain due largely to our limited understanding of the spatial heterogeneity of soil C decomposition and its temperature sensitivity. Here we quantified C decomposition and its response to temperature change with an incubation study of soils from 203 sites across tropical to boreal forests in China spanning a wide range of latitudes (18°16′ to 51°37′N) and longitudes (81°01′ to 129°28′E). Mean annual temperature (MAT) and mean annual precipitation primarily explained the biogeographic variation in the decomposition rate and temperature sensitivity of soils: soil C decomposition rate decreased from warm and wet forests to cold and dry forests, while Q10‐MAT (standardized to the MAT of each site) values displayed the opposite pattern. In contrast, biological factors (i.e. plant productivity and soil bacterial diversity) and soil factors (e.g. clay, pH, and C availability of microbial biomass C and dissolved organic C) played relatively small roles in the biogeographic patterns. Moreover, no significant relationship was found between Q10‐MAT and soil C quality, challenging the current C quality–temperature hypothesis. Using a single, fixed Q10‐MAT value (the mean across all forests), as is usually done in model predictions, would bias the estimated soil CO2 emissions at a temperature increase of 3.0°C. This would lead to overestimation of emissions in warm biomes, underestimation in cold biomes, and likely significant overestimation of overall C release from soil to the atmosphere. Our results highlight that climate‐related biogeographic variation in soil C responses to temperature needs to be included in next‐generation C cycle models to improve predictions of C‐climate feedbacks.  相似文献   

7.
Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm‐tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years’ winter warming. The warming treatments increased winter soil temperatures by 5–6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q10) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat‐spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil‐atmosphere C exchange.  相似文献   

8.
14C‐labelled straw was mixed with soils collected from seven coniferous forests located on a climatic gradient in Western Europe ranging from boreal to Mediterranean conditions. The soils were incubated in the laboratory at 4°, 10°, 16°, 23° and 30 °C with constant moisture over 550 days. The temperature coefficient (Q10) for straw carbon mineralization decreased with increasing incubation temperatures. This was a characteristic of all the soils with a difference of two Q10 units between the 4–10° and the 23? 30 °C temperature ranges. It was also found that the magnitude of the temperature response function was related to the period of soil incubation. Initial temperature responses of microbial communities were different to those shown after a long period of laboratory incubation and may have reflected shifts in microbial species composition in response to changes in the temperature regime. The rapid exhaustion of the labile fractions of the decomposing material at higher temperatures could also lead to underestimation of the temperature sensitivity of soils unless estimated for carbon pools of similar qualities. Finally, the thermal optima for the organic soil horizons (Of and Oh) were lower than 30 °C even after 550 days of incubation. It was concluded that these responses could not be attributed to microbial physiological adaptations, but rather to the rates at which recalcitrant microbial secondary products were formed at higher temperatures. The implication of these variable temperature responses of soil materials is discussed in relation to modelling potential effects of global warming.  相似文献   

9.
Despite concern about the status of carbon (C) in the Arctic tundra, there is currently little information on how plant respiration varies in response to environmental change in this region. We quantified the impact of long‐term nitrogen (N) and phosphorus (P) treatments and greenhouse warming on the short‐term temperature (T) response and sensitivity of leaf respiration (R), the high‐T threshold of R, and associated traits in shoots of the Arctic shrub Betula nana in experimental plots at Toolik Lake, Alaska. Respiration only acclimated to greenhouse warming in plots provided with both N and P (resulting in a ~30% reduction in carbon efflux in shoots measured at 10 and 20 °C), suggesting a nutrient dependence of metabolic adjustment. Neither greenhouse nor N+P treatments impacted on the respiratory sensitivity to T (Q10); overall, Q10 values decreased with increasing measuring T, from ~3.0 at 5 °C to ~1.5 at 35 °C. New high‐resolution measurements of R across a range of measuring Ts (25–70 °C) yielded insights into the T at which maximal rates of R occurred (Tmax). Although growth temperature did not affect Tmax, N+P fertilization increased Tmax values ~5 °C, from 53 to 58 °C. N+P fertilized shoots exhibited greater rates of R than nonfertilized shoots, with this effect diminishing under greenhouse warming. Collectively, our results highlight the nutrient dependence of thermal acclimation of leaf R in B. nana, suggesting that the metabolic efficiency allowed via thermal acclimation may be impaired at current levels of soil nutrient availability. This finding has important implications for predicting carbon fluxes in Arctic ecosystems, particularly if soil N and P become more abundant in the future as the tundra warms.  相似文献   

10.
Rising atmospheric carbon dioxide (CO2) concentrations may warm northern latitudes up to 8°C by the end of the century. Boreal forests play a large role in the global carbon cycle, and the responses of northern trees to climate change will thus impact the trajectory of future CO2 increases. We grew two North American boreal tree species at a range of future climate conditions to assess how growth and carbon fluxes were altered by high CO2 and warming. Black spruce (Picea mariana, an evergreen conifer) and tamarack (Larix laricina, a deciduous conifer) were grown under ambient (407 ppm) or elevated CO2 (750 ppm) and either ambient temperatures, a 4°C warming, or an 8°C warming. In both species, the thermal optimum of net photosynthesis (ToptA) increased and maximum photosynthetic rates declined in warm‐grown seedlings, but the strength of these changes varied between species. Photosynthetic capacity (maximum rates of Rubisco carboxylation, Vcmax, and of electron transport, Jmax) was reduced in warm‐grown seedlings, correlating with reductions in leaf N and chlorophyll concentrations. Warming increased the activation energy for Vcmax and Jmax (EaV and EaJ, respectively) and the thermal optimum for Jmax. In both species, the ToptA was positively correlated with both EaV and EaJ, but negatively correlated with the ratio of Jmax/Vcmax. Respiration acclimated to elevated temperatures, but there were no treatment effects on the Q10 of respiration (the increase in respiration for a 10°C increase in leaf temperature). A warming of 4°C increased biomass in tamarack, while warming reduced biomass in spruce. We show that climate change is likely to negatively affect photosynthesis and growth in black spruce more than in tamarack, and that parameters used to model photosynthesis in dynamic global vegetation models (EaV and EaJ) show no response to elevated CO2.  相似文献   

11.
Daily minimum temperature (Tmin) has increased faster than daily maximum temperature (Tmax) in many parts of the world, leading to decreases in diurnal temperature range (DTR). Projections suggest that these trends are likely to continue in many regions, particularly in northern latitudes and in arid regions. Despite wide speculation that asymmetric warming has different impacts on plant and ecosystem production than equal‐night‐and‐day warming, there has been little direct comparison of these scenarios. Reduced DTR has also been widely misinterpreted as a result of night‐only warming, when in fact Tmin occurs near dawn, indicating higher morning as well as night temperatures. We report on the first experiment to examine ecosystem‐scale impacts of faster increases in Tmin than in Tmax, using precise temperature controls to create realistic diurnal temperature profiles with gradual day–night temperature transitions and elevated early morning as well as night temperatures. Studying a constructed grassland ecosystem containing species native to Oregon, USA, we found that the ecosystem lost more carbon at elevated than ambient temperatures, but remained unaffected by the 3 °C difference in DTR between symmetric warming (constantly ambient + 3.5 °C) and asymmetric warming (dawn Tmin = ambient + 5 °C, afternoon Tmax = ambient + 2 °C). Reducing DTR had no apparent effect on photosynthesis, probably because temperatures were most different in the morning and late afternoon when light was low. Respiration was also similar in both warming treatments, because respiration temperature sensitivity was not sufficient to respond to the limited temperature differences between asymmetric and symmetric warming. We concluded that changes in daily mean temperatures, rather than changes in Tmin/Tmax, were sufficient for predicting ecosystem carbon fluxes in this reconstructed Mediterranean grassland system.  相似文献   

12.
Understanding the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition is important for predicting soil carbon (C) sequestration in terrestrial ecosystems under warming scenarios. Whether Q10 varies predictably with ecosystem succession and the ways in which the stoichiometry of input SOM influences Q10 remain largely unknown. We investigate these issues using a grassland succession series from free‐grazing to 31‐year grazing‐exclusion grasslands in Inner Mongolia, and an incubation experiment performed at six temperatures (0, 5, 10, 15, 20, and 25°C) and with four substrates: control (CK), glucose (GLU), mixed grass leaf (GRA), and Medicago falcata leaf (MED). The results showed that basal soil respiration (20°C) and microbial biomass C (MBC) logarithmically decreased with grassland succession. Q10 decreased logarithmically from 1.43 in free‐grazing grasslands to 1.22 in 31‐year grazing‐exclusion grasslands. Q10 increased significantly with the addition of substrates, and the Q10 levels increased with increase in N:C ratios of substrate. Moreover, accumulated C mineralization was controlled by the N:C ratio of newly input SOM and by incubation temperature. Changes in Q10 with grassland ecosystem succession are controlled by the stoichiometry of newly input SOM, MBC, and SOM quality, and the combined effects of which could partially explain the mechanisms underlying soil C sequestration in the long‐term grazing‐exclusion grasslands in Inner Mongolia, China. The findings highlight the effect of substrate stoichiometry on Q10 which requires further study.  相似文献   

13.
Alpine grassland soils store large amounts of soil organic carbon (SOC) and are susceptible to rising air temperature. Soil extracellular enzymes catalyze the rate-limiting step in SOC decomposition and their catalysis, production and degradation rates are regulated by temperature. Therefore, the responses of these enzymes to warming could have a profound impact on carbon cycling in the alpine grassland ecosystems. This study was conducted to measure the responses of soil extracellular enzyme activity and temperature sensitivity (Q10) to experimental warming in samples from an alpine grassland ecosystem on the Tibetan Plateau. A free air-temperature enhancement system was set up in May 2006. We measured soil microbial biomass, nutrient availability and the activity of five extracellular enzymes in 2009 and 2010. The Q10 of each enzyme was calculated using a simple first-order exponential equation. We found that warming had no significant effects on soil microbial biomass C, the labile C or N content, or nutrient availability. Significant differences in the activity of most extracellular enzymes among sampling dates were found, with typically higher enzyme activity during the warm period of the year. The effects of warming on the activity of the five extracellular enzymes at 20 °C were not significant. Enzyme activity in vitro strongly increased with temperature up to 27 °C or over 30 °C (optimum temperature; Topt). Seasonal variations in the Q10 were found, but the effects of warming on Q10 were not significant. We conclude that soil extracellular enzymes adapted to seasonal temperature variations, but did not acclimate to the field experimental warming.  相似文献   

14.
Numerous studies have demonstrated exceptionally high temperature sensitivity of the beneath-snow respiratory flux in cold-winter ecosystems. The most common, but still untested, explanation for this high sensitivity is a physical one based on the observation that water availability in soils increases exponentially as soils warm from −3 to 0°C. Here, we present evidence for a biological hypothesis to explain exponential kinetics and high Q 10 values as beneath-snow soils warm from −3 to 0°C during the early spring in a high-elevation subalpine forest. First, we show that some of the dominant organisms of the beneath-snow microbial community, “snow molds”, exhibit robust exponential growth at temperatures from −3 to −0.3°C. Second, Q 10 values based on growth rates across the temperature range of −2 to −0.3°C for these snow molds vary from 22 to 330. Third, we derive an analytical equation that combines the relative contributions of microbial growth and microbial metabolism to the temperature sensitivity of respiration. Finally, we use this equation to show that with only moderate snow mold growth (several generations), the combined sensitivities of growth and metabolism to small changes in beneath-snow soil temperature, create a double exponential in the Q 10 function that may explain the extremely high (~1 × 106) Q 10 values observed in past studies. Our biological explanation for high Q 10 levels is supported by several independent studies that have demonstrated build up of microbial biomass under the snow as temperatures warm from −2 to 0°C.  相似文献   

15.
In order to explore how plant autotoxicity changes with climate warming, the autotoxicity of P. schrenkiana needles' water extract, organic extract fractions, and key allelochemical DHAP was systemically investigated at the temperature rising 2 and 4°C based on the data‐monitored soil temperature during the last decade in the stage of Schrenk spruce regeneration (seed germination and seedling growth). The results showed that the criterion day and night temperatures were 12°C and 4°C for seed germination, and 14°C and 6°C for seedling growth, respectively. In the presence of water extract, the temperature rise of 2°C significantly inhibited the germination vigor and rate of P. Schrenkiana seed, and a temperature rise of 4°C significantly increased the inhibition to the seedling growth (< 0.05). Among the three organic fractions, the low‐polar fraction showed to be more phytotoxic than the other two fractions, causing significant inhibitory effects on the seed germination and growth even at low concentration of 0.1 mg/mL, and the inhibition effect was enhanced as temperature increased. The temperature rise significantly enhanced the promotion effect of DHAP, while the inhibition effect of temperature rise became less important with increasing concentration of DHAP. This investigation revealed that autotoxicity of P. schrenkiana was affected by the climate warming. As expected, it provided an insight into the mechanism and effectiveness of allelopathy in bridging the causal relationship between forest evolution and climate warming.  相似文献   

16.
Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short‐term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil‐borne microbial community. Long‐term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by 13C pulse‐chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA‐stable isotope probing (RNA‐SIP), in combination with real‐time PCR and PCR‐DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the 13C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes.  相似文献   

17.
Climate is an important factor limiting tree distributions and adaptation to different thermal environments may influence how tree populations respond to climate warming. Given the current rate of warming, it has been hypothesized that tree populations in warmer, more thermally stable climates may have limited capacity to respond physiologically to warming compared to populations from cooler, more seasonal climates. We determined in a controlled environment how several provenances of widely distributed Eucalyptus tereticornis and E. grandis adjusted their photosynthetic capacity to +3.5°C warming along their native distribution range (~16–38°S) and whether climate of seed origin of the provenances influenced their response to different growth temperatures. We also tested how temperature optima (Topt) of photosynthesis and Jmax responded to higher growth temperatures. Our results showed increased photosynthesis rates at a standardized temperature with warming in temperate provenances, while rates in tropical provenances were reduced by about 40% compared to their temperate counterparts. Temperature optima of photosynthesis increased as provenances were exposed to warmer growth temperatures. Both species had ~30% reduced photosynthetic capacity in tropical and subtropical provenances related to reduced leaf nitrogen and leaf Rubisco content compared to temperate provenances. Tropical provenances operated closer to their thermal optimum and came within 3% of the Topt of Jmax during the daily temperature maxima. Hence, further warming may negatively affect C uptake and tree growth in warmer climates, whereas eucalypts in cooler climates may benefit from moderate warming.  相似文献   

18.
Sphagnum mosses are keystone components of peatland ecosystems. They facilitate the accumulation of carbon in peat deposits, but climate change is predicted to expose peatland ecosystem to sustained and unprecedented warming leading to a significant release of carbon to the atmosphere. Sphagnum responses to climate change, and their interaction with other components of the ecosystem, will determine the future trajectory of carbon fluxes in peatlands. We measured the growth and productivity of Sphagnum in an ombrotrophic bog in northern Minnesota, where ten 12.8‐m‐diameter plots were exposed to a range of whole‐ecosystem (air and soil) warming treatments (+0 to +9°C) in ambient or elevated (+500 ppm) CO2. The experiment is unique in its spatial and temporal scale, a focus on response surface analysis encompassing the range of elevated temperature predicted to occur this century, and consideration of an effect of co‐occurring CO2 altering the temperature response surface. In the second year of warming, dry matter increment of Sphagnum increased with modest warming to a maximum at 5°C above ambient and decreased with additional warming. Sphagnum cover declined from close to 100% of the ground area to <50% in the warmest enclosures. After three years of warming, annual Sphagnum productivity declined linearly with increasing temperature (13–29 g C/m2 per °C warming) due to widespread desiccation and loss of Sphagnum. Productivity was less in elevated CO2 enclosures, which we attribute to increased shading by shrubs. Sphagnum desiccation and growth responses were associated with the effects of warming on hydrology. The rapid decline of the Sphagnum community with sustained warming, which appears to be irreversible, can be expected to have many follow‐on consequences to the structure and function of this and similar ecosystems, with significant feedbacks to the global carbon cycle and climate change.  相似文献   

19.
Carbon cycling responses of ecosystems to global warming will likely be stronger in cold ecosystems where many processes are temperature‐limited. Predicting these effects is difficult because air and soil temperatures will not change in concert, and will affect above and belowground processes differently. We disentangled above and belowground temperature effects on plant C allocation and deposition of plant C in soils by independently manipulating air and soil temperatures in microcosms planted with either Leucanthemopsis alpina or Pinus mugo seedlings. Daily average temperatures of 4 or 9°C were applied to shoots and independently to roots, and plants pulse‐labelled with 14CO2. We traced soil CO2 and 14CO2 evolution for 4 days, after which microcosms were destructively harvested and 14C quantified in plant and soil fractions. In microcosms with L. alpina, net 14C uptake was higher at 9°C than at 4°C soil temperature, and this difference was independent of air temperature. In warmer soils, more C was allocated to roots at greater soil depth, with no effect of air temperature. In P. mugo microcosms, assimilate partitioning to roots increased with air temperature, but only when soils were at 9°C. Higher soil temperatures also increased the mean soil depth at which 14C was allocated. Our findings highlight the dependence of C uptake, use, and partitioning on both air and soil temperature, with the latter being relatively more important. The strong temperature‐sensitivity of C assimilate use in the roots and rhizosphere supports the hypothesis that cold limitation on C uptake is primarily mediated by reduced sink strength in the roots. We conclude that variations in soil rather than air temperature are going to drive plant responses to warming in cold environments, with potentially large changes in C cycling due to enhanced transfer of plant‐derived C to soils.  相似文献   

20.
Schizopygopsis younghusbandi is an endemic fish of Tibet characterized by slow growth. Artificial stock enhancement was applied to rebuild the natural population of S. younghusbandi in recent years. However, the optimal growth temperature and thermal tolerance of S. younghusbandi has not been studied, which restricts the production of S. younghusbandi fingerling for stock enhancement. The purpose of this paper is to determine the growth, critical thermal maximum (CTMax), lethal thermal maximum (LTMax) and acclimation response ratio (ARR) of S. younghusbandi juveniles (body weight 5.7 ± 1.2 g) at three acclimation temperature levels (10, 15, 20°C). The results showed that acclimation temperature significantly affected the growth, CTMax, LTMax and ARR of the experimental fish. Largest final weight (7.5 ± 2.3 g) was recorded in 15°C group. At a heating rate of 1°C/30 min, CTMax ranged from 30.98 to 32.01°C and LTMax ranged from 31.76 to 32.31°C in the three acclimation temperatures. Schizopygopsis younghusbandi had lower ARR value (0.097) than most other fish species. Low ARR value indicates that S. younghusbandi may have narrower thermal tolerance range and weaker acclimation ability to global warming. For successful aquaculture of S. younghusbandi juveniles, temperature should be maintained around 15°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号