首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
A thorough investigation into conditions appropriate for effecting combined eco-friendly bioscouring and/or bleaching of cotton-based fabrics was undertaken. Fabrics used include cotton, grey mercerized cotton, cotton/polyester blend 50/50 and cotton/polyester blend 35/65. The four cotton-based fabric were subjected to bioscouring by single use of alkaline pectinase enzymes or by using binary mixtures of alkaline pectinase and cellulase enzymes under a variety of conditions. Results of bioscouring show that, the bioscoured substrates exhibit fabrics performances which are comparable with these of the conventional alkali scouring. It has been also found that, incorporation of ethylenediaminetetraacetic acid (EDTA) in the bioscouring with mixture from alkaline pectinase and cellulase improves the performance of the bioscoured fabrics. Addition of β-cyclodextrin to the bioscouring solution using alkaline pectinase in admixtures with cellulase acts in favor of technical properties and performance of the bioscoured fabrics. Concurrent bioscouring and bleaching by in situ formed peracetic acid using tetraacetylethylenediamine (TAED) and H2O2 was also investigated. The results reveal unequivocally that the environmentally sound technology brought about by current development is by far the best. The new development involves a single-stage process for full purification/preparation of cotton textiles. The new development at its optimal comprises treatment of the fabric with an aqueous formulation consisting of alkaline pectinase enzyme (2 g/L), TAED (15 g/L), H2O2 (5 g/L), nonionic wetting agent (0.5 g/L) and sodium silicate (2 g/L). The treatment is carried out at 60 °C for 60 min. Beside the advantages of the new development with respect to major technical fabric properties, it is eco-friendly and reproducible. This advocates the new development for mill trials.  相似文献   

3.
Abstract

In this paper, two types of bacterial fusion protein, cutinase-CBMCel6A and cutinase-CBMCenA, were used to modify the surface of cellulose acetate fibre. The enzyme binding on cellulose acetate fibres and the hydrolysis of acetyl groups were monitored. Water absorbency and dye uptake were measured to assess the extent of enzymatic modification. The results demonstrated that cutinase-carbohydrate-binding module (CBM) has a greater effect on cellulose acetate fibres than that of cutinase. The use of non-ionic surfactant Triton X-100 could further improve enzymatic modification of cellulose acetate fibres in terms of wettability and dyeability. Scanning electron microscopy confirmed that both cutinase-CBMs could lead to the formation of carving characters on the surface of treated cellulose acetate fibres. Our studies provide a foundation for the potential application of cutinase-CBM in the surface modification of cellulose acetate fibre.  相似文献   

4.
Cutinase from Thermobifida fusca is thermally stable and has potential application in the bioscouring of cotton in the textile industry. In the present study, the carbohydrate-binding modules (CBMs) from T. fusca cellulase Cel6A (CBMCel6A) and Cellulomonas fimi cellulase CenA (CBMCenA) were fused, separately, to the carboxyl terminus of T. fusca cutinase. Both fusion enzymes, cutinase-CBMCel6A and cutinase-CBMCenA, were expressed in Escherichia coli and purified to homogeneity. Enzyme characterization showed that both displayed similar catalytic properties and pH stabilities in response to T. fusca cutinase. In addition, both fusion proteins displayed an activity half-life of 53 h at their optimal temperature of 50°C. Compared to T. fusca cutinase, in the absence of pectinase, the binding activity on cotton fiber was enhanced by 2% for cutinase-CBMCel6A and by 28% for cutinase-CBMCenA, whereas in the presence of pectinase, the binding activity was enhanced by 40% for the former and 45% for the latter. Notably, a dramatic increase of up to 3-fold was observed in the amount of released fatty acids from cotton fiber by both cutinase-CBM fusion proteins when acting in concert with pectinase. This is the first report of improving the scouring efficiency of cutinase by fusing it with CBM. The improvement in activity and the strong synergistic effect between the fusion proteins and pectinase suggest that they may have better applications in textile bioscouring than the native cutinase.Cotton fiber has a multilayered structure, with its outermost surface being the cuticle that is cross-linked to the primary cell wall of cotton fiber by esterified pectin substances. The major component of the cuticle is cutin, an insoluble polyester composed mainly of saturated C16 and C18 hydroxy and epoxy fatty acids (14, 16, 27, 38). During the process of scouring in the textile industry, the cuticle layer has to be removed in order to improve the wettability of cotton fiber, which then facilitates uniform dyeing and finishing. Traditionally, this process is performed by hot hydrolysis in alkaline medium, which not only consumes large quantities of water and energy but also causes severe pollution and fiber damage (20, 21, 33). Therefore, environment-friendly scouring methods based on biocatalysts have been actively sought (2, 30, 36).Cutinase is a multifunctional esterase capable of degrading the cutin component of the cuticle. Earlier reports showed that the fungal cutinase from Fusarium solani pisi has potential use for cotton cuticle degradation and exhibits a good synergistic effect with pectinase, an enzyme utilized to degrade pectin, in the scouring of cotton fiber (1, 7, 8, 14). Moreover, site-directed mutagenesis has been performed to replace the specific amino acid residues near the active site of cutinase (3) to improve its hydrolytic activity toward polyesters. More recently, a cutinase from the thermophilic bacterium Thermobifida fusca has been identified and overexpressed in Escherichia coli in our laboratory (10). The good thermal stability and alkali resistance of this recombinant T. fusca cutinase make it potentially more amenable to textile bioscouring (10).To further improve the applicability and/or catalytic efficiency of T. fusca cutinase, the present study attempts to engineer a novel cutin-degrading enzyme, based on analysis of the surface structure of cotton fiber. It has been observed that, in addition to cutin, pectin, proteins and other components, there is also a large amount of cellulose on the surface layer of cotton fiber (23). Thus, it is tempting to hypothesize that if the enzyme can be engineered to specifically bind to cellulose through a “gain of function” modification, its concentration on the surface of cotton fiber could increase significantly. Subsequently, its catalytic efficiency for cutin breakdown could be improved due to a proximity effect. In order to design such an enzyme, a fusion protein strategy in which a cellulose-binding protein/module will be attached to cutinase is considered.It is well known that cellulase is capable of binding specifically to cellulose (25, 31). This enzyme has two separate modules: a catalytic module and a carbohydrate-binding module (CBM) (11). The two modules are discrete structural and functional units usually connected by a flexible linker (5, 17, 28). CBM has high specific capacities for cellulose binding. Previously, it has been reported that CBM is able to be fused to a chosen target protein by genetic manipulation (36), resulting in enhanced binding of this fusion protein to cellulose (6, 29). For example, fusion proteins were constructed by fusing CBM to β-glucose nucleotide enzyme (GUS) (13) or β-glycosidase (BglA) (19), which facilitates biochemical analysis of scouring efficiency for cotton fabrics.In the present study, the CBM from T. fusca cellulase Cel6A (CBMCel6A) and the CBM from Cellulomonas fimi cellulase CenA (CBMCenA) were fused, separately, to the carboxyl terminus of T. fusca cutinase. The resulting fusion enzymes were compared to the native cutinase in terms of their biochemical properties, as well as the catalytic efficiency in cutin breakdown on cotton fiber. This is the first report of improving the scouring efficiency of cutinase by fusing it with CBM.  相似文献   

5.
In this paper the effect of cutinase on the degradation of cotton seed coat is analyzed. Fourier transform infrared (FT-IR) microspectroscopy was applied to study the changes of chemical compositions in cotton seed coat epidermal layer and gas chromatography/mass spectrometry (GC/MS) was used to analyse cutinase depolymerization of cotton seed coat. Based on these arguments the ability of cutinase to degrade aliphatic components in cotton seed coat was verified. Positive effect of cutinase on degradation of cotton seed coat was observed with the combination of alkaline pectinase or xylanase. The removal of aliphatic components by cutinase enables other enzymes to penetrate into the inner of cotton seed coat. Cutinase can potentially improve the degradation of cotton seed coat during cotton fabric bio-scouring process.  相似文献   

6.
Alkaline pectinases have been proven to be effective as bioscouring agents of cotton fabrics. In order to monitor the scouring degree of cotton fabrics quantificationally, a kinetic study of the degradation of pectins in cotton by an alkaline pectinase ‘Bioprep 3000L’ was performed and the influences of initial pectinase concentration and treatment time on bioscouring were evaluated quantitatively. The results showed that although the degradation products increased as pectinase concentration grew higher at same incubation time, the growth multiples of the maximum degradation rate which was used as the starting degradation rate were less than those of initial enzyme concentration. The degradation kinetics of pectins in cotton fibers with a pectinase could be described by modified Ghose–Walseth kinetic empirical equations which had been previously applied to the degradation reaction of cellulose.  相似文献   

7.
Bioscouring refers to the enzymatic removal of impurities from cotton fibre, which endows it with improved hydrophilicity for further wet processes. In this study, the efficacy of pectinase from newly isolated marine bacteria Bacillus subtilis, isolated from marine sediment; collected from Chinchani beach, Tarapore, India has been evaluated for scouring of cotton fabric and compared with conventional alkaline scouring of cotton. Use of Citrus limetta peel powder as pectin substrate for enzyme production renders pectinase production process more economically viable. Scouring carried out with pectinase dose of 10% (2.8 IU/g of the fabric) on the weight of the fabric at pH 7, 60 °C for 120 min yielded hydrophilic fabric. Physicochemical and mechanical properties of the pectinase scoured fabric were similar to alkaline scoured fabric. Scouring with pectinase preserves fiber's structure and prevents it from deterioration as observed from tensile strength, FTIR and SEM studies against alkaline scoured fabric. Enhanced dye uptake was also observed in case of pectinase scoured cotton fabric as compared to alkaline scoured fabric.  相似文献   

8.
Desizing of cotton and micropoly fabrics was done using thermostable xylanase from Bacillus pumilus ASH. Micropoly fabric showed better desizing than cotton under same conditions. Violet scale readings from the TEGEWA test after enzymatic desizing for 90 min at pH 7.0 and at 60°C showed the readings falling in the range of 4–5, indicating good desizing efficiency. During bioscouring the weight loss values and liberation of reducing sugars were highest when EDTA was used along with xylanase. The weight loss value of 1.5% was observed for dry cotton fabric after 1 h in case of agitated system at pH 7.0 and at an optimal enzyme dosage of 5 IU/g. The weight loss values and the liberation of reducing sugars were higher in case of cotton fabrics. Wetting time of fabrics was lowered significantly after 60 min of bioscouring using xylanase. Increase in temperature or concentration of surfactant led to further reduction in the wetting time. The whiteness values of fabrics after bioscouring were 0.9% higher than the chemically scoured fabrics indicating good efficacy of xylanase during the scouring process.  相似文献   

9.
The examination of critical factors determining the performance of bioscouring showed that a short treatment of the fabric at greater than 80°C after pectinase treatment at 60°C was essential for removal of waxes from the fabric as demonstrated by diminished intensities of methylene peaks in FT-IR measurements. Batch-wise bioscouring of cotton knits was carried out several times with post-treatment at 80°C using a rapid dyeing machine. The dye-ability of bioscoured knits was as good as the company's alkaline scoured ones with slightly higher K/S values. Water pollution caused by effluents of bioscouring and alkaline processes were estimated, as well as that due to the input of chemicals and enzymes. Higher BOD:CODCr ratios for enzymes indicated their biodegradable character. After calculation of energy consumption using a simulation program, an economic evaluation of the two processes was done on the basis of one ton production by considering the costs of chemicals and enzyme, water usage, energy consumption and waste water treatment charge.  相似文献   

10.
An alkaline and thermostable pectinase production from Bacillus subtilis SS was optimized under submerged fermentation and its application was tested in textile industry for desizing and bioscouring of cotton and micropoly fabrics. Desizing of fabric was the best with 5 U/g pectinase treatment for 120 min at pH 9.5 and 65 °C. Under optimized conditions of bioscouring, desized cotton showed highest reducing sugar liberation and weight loss than desized micropoly. Along with enzyme, addition of chelating (EDTA) and wetting agent markedly enhanced the weight loss compared to single use of enzyme or EDTA alone. Agitation (50 ± 2) enhanced the weight loss values of cotton (1.9%) and micropoly fabric (1.7%) at pH 9.5 after treatment time of 2 h. Bioscouring of fabrics with pectinase resulted in enhancement of various physical properties of fabrics viz. whiteness (1.2%), tensile strength (1.6%) and tearness (3.0%) over conventionally alkaline scoured fabrics.  相似文献   

11.
Enzymatic processes are emerging as important green biotechnological processes in textile industry. The application of recombinant pectin methylesterase (CtPME) and pectate lyase (CtPL1B) from Clostridium thermocellum for enzymatic degumming of jute or bioscouring of cotton was evaluated. The effectiveness of processes by combination of two enzymes were evaluated that effective degumming of jute and bioscouring of cotton as compared with individual enzyme. The optimum concentrations of two enzymes mixture for both processes, degumming of jute and bio scouring of cotton were 5 mg/mL (2.1 U/mL) of CtPME and 5 mg/mL (3.0 U/mL) of CtPL1B under optimized conditions of 60 min, 100 rpm and 50 °C. FESEM images showed more effective removal of pectin from jute fiber and cotton fabric by enzyme mixture, nevertheless similar to NaOH treatment. Wettability analysis showed mixture of enzymes and NaOH treated cotton fabric absorbed a water drop in 10 s and 8 s, respectively. UTM analysis showed higher tensile strength and Young’s modulus for jute fiber and cotton fabric treated with enzyme mixture than untreated and were similar to those of NaOH treated. These results showed that the CtPME and CtPL1B mixture can be used for replacing the chemical process by green bioprocess in textile industry.  相似文献   

12.
Wang Q  Fan X  Gao W  Chen J 《Carbohydrate research》2006,341(12):2170-2175
The effects of bioscouring were investigated by characterizing the chemical and physical surface changes of cotton fabrics using a purified pectinase enzyme from Bacillus subtilis strain WSHB04-02. Fourier-transform infrared (FT-IR) attenuated total-reflectance (ATR) spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques were employed. FT-IR ATR spectroscopy provided a fast and semi-quantitative assessment of the removal of pectins and/or waxes on the cotton surface by comparing the changes in intensity of the carbonyl peak induced by HCl vapor treatment at around 1736 cm(-1). The bioscoured surface could be clearly distinguished from those of untreated and alkali-treated cotton fibers using a combination of SEM and AFM. The images produced using these techniques revealed that the surface morphography and topography of the cotton fibers were shaped by the etching action mode of pectinases during bioscouring. These findings demonstrated that AFM is a useful supplement to SEM in characterizing cotton surfaces.  相似文献   

13.
Enzyme processing of textiles in reverse micellar solution   总被引:6,自引:0,他引:6  
Scouring of cotton using pectinase enzyme, bioscouring, in reverse micellar system was studied. The effectiveness of bioscouring was evaluated by measuring weight loss of cotton, analyzing pectin and cotton wax remaining and by wetness testing. Pectinase enzyme showed excellent activity even in organic media, and the effectiveness of scouring was equivalent or better than that achieved by conventional alkaline process or bioscouring in aqueous media. Enzymatic modification of wool using protease enzyme in the same system was also studied. It has found that felting property and tensile strength of wool fabrics treated by protease in reverse micellar system were superior to those in aqueous media. Possibilities of utilization of the same system for the subsequent textile dyeing process were also investigated. It was found that cotton and polyester fabrics were dyed satisfactorily by reverse micellar system compared to conventional aqueous system.  相似文献   

14.
An extracellular pectinase (PEC-I) was isolated from the crude extract of Aspergillus oryzae when grown on passion fruit peel (PFP) as the carbon source and partially purified by ultra filtration, gel filtration and ion-exchange chromatography procedures. Pectinase activity was predominantly found in the retentate. The pectinase from retentate (PEC-Ret) was most active at 50?°C and pH 7.0 and stable at 50?°C with a half-life of approximately 8?h. PEC-I showed higher activity at pH 4.5 and 55?°C, 70?°C and 75?°C and was inhibited by cations (Ag+, Fe2+, Fe3+, Co2+, Ca2+ and Hg2+), EDTA, tannic acid and vanillin. On the other hand, PEC-I was activated by Cu2+, ferulic acid, cinnamic acid and 4-hydroxybenzoic acid. The gel under denaturing conditions of PEC-Ret and PEC-I samples showed a protein band of ~45?kDa coincident with that found by staining for pectinase activity. In the bioscouring of cotton fabric the PEC-Ret pectinase preparation led to a better wettability and removed more pectin from the cotton fibers than the commercial enzyme preparation Viscozyme L, but was less effective than a commercial alkaline pectate lyase preparation and alkaline scouring. The incubation of PEC-Ret with guava juice resulted in a 4.15% decrease in juice viscosity.  相似文献   

15.
Implementation of batchwise bioscouring of cotton knits   总被引:3,自引:0,他引:3  
The examination of critical factors determining the performance of bioscouring showed that a short treatment of the fabric at greater than 80°C after pectinase treatment at 60°C was essential for removal of waxes from the fabric as demonstrated by diminished intensities of methylene peaks in FT-IR measurements. Batch-wise bioscouring of cotton knits was carried out several times with post-treatment at 80°C using a rapid dyeing machine. The dye-ability of bioscoured knits was as good as the company's alkaline scoured ones with slightly higher K/S values. Water pollution caused by effluents of bioscouring and alkaline processes were estimated, as well as that due to the input of chemicals and enzymes. Higher BOD:CODCr ratios for enzymes indicated their biodegradable character. After calculation of energy consumption using a simulation program, an economic evaluation of the two processes was done on the basis of one ton production by considering the costs of chemicals and enzyme, water usage, energy consumption and waste water treatment charge.  相似文献   

16.
Characterization of cotton fabric scouring by FT-IR ATR spectroscopy   总被引:1,自引:0,他引:1  
FT-IR attenuated total reflectance (ATR) spectroscopy has been used for the fast characterization of cotton fabric scouring process. The greige and the scoured cotton fabrics showed very similar FT-IR spectrum in transmission mode because the bulk composition of the fabrics are similar. However, FT-IR ATR spectroscopy can provide information about the surface of a fabric. By examination of C–H stretching region at 2800–3000 cm−1, the amount of waxes left on the fabric can be estimated. The presence of pectins and/or waxes can also be probed by observation of carbonyl peak induced by the HCl vapor treatment on the fabric. Based on these changes of FT-IR ATR spectra, the scouring process has been characterized.  相似文献   

17.
This article discusses the analysis of the hydrolysis products from one-step scouring of cotton using pectinase and two-step scouring of cotton using lipase then cellulase, protease then cellulase, or lipase/protease then cellulase, to improve water absorbency of cotton. UV spectrophotometric analysis indicated that the pectinase scouring process produced approximately 18-fold higher amounts of reducing sugars and galacturonic acid than any of the two-step scouring processes. The production rate of reducing sugars and galacturonic acid from most of the scouring processes showed a decrease with an increase in time. HPLC analysis revealed that the lipase/protease/cellulase scouring processes produced approximately 5-fold higher amounts of 17 amino acids than the pectinase scouring process. GC analysis for 18 fatty acids (C(8)-C(24)) revealed that three major fatty acids, palmitic acid, stearic acid, and behenic acid, were found on both the scoured and the unscoured fabrics. Scoured fabrics were tested for content of proteins, extractable components, waxes, and anionic components including pectins, and some differences among the fabric scoured with different enzyme combinations were found.  相似文献   

18.
详细综述了国内外对角质酶的研究概况,包括角质酶的主要来源,角质酶基因的克隆与表达,以及关于角质酶的发酵研究。着重阐述了目前角质酶在棉纤维的生物精炼,羊毛的防毡缩整理,以及合成纤维的生物改性等方面的应用进展。另外,作为推动纺织工业清洁生产的关键酶制剂,笔者对未来角质酶在纺织工业中的应用前景作了简要展望。  相似文献   

19.
There is a growing need in the textile industry for more economical and environmentally responsible approaches to improve the scouring process as part of the pretreatment of cotton fabric. Enzymatic methods using pectin-degrading enzymes are potentially valuable candidates in this effort because they could reduce the amount of toxic alkaline chemicals currently used. Using high throughput screening of complex environmental DNA libraries more than 40 novel microbial pectate lyases were discovered, and their enzymatic properties were characterized. Several candidate enzymes were found that possessed pH optima and specific activities on pectic material in cotton fibers compatible with their use in the scouring process. However, none exhibited the desired temperature characteristics. Therefore, a candidate enzyme was selected for evolution. Using Gene Site Saturation Mutagenesistrade mark technology, 36 single site mutants exhibiting improved thermotolerance were produced. A combinatorial library derived from the 12 best performing single site mutants was then generated by using Gene Reassemblytrade mark technology. Nineteen variants with further improved thermotolerance were produced. These variants were tested for both improved thermotolerance and performance in the bioscouring application. The best performing variant (CO14) contained eight mutations and had a melting temperature 16 degrees C higher than the wild type enzyme while retaining the same specific activity at 50 degrees C. Optimal temperature of the evolved enzyme was 70 degrees C, which is 20 degrees C higher than the wild type. Scouring results obtained with the evolved enzyme were significantly better than the results obtained with chemical scouring, making it possible to replace the conventional and environmentally harmful chemical scouring process.  相似文献   

20.
碱性果胶酶及其在棉纺织预处理中的应用   总被引:11,自引:2,他引:9  
综述了果胶酶的分类,及其酶活测定方法;产碱性果胶酶的微生物及嗜碱细菌生理活动;并对碱性果胶酶在棉纺织预处理中的应用状况作了一定的介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号