首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An alkaline and thermostable pectinase production from Bacillus subtilis SS was optimized under submerged fermentation and its application was tested in textile industry for desizing and bioscouring of cotton and micropoly fabrics. Desizing of fabric was the best with 5 U/g pectinase treatment for 120 min at pH 9.5 and 65 °C. Under optimized conditions of bioscouring, desized cotton showed highest reducing sugar liberation and weight loss than desized micropoly. Along with enzyme, addition of chelating (EDTA) and wetting agent markedly enhanced the weight loss compared to single use of enzyme or EDTA alone. Agitation (50 ± 2) enhanced the weight loss values of cotton (1.9%) and micropoly fabric (1.7%) at pH 9.5 after treatment time of 2 h. Bioscouring of fabrics with pectinase resulted in enhancement of various physical properties of fabrics viz. whiteness (1.2%), tensile strength (1.6%) and tearness (3.0%) over conventionally alkaline scoured fabrics.  相似文献   

2.
A thorough investigation into conditions appropriate for effecting combined eco-friendly bioscouring and/or bleaching of cotton-based fabrics was undertaken. Fabrics used include cotton, grey mercerized cotton, cotton/polyester blend 50/50 and cotton/polyester blend 35/65. The four cotton-based fabric were subjected to bioscouring by single use of alkaline pectinase enzymes or by using binary mixtures of alkaline pectinase and cellulase enzymes under a variety of conditions. Results of bioscouring show that, the bioscoured substrates exhibit fabrics performances which are comparable with these of the conventional alkali scouring. It has been also found that, incorporation of ethylenediaminetetraacetic acid (EDTA) in the bioscouring with mixture from alkaline pectinase and cellulase improves the performance of the bioscoured fabrics. Addition of β-cyclodextrin to the bioscouring solution using alkaline pectinase in admixtures with cellulase acts in favor of technical properties and performance of the bioscoured fabrics. Concurrent bioscouring and bleaching by in situ formed peracetic acid using tetraacetylethylenediamine (TAED) and H2O2 was also investigated. The results reveal unequivocally that the environmentally sound technology brought about by current development is by far the best. The new development involves a single-stage process for full purification/preparation of cotton textiles. The new development at its optimal comprises treatment of the fabric with an aqueous formulation consisting of alkaline pectinase enzyme (2 g/L), TAED (15 g/L), H2O2 (5 g/L), nonionic wetting agent (0.5 g/L) and sodium silicate (2 g/L). The treatment is carried out at 60 °C for 60 min. Beside the advantages of the new development with respect to major technical fabric properties, it is eco-friendly and reproducible. This advocates the new development for mill trials.  相似文献   

3.
Previously, we presented a novel approach for increasing Thermobifida fusca cutinase adsorption on cotton fibers by fusing cutinase with a carbohydrate-binding module (CBM). A preliminary study showed that two fusion proteins, namely cutinase-CBMCel6A and cutinase-CBMCenA, with similar stabilities and catalytic properties, had potential applications in bioscouring. In the present study, an indepth analysis of both cutinase-CBMs in bioscouring was explored. Effects of cutinase-CBMs on cotton bioscouring were investigated by characterizing the chemical and physical surface changes in enzyme-treated cotton fabrics. Gas chromatography/mass spectrometry was used to analyze the degradation of the cotton fabric cuticle; Fourier transform infrared microspectroscopy was used to study changes in the chemical composition of the cotton fabric epidermal layer; and scanning electron microscopy was used to monitor minor changes in the morphology of the fiber surface. Our results indicated that cutinase-CBMs in combination with pectinase had a greater effect on cotton fabric than did cutinase. Following scouring with cutinase-CBMs and pectinase, the performance of cotton fabric in terms of its wettability and dyeability was similar to that following alkali scouring. Our study provides a foundation for the further application of cutinase-CBM to bioscouring.  相似文献   

4.
Enzyme processing of textiles in reverse micellar solution   总被引:6,自引:0,他引:6  
Scouring of cotton using pectinase enzyme, bioscouring, in reverse micellar system was studied. The effectiveness of bioscouring was evaluated by measuring weight loss of cotton, analyzing pectin and cotton wax remaining and by wetness testing. Pectinase enzyme showed excellent activity even in organic media, and the effectiveness of scouring was equivalent or better than that achieved by conventional alkaline process or bioscouring in aqueous media. Enzymatic modification of wool using protease enzyme in the same system was also studied. It has found that felting property and tensile strength of wool fabrics treated by protease in reverse micellar system were superior to those in aqueous media. Possibilities of utilization of the same system for the subsequent textile dyeing process were also investigated. It was found that cotton and polyester fabrics were dyed satisfactorily by reverse micellar system compared to conventional aqueous system.  相似文献   

5.
Implementation of batchwise bioscouring of cotton knits   总被引:3,自引:0,他引:3  
The examination of critical factors determining the performance of bioscouring showed that a short treatment of the fabric at greater than 80°C after pectinase treatment at 60°C was essential for removal of waxes from the fabric as demonstrated by diminished intensities of methylene peaks in FT-IR measurements. Batch-wise bioscouring of cotton knits was carried out several times with post-treatment at 80°C using a rapid dyeing machine. The dye-ability of bioscoured knits was as good as the company's alkaline scoured ones with slightly higher K/S values. Water pollution caused by effluents of bioscouring and alkaline processes were estimated, as well as that due to the input of chemicals and enzymes. Higher BOD:CODCr ratios for enzymes indicated their biodegradable character. After calculation of energy consumption using a simulation program, an economic evaluation of the two processes was done on the basis of one ton production by considering the costs of chemicals and enzyme, water usage, energy consumption and waste water treatment charge.  相似文献   

6.
Alkaline pectinases have been proven to be effective as bioscouring agents of cotton fabrics. In order to monitor the scouring degree of cotton fabrics quantificationally, a kinetic study of the degradation of pectins in cotton by an alkaline pectinase ‘Bioprep 3000L’ was performed and the influences of initial pectinase concentration and treatment time on bioscouring were evaluated quantitatively. The results showed that although the degradation products increased as pectinase concentration grew higher at same incubation time, the growth multiples of the maximum degradation rate which was used as the starting degradation rate were less than those of initial enzyme concentration. The degradation kinetics of pectins in cotton fibers with a pectinase could be described by modified Ghose–Walseth kinetic empirical equations which had been previously applied to the degradation reaction of cellulose.  相似文献   

7.
Extracellular glucoamylase of Colletotrichum sp. KCP1 produced through solid state fermentation was purified by two steps purification process comprising ammonium sulphate precipitation followed by gel permeation chromatography (GPC). The Recovery of glucoamylase after GPC was 50.40 % with 19.3-fold increase in specific activity. The molecular weight of enzyme was found to be 162.18 kDa by native-PAGE and was dimeric protein of two sub-units with molecular weight of 94.62 and 67.60 kDa as determined by SDS-PAGE. Activation energy for starch hydrolysis was 26.45 kJ mol−1 while temperature quotient (Q10) was found to be 1.9. The enzyme was found to be stable over wide pH range and thermally stable at 40–50 °C up to 120 min while exhibited maximum activity at 50 °C with pH 5.0. The pKa1 and pKa2 of ionisable groups of active site controlling Vmax were 3.5 and 6.8, respectively. Vmax, Km and Kcat for starch hydrolysis were found to be 58.82 U ml−1, 1.17 mg (starch) ml−1 and 449 s−1, respectively. Activation energy for irreversible inactivation (Ea(d)) of glucoamylase was 74.85 kJ mol−1. Thermodynamic parameters of irreversible inactivation of glucoamylase and starch hydrolysis were also determined.  相似文献   

8.
Enzymatic pretreatment of softwood kraft pulp was investigated using xylanase and mannanase, singly or in combination, either sequentially or simultaneously. Enzymes were obtained from Streptomyces galbus NR that had been cultivated in a medium, containing either xylan of sugar cane bagasse or galactomannan of palm-seeds, when they were used as sole carbon sources from local wastes in fermentation media. No cellulase activity was detected. Incubation period, temperature, initial pH values and nature of nutritive constituents were investigated. Optimum production of both enzymes was achieved after 5 days incubation on a rotary shaker (200 rpm) at 35 degrees C and initial pH 7.0. Partial purification of xylanase and mannanase in the cultures supernatant were achieved by salting out at 40-60 and 60-80% ammonium sulphate saturation with a purification of 9.63- and 8.71-fold and 68.80 and 62.79% recovery, respectively. The xylanase and mannanase from S. galbus NR have optimal activity at 50 and 40 degrees C, respectively. Both enzymes were stable at a temperature up to 50 degrees C. Xylanase and mannanase showed highest activity at pH 6.5 and were stable from 5.0 to 8.0 and from 5.5 to 7.5, respectively. The partial purified enzymes preparations of xylanase and mannanase enzymes showed high bleaching activity, which is an important consideration for industry. Xylanase was found to be more effective for paper-bleaching than mannanase. When xylanase and mannanase were dosed together (simultaneously), both enzymes were able to enhance the liberation of reducing sugars and improve pulp bleachability, possibly as a result of nearly additive interactions. The simultaneous addition of both enzymes was more effective in pulp treatment than their sequential addition.  相似文献   

9.
Crude xylanase from Aspergillus sydowii SBS 45 was tested for enzymatic bleaching of kraft (Decker) pulp. After optimization of three parameters, consistency of pulp, retention time and enzyme dose, considerable increase in the release of UV and visible absorbance spectra of materials and reducing sugars was observed, which clearly indicated the action of xylanase on pulp. Final brightness of pulp was increased from 29.42 to 70.42% and kappa number was reduced from 15.93 to 1.61, when 25 U of xylanase was given with a retention time of 5 h and at a consistency of 10%. When 10 U g−1 xylanase was given, 14.3% elemental chlorine and 14.3% H2O2 could be reduced and when 25 U g−1 xylanase was given 14.3% elemental chlorine and 28.6% H 2O2 could be reduced thereby retaining the brightness at control level.  相似文献   

10.
A new fungal pathogen was isolated from rotten pomegranates collected from the orchards of different parts of Maharashtra. The pathogen was morphologically identified as Chaetomella raphigera followed by sequencing of ITS and D1/D2 hypervariable region of LSU (28S) of rRNA gene. The pathogen produced pectinase, cellulase, xylanase and protease in liquid medium at a concentration of 71, 13.8, 54.3 and 7 U/ml respectively. Enzyme activity was also determined during pathogenesis in the tissues artificially infected by C. raphigera. Xylanase activity was maximum (25.1 U/g) followed by pectinase (19.2 U/g) and cellulase (1.5 U/g), whereas, protease activity was unnoticed. There was significant correlation (P < 0.05) between disease rating scale and pectinase, xylanase and cellulase activity in infected tissues. This indicates the simultaneous production of hydrolytic enzymes that aids in necrosis of fruit tissues. The elevated levels of these enzymes in infected tissues as compared with control suggest their possible role in pathogenesis. Thus, pectinase, cellulase and xylanase produced by C. raphigera acts as major virulence factors in the development of fruit rot in pomegranates. This is a first report of fungal fruit rot caused by C. raphigera in pomegranate.  相似文献   

11.
Cement factory emissions into air cause serious air pollution and affect the plant and animal life in the environment. Herein, we report the effects of cement industry emissions (O3, SO2 and NO2) in air, as pollutants, at Riyadh City on Datura innoxia Mill. plant. Morphological characters including plant height, leaves area and number, fresh and dry weight of shoot and root systems of D. innoxia showed a significant reduction from their normal control plants as a response to exposure to pollutant emissions. Chlorophyll and carotenoid contents recorded reductions in values compared to control plant, and the lowest values of chlorophyll A, B, total chlorophyll, carotenoids and total pigments were 0.431, 0.169, 0.60, 0.343 and 0.943 mg/g respectively at a distance of 1–5 m from the cement factory in fruiting stage. These changes in values may be attributed to a probable deceleration of the biosynthetic process rather than degradation of pigments. Further D. innoxia showed a significant (P < 0.01) reduction in non-reducing and total sugars, protein and total lipid contents compared with the control plant. The root system recorded the lowest values of reducing sugars (0.350 mg/g f. wt.), non-reducing sugars (0.116 mg/g f. wt.), total sugars (0.466 mg/g f. wt.), protein content (0.931 mg/g f. wt.) and total lipids content (0.669 mg/g f. wt.) in fruiting stage at a distance of 1–5 m from the cement factory. The peroxidase activity of shoot and root systems of the studied plant was also significantly higher than those of control plant. Thus a highest value of (29.616 units/g f. wt.) peroxidase activity was recorded in vegetative stage of shoot system at a distance 1–5 m from the cement factory. Results of the study indicated that cement industry emission strongly influence the physiology and morphology of date palm D. innoxia which contribute date fruits, a staple food in the Arab world.  相似文献   

12.
Lack of a valid shrimp cell line has been hampering the progress of research on shrimp viruses. One of the reasons identified was the absence of an appropriate medium which would satisfy the requirements of the cells in vitro. We report the first attempt to formulate an exclusive shrimp cell culture medium (SCCM) based on the haemolymph components of Penaeus monodon prepared in isosmotic seawater having 27 ‰ salinity. The SCCM is composed of 22 amino acids, 4 sugars, 6 vitamins, cholesterol, FBS, phenol red, three antibiotics, potassium dihydrogen phosphate and di-sodium hydrogen phosphate at pH 6.8–7.2. Osmolality was adjusted to 720 ± 10 mOsm kg−1 and temperature of incubation was 25 ºC. The most appropriate composition was finally selected based on the extent of attachment of cells and their proliferation by visual observation. Metabolic activity of cultured cells was measured by MTT assay and compared with that in L-15 (2×), modified L-15 and Grace’s insect medium, and found better performance in SCCM especially for lymphoid cells with 107 % increase in activity and 85 ± 9 days of longevity. The cells from ovary and lymphoid organs were passaged twice using the newly designed shrimp cell dissociation “cocktail”.  相似文献   

13.
Several benzophenone chromophoric groups were incorporated onto cotton fabrics by using 4-hydroxybenzophenone, 4,4′-dihydroxybenzophenone, 4-chloro-4′-hydroxybenzophenone, and 4-benzoylbenzoic acid as reagents. The fabric treatment was conducted by a pad-dry-cure method, and the benzophenone chromophoric group incorporated cotton fabrics were characterized and confirmed by FTIR. Tensile strengths of benzophenone chromophoric groups modified cotton fabrics were also measured. 4-Hydroxybenzophenone treated cotton fabric showed the most powerful antibacterial activity among all samples, and 4-benzoylbenzoic acid treated cotton fabric demonstrated pesticide degradation ability, under UV irradiation.  相似文献   

14.
The examination of critical factors determining the performance of bioscouring showed that a short treatment of the fabric at greater than 80°C after pectinase treatment at 60°C was essential for removal of waxes from the fabric as demonstrated by diminished intensities of methylene peaks in FT-IR measurements. Batch-wise bioscouring of cotton knits was carried out several times with post-treatment at 80°C using a rapid dyeing machine. The dye-ability of bioscoured knits was as good as the company's alkaline scoured ones with slightly higher K/S values. Water pollution caused by effluents of bioscouring and alkaline processes were estimated, as well as that due to the input of chemicals and enzymes. Higher BOD:CODCr ratios for enzymes indicated their biodegradable character. After calculation of energy consumption using a simulation program, an economic evaluation of the two processes was done on the basis of one ton production by considering the costs of chemicals and enzyme, water usage, energy consumption and waste water treatment charge.  相似文献   

15.
Glucosamine (GlcN) is a major and valuable component in the cell wall of fungi. In this study, the cell wall was treated via a two-stage alkali and acid process, and chitin and chitosan were fully deacetylated, partially depolymerized, and converted to GlcN oligosaccharides. Then, the oligosaccharides were analyzed by high performance liquid chromatography. The influences of Actinomucor elegans on GlcN production in a flask culture were investigated to achieve an optimum yield of GlcN. The experimental result showed that cultivation in condition of pH 6.0, 100 mL working volume (500 mL flask), 10 % (v/v) inoculum concentration, at 28 °C and 200 rpm for 6 days yielded highest dry cell weight (DCW) which was 23.43 g L−1, with a GlcN concentration of 5.12 g L−1. Methanol as stimulating factor was found to exert the best effect in concentration of 1.5 % (v/v). With addition of methanol into medium, the DCW increased from 23.69 to 32.42 g L−1, leading to maximum GlcN concentration of 6.85 g L−1 obtained. Here, the methanol addition may be useful for industrial production of GlcN, and may also be meaningful for the production of other fine chemicals by filamentous fungi.  相似文献   

16.
Females of lac insects especially of Kerria lacca (Kerr) secret a resin known as lac for their own protection, which has tremendous applications. Lac insect completes its lifecycle on several host taxa where it exclusively feeds on phloem sap but Schleichera oleosa (Lour.) Oken, Butea monosperma (Lam.) and Ziziphus mauritiana (Lam.) are its major hosts. Analysis of phloem sap constituents as well as hemolymph of lac insect is important because it ultimately gets converted into lac by insect intervention. Main phloem sap constituent’s viz. sugars and free amino acids and hemolymph of lac insect were analyzed using HPLC and tandem mass spectrometry, respectively. The results were transformed to relative percentage of the total sugars and free amino acids analyzed in each sample for comparison among lac insect hemolymph and the phloem sap of the three different host taxa. Sucrose (58.9 ± 3.6–85.6 ± 0.9) and trehalose (62.3 ± 0.4) were the predominant sugars in phloem sap of three taxa and hemolymph of lac insect, respectively. Glutamic acid (33.1 ± 1.4–39.8 ± 1.4) was found to be main amino acid among the phloem sap of three taxa while tyrosine (61 ± 2.6) was the major amino acid in hemolymph of lac insect. The relative percentage of non-essential amino acids (60.8 %–69.9 %) was found to be more in all the three host taxa while essential amino acids (30.1 %–35.4 %) were present at a lower relative percentage. In contrast to this, the relative percentage of essential amino acids (81.9 %) was observed to be higher as compared to non-essential amino acids (17.7 %) in lac insect hemolymph. These results led to the detection of lac insect’s endosymbionts. Moreover, this study revealed a clue regarding the importance of development of a synthetic diet for this insect so that a precise pathway of lac biosynthesis could be investigated for thorough understanding.  相似文献   

17.
In this study, the antioxidant, antimicrobial, genotoxic and anticancer activities of Cetraria islandica methanol extract were determined by using free radical and superoxide anion scavenging activity, reducing power, determination of total phenolic compounds and flavonoid contents, broth microdilution minimal inhibitory concentration against five bacterial and five fungal species, cytokinesis block micronucleus (MN) assay on peripheral blood lymphocytes (PBLs) and the microculture tetrazolium test on FemX (human melanoma) and LS174 (human colon carcinoma) cell lines. As a result of the study, we found that C. islandica methanol extract exhibited moderate free-radical-scavenging activity with IC50 values 678.38 μg/ml. Moreover, the tested extract had effective reducing power and superoxide anion radical scavenging. The minimal inhibitory concentration values against the tested microorganisms ranged from 0.312 to 5 mg/ml. The extract increased MN frequency in a dose dependent manner, but it was significant in higher tested concentrations (50, 100 and 200 μg/ml). No significant differences were observed between NDI values in all treatments and untreated PBLs. In addition, the tested extract had strong anticancer activity towards both cell lines with IC50 values of 22.68 and 33.74 μg/ml. It can be concluded that the tested extract exhibited a certain level of in vitro antioxidant, antimicrobial, genotoxic and anticancer activities.  相似文献   

18.
Alternative substrates for cryopreservation at −20 °C have been little explored for basidiomycetes and could bring new possibilities of lower cost cryopreservation. Nevertheless, freezing temperatures between −15 and −60 °C are very challenging because they frequently result in cryoinjuries. The objective of this study was to evaluate substrates associated to cryoprotective agents for Pleurotus ostreatus cryopreservation at −20 or −70 °C in order to develop alternative techniques for basidiomycete cryopreservation. P. ostreatus was grown on potato dextrose agar or whole grains of oat, wheat, rice or millet and transferred to cryovials with cryoprotective solution with 1 % dimethyl sulfoxide, 5 % glycerol, 10 % saccharose, 4 % glucose, 6 % polyethylene glycol-6000 or 5 % malt extract. The mycelium in the cryovials were cryopreserved at −20 or −70 °C and recovered for evaluation of the mycelial growth viability after 1 and 3 years. Both substrates and cryoprotectants affect the viability of the mycelial growth cryopreserved at −20 or −70 °C; wheat grains combined with cryoprotectants such as saccharose or glucose are effective for keeping mycelium viable after cryopreservation at −20 °C for 1 or 3 years; for cryopreservation at −70 °C after 1 or 3 years, any substrate combined with any cryoprotectant is effective for preserving the mycelium viable, except for millet grains with polyethylene glycol after 3 years; semi-permeable cryoprotective agents such as saccharose and glucose are the most effective for cryopreservation at −20 or −70 °C for at least 3 years.  相似文献   

19.
Seven-day-old seedlings of two cultivars (Cristalina and UFV ITM1) of Glycine max were inoculated with 0, 3,000, 9,000, or 27,000 eggs of Meloidogyne incognita race 3 or M. javanica and maintained in a greenhouse. Thirty days later, plants were exposed to ¹⁴CO₂ for 4 hours. Twenty hours after ¹⁴CO₂ exposure, the root fresh weight, leaf dry weight, nematode eggs per gram of root, total and specific radioactivity of carbohydrates in roots, and root carbohydrate content were evaluated. Meloidogyne javanica produced more eggs than M. incognita on both varieties. A general increase in root weight and a decrease in leaf weight with increased inoculum levels were observed. Gall tissue appeared to account for most of the root mass increase in seedlings infected with M. javanica. For both nematodes there was an increase of total radioactivity in the root system with increased levels of nematodes, and this was positively related to the number of eggs per gram fresh weight and to the root fresh weight, but negatively related to leaf dry weight. In most cases, specific radioactivities of sucrose and reducing sugars were also increased with increased inoculum levels. Highest specific radioactivities were observed with reducing sugars. Although significant changes were not observed in endogenous levels of carbohydrates, sucrose content was higher than reducing sugars. The data show that nematodes are strong metabolic sinks and significantly change the carbon distribution pattern in infected soybean plants. Carbon partitioning in plants infected with nematodes may vary with the nematode genotype.  相似文献   

20.
Five salinity tolerant Azotobacter strains i.e., ST3, ST6, ST9, ST17 and ST24 were obtained from saline soils. These Azotobacter strains were used as inoculant for wheat variety WH157 in earthen pots containing saline soil under pot house conditions, using three fertilizer treatment doses i.e., control (no fertilizer, no inoculation), 90 Kg N ha−1 and 120 Kg N ha−1. Inoculation with salinity tolerant Azotobacter strains caused significant increase in total nitrogen, biomass and grain yield of wheat. Maximum increase in plant growth parameters were obtained after inoculation with Azotobacter strain ST24 at fertilization dose of 120 kg N ha−1 and its inoculation resulted in attaining 89.9 cms plant height, 6.1 g seed yield, 12.0 g shoot dry weight and 0.7 % total nitrogen. The survival of Azotobacter strain ST24 in the soil was also highest in all the treatments at 30, 60 and 90 days after sowing (DAS). However, the population of Azotobacter decreased on 90 DAS as compared to counts observed at 60 DAS at all the fertilization treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号