首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Abstract. We studied the relationship between plant N:P ratio, soil characteristics and species richness in wet sedge and tussock tundra in northern Alaska at seven sites. We also collected data on soil characteristics, above‐ground biomass, species richness and composition. The N:P ratio of the vegetation did not show any relationship with species richness. The N:P ratio of the soil was related with species richness for both vegetation types. Species richness in the tussock tundra was most strongly correlated with soil calcium content and soil pH, with a strong correlation between these two factors. N:P ratio of the soil was also correlated with soil pH. Other factors correlated with species richness were soil moisture and Sphagnum cover. Organic matter content was the factor most strongly correlated with species richness in the wet sedge vegetation. N:P ratio of the soil was strongly correlated with organic matter content. We conclude that N:P ratio in the vegetation is not an important factor determining species richness in arctic tundra and that species richness in arctic tundra is mainly determined by pH and flooding. In tussock tundra the pH, declining with soil age, in combination with Sphagnum growth strongly decreases species richness, while in wet sedge communities flooding over long periods of time creates less favourable conditions for species richness.  相似文献   

2.
Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities.  相似文献   

3.
在对长白山高山苔原西坡样带内132个样方进行植被调查和土壤取样分析的基础上,应用冗余分析(RDA)和典型相关分析方法,探讨了草本植物入侵苔原带程度与苔原土理化性质及环境之间的关系。研究表明,长白山苔原带西坡草本入侵程度区域差异明显,可分为5个不同的入侵等级;海拔、坡度、全钾含量、粘粒含量、有机质含量等10种土壤环境因子与草本植物入侵程度明显相关。RDA分析表明土壤环境因子能解释93%的植物物种多度信息,影响草本植物入侵的主要土壤因子是有机质含量,粘粒含量和坡度;第一对典型变量说明有机质含量与牛皮杜鹃多度正相关,与大白花地榆多度负相关,粘粒含量则相反;第二对典型变量说明海拔、速效氮含量与笃斯越桔、长白老鹳草多度呈负相关。长白山苔原带西坡草本植物在空间分布上是离散的,呈斑块状。可见,草本植物入侵,对生境是有所选择的。土壤有机质含量与灌木多度呈正相关,说明在草本入侵过程中,土壤有机质含量会减少;或者有机质含量减少的地方,灌木生长退化,草本由此开始侵入定植。  相似文献   

4.
The soil microbial community is essential for maintaining ecosystem functioning and is intimately linked with the plant community. Yet, little is known on how soil microbial communities in the root zone vary at continental scales within plant species. Here we assess the effects of soil chemistry, large-scale environmental conditions (i.e. temperature, precipitation and nitrogen deposition) and forest land-use history on the soil microbial communities (measured by phospholipid fatty acids) in the root zone of four plant species (Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica) in forests along a 1700 km latitudinal gradient in Europe.Soil microbial communities differed significantly among plant species, and soil chemistry was the main determinant of the microbial community composition within each plant species. Influential soil chemical variables for microbial communities were plant species-specific; soil acidity, however, was often an important factor. Large-scale environmental conditions, together with soil chemistry, only explained the microbial community composition in M. effusum and P. nemoralis. Forest land-use history did not affect the soil microbial community composition.Our results underpin the dominant role of soil chemistry in shaping microbial community composition variation within plant species at the continental scale, and provide insights into the composition and functionality of soil microbial communities in forest ecosystems.  相似文献   

5.
The dynamics of litter stock, microbial biomass, and composition and structure of microbial communities, were studied in the course of soil organic matter transformation during vegetation season. The dynamics of litter stock in coniferous and deciduous forests proved to correlate with the biomass and total abundance of microorganisms, particularly, with the proportion of microfungi in the microbial community.  相似文献   

6.
Climate change can influence soil microorganisms directly by altering their growth and activity but also indirectly via effects on the vegetation, which modifies the availability of resources. Direct impacts of climate change on soil microorganisms can occur rapidly, whereas indirect effects mediated by shifts in plant community composition are not immediately apparent and likely to increase over time. We used molecular fingerprinting of bacterial and fungal communities in the soil to investigate the effects of 17 years of temperature and rainfall manipulations in a species‐rich grassland near Buxton, UK. We compared shifts in microbial community structure to changes in plant species composition and key plant traits across 78 microsites within plots subjected to winter heating, rainfall supplementation, or summer drought. We observed marked shifts in soil fungal and bacterial community structure in response to chronic summer drought. Importantly, although dominant microbial taxa were largely unaffected by drought, there were substantial changes in the abundances of subordinate fungal and bacterial taxa. In contrast to short‐term studies that report high resistance of soil fungi to drought, we observed substantial losses of fungal taxa in the summer drought treatments. There was moderate concordance between soil microbial communities and plant species composition within microsites. Vector fitting of community‐weighted mean plant traits to ordinations of soil bacterial and fungal communities showed that shifts in soil microbial community structure were related to plant traits representing the quality of resources available to soil microorganisms: the construction cost of leaf material, foliar carbon‐to‐nitrogen ratios, and leaf dry matter content. Thus, our study provides evidence that climate change could affect soil microbial communities indirectly via changes in plant inputs and highlights the importance of considering long‐term climate change effects, especially in nutrient‐poor systems with slow‐growing vegetation.  相似文献   

7.
8.
汶川地震滑坡迹地植物群落与环境的关系   总被引:1,自引:0,他引:1  
孙丽文  史常青  李丹雄  赵廷宁 《生态学报》2016,36(21):6794-6803
为了加快汶川地震滑坡迹地人工恢复植被的进程,探讨地震诱发的滑坡迹地植物群落与环境的关系。在5·12地震重灾区北川境内选取29个样地进行植被调查,采用10个环境指标刻画植物群落的地形、空间位置和土壤养分特征;利用TWINSPAN、CCA、DCA和DCCA,分析植物种、植物群落和植物生活型与环境的关系。结果显示:1)研究区的植物群落可划分为9个类型。2)研究区环境变量对植物种的解释量为21.96%,第一排序轴与pH值、海拔、土壤质地相关,反映的是植物种从次生植物群落向原生植物群落变化。通过DCCA分析得出,环境变量对植物群落的排序解释了25.7%,第一排序轴与pH值、海拔、土壤质地的相关较强,反映植物群落按照耐旱、耐贫瘠→人工或先锋植物→未受损的植被变化;第二排序轴与土壤有机质、全氮含量、坡向的相关,反映的是植物群落从草本植物→乔灌草或者灌草植物变化。3)滑坡迹地的植物群落与未受损林地的植物群落物种存在较大差异。  相似文献   

9.
Phosphorus (P) is an important nutrient in tundra ecosystems that co-limits or in some cases limits primary production. The availability of P is largely driven by soil characteristics, e.g., pH, organic carbon, and abundance of P-sorbing elements such as aluminium (Al) or iron (Fe). We tested how vegetation and soil properties relate to P availability across different tundra vegetation types. The different soil P fractions in the organic horizon were measured and plant foliar nitrogen (N) to P ratio and a plant bioassay was used as indicators of plant nutrient status. Microbial bioassays were used to study microbial respiration kinetics and in response to carbon, N, and P amendments. The distribution of P fractions differed significantly across vegetation types; labile fractions of P were less abundant in meadow sites compared to heath sites. Calcium-phosphates seemed to be an important P-fraction in meadows, but were only found in lower concentrations in the heath. There were only small differences in NaOH–extractable P between the vegetation types and this correlated with the distribution of oxalate-extractable Al. Plant N:P ratios and the plant bioassay indicated decreasing P availability from dry heath to mesic heath to mesic meadow. The microbial bioassay suggests that the heterotrophic microbial community is C-limited with N as a secondary limiting nutrient although there were indications that microbial P availability was lower in the meadow sites. Overall, we suggest that the observed variations in soil P across vegetation types are affecting both plant and microbial function although the differences seem to be relatively small.  相似文献   

10.
Plant and microbial community composition in connection with soil chemistry determines soil nutrient cycling. The study aimed at demonstrating links between plant and microbial communities and soil chemistry occurring among and within four sites: two pine forests with contrasting soil pH and two grasslands of dissimilar soil chemistry and vegetation. Soil was characterized by C and N content, particle size, and profiles of low-molecular-weight compounds determined by high-performance liquid chromatography (HPLC) of soil extracts. Bacterial and actinobacterial community composition was assessed by terminal restriction fragment length polymorphism (T-RFLP) and cloning followed by sequencing. Abundances of bacteria, fungi, and actinobacteria were determined by quantitative PCR. In addition, a pool of secondary metabolites was estimated by erm resistance genes coding for rRNA methyltransferases. The sites were characterized by a stable proportion of C/N within each site, while on a larger scale, the grasslands had a significantly lower C/N ratio than the forests. A Spearman's test showed that soil pH was correlated with bacterial community composition not only among sites but also within each site. Bacterial, actinobacterial, and fungal abundances were related to carbon sources while T-RFLP-assessed microbial community composition was correlated with the chemical environment represented by HPLC profiles. Actinobacteria community composition was the only studied microbial characteristic correlated to all measured factors. It was concluded that the microbial communities of our sites were influenced primarily not only by soil abiotic characteristics but also by dominant litter quality, particularly, by percentage of recalcitrant compounds.  相似文献   

11.
Altitudinally-defined climate conditions provide specific vegetation types and soil environments that could influence soil microbial communities, which in turn may affect microbial residues. However, the knowledge is limited in terms of the degree to which microbial communities and residues present and differ along altitude. In this study, we examined the soil microbial communities and residues along the northern slope of Changbai Mountain, China using phospholipid fatty acid (PLFA) and amino sugar analysis, respectively. Soil samples were taken from five different vegetation belts defined by climates. Principal component analysis (PCA) revealed substantial differences in soil microbial community composition among study sites, appeared to be driven primarily by soil pH and C/N ratio on the first principal component (PC1) which accounted for 50.7% of the total sample variance. The alpine tundra was separated from forest sites on the second principal component (PC2) by a signifiscantly higher amount of fungal PLFA (18:2ω6,9). Soil pH and C/N ratio were also correlated with the ratios of Gram-positive to Gram-negative bacteria (Gm+/Gm), glucosamine to galactosamine (GluN/GalN), and glucosamine to muramic acid (GluN/MurA). Both total PLFAs and amino sugars were positively correlated with soil organic carbon, inorganic nitrogen, available phosphorus and potassium. We concluded that soil pH and C/N ratio were the most important drivers for microbial community structure and amino sugar pattern, while substrate availability was of great importance in determining the concentrations of microbial communities and residues. These findings could be used to facilitate interpretation of soil microbial community and amino sugar data derived from measurements in latitude or managed forests.  相似文献   

12.
An improved knowledge of how contrasting types of plant communities and their associated soil biota differ in their responses to climatic variables is important for better understanding the future impacts of climate change on terrestrial ecosystems. Elevational gradients serve as powerful study systems for answering questions on how ecological processes can be affected by changes in temperature and associated climatic variables. In this study, we evaluated how plant and soil microbial communities, and abiotic soil properties, change with increasing elevation in subarctic tundra in northern Sweden, for each of two dominant but highly contrasting vegetation types, namely heath (dominated by woody dwarf shrubs) and meadow (dominated by herbaceous species). To achieve this, we measured plant community characteristics, microbial community properties and several soil abiotic properties for both vegetation types across an elevation gradient of 500 to 1000 m. We found that the two vegetation types differed not only in several above‐ and belowground properties, but also in how these properties responded to elevation, pointing to important interactive effects between vegetation type and elevation. Specifically, for the heath, available soil nitrogen and phosphorus decreased with elevation whereas fungal dominance increased, while for the meadow, idiosyncratic responses to elevation for these variables were found. These differences in belowground responses to elevation among vegetation types were linked to shifts in the species and functional group composition of the vegetation. Our results highlight that these two dominant vegetation types in subarctic tundra differ greatly not only in fundamental aboveground and belowground properties, but also in how these properties respond to elevation and are therefore likely to be influenced by temperature. As such they highlight that vegetation type, and the soil abiotic properties that determine this, may serve as powerful determinants of how both aboveground and belowground properties respond to strong environmental gradients.  相似文献   

13.
Moist acidic and nonacidic tundra are two of the most common vegetation types of the tundra in the northern foothills of the Brooks Range, Alaska, and they differ considerably in vegetation, soil nutrient availability, and soil pH. Both occur on mesic, gentle slopes, but acidic tundra is more common on older glacial surfaces whereas nonacidic tundra is more common on younger surfaces. Although much prior research has focused on moist acidic tundra, nonacidic tundra is still relatively unstudied. We compared rates of soil carbon (C) and nitrogen (N) cycling and their response to warming and changes in moisture in moist acidic tundra on Itkillik I glacial drift (50,000–120,000 years old, pH = 3–4) and moist nonacidic tundra on Itkillik II glacial drift (11,500–60,000 year old, pH = 6–7). We hypothesized that rates of soil C and N cycling would be faster at the nonacidic site because it has a more favorable pH for microbial activity and higher-quality organic matter inputs arising from its greater herbaceous plant production relative to the acidic site. However, in contrast to our hypothesis, in situ soil respiration, as well as respiration, dissolved organic C production, and net N mineralization in laboratory incubations, was greater for soils from the acidic site. Nevertheless, the sites responded similarly to manipulations of temperature and moisture, exhibiting exponential increases in respiration with warming between 4°C and 15°C but surprisingly little sensitivity to changes in moisture between 300% and 700%. Slower soil organic matter decomposition at the nonacidic site likely results from the stabilization of soil organic matter by high concentrations of calcium. Received 27 August 2001; accepted 3 April 2002.  相似文献   

14.
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.  相似文献   

15.
黄土高原森林草原区退耕地植被自然恢复与土壤养分变化   总被引:59,自引:3,他引:56  
研究了黄土高原森林草原区退耕地植被自然恢复过程与土壤养分变化.结果表明,在显域生境下,植被自然演替过程虽然趋向于该区原有植物群落类型,但经过40~0年的时间,仍未形成灌丛或稀树等群落,分布较多的仍是长芒草、铁杆蒿、白羊草、大针茅和达乌里胡枝子等群落类型.从植被恢复时间对土壤养分变化的影响来看,除全P外(P>0.0),有机质、全N、速效氮、速效钾的变化极显著(P<0.001),速效磷变化较显著(0.0<P<0.01),并随植被恢复时间的延长而呈增加趋势.除恢复时间外,养分含量变化也随土壤剖面深度而变化,其中除全P含量变化较显著外(P<0.0),其余各养分含量变化都达极显著水平(P<0.001).土壤养分变化具有明显的表聚性.相关分析表明,土壤有机质、全N、有效氮与速效钾相互间相关极显著(P<0.001),而与全P与速效磷相关性不明显(P>0.0),全P与速效磷二者相关性也不明显(P>0.0).  相似文献   

16.
In this review, we present a conceptual model which links plant communities and saprotrophic microbial communities through the reciprocal exchange of growth-limiting resources. We discuss the numerous ways human-induced environmental change has directly and indirectly impacted this relationship, and review microbial responses that have occurred to date. We argue that compositional shifts in saprotrophic microbial communities underlie functional responses to environmental change that have ecosystem-level implications. Drawing on a long-term, large-scale, field experiment, we illustrate how and why chronic atmospheric N deposition can alter saprotrophic communities in the soil of a wide-spread sugar maple (Acer saccharum) ecosystem in northeastern North America, resulting in the slowing of plant litter decay, the rapid accumulation of soil organic matter, and the accelerated production and loss of dissolved organic carbon (DOC). Compositional shifts in soil microbial communities, mediated by ecological interactions among soil saprotrophs, appear to lie at the biogeochemical heart of ecosystem response to environmental change.  相似文献   

17.
The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith''s phylogenetic diversity, and the Shannon species-level index (H′) were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith''s phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure.  相似文献   

18.
Woody species encroachment of grasslands globally causes many socioecological impacts, including loss of grazing pastures and decreased biodiversity. Soil microbial communities may partially regulate the pace of shrub encroachment, as plant-microbial interactions can strongly influence plant success. We measured fungal composition and activity under dominant plant species across a grassland to shrubland transition to determine if shrubs cultivate soil microbial communities as they invade. Specifically, soil microbial communities, abiotic soil properties, and extracellular enzyme activities were quantified for soils under four common Chihuahuan Desert plant species (three grasses, one shrub) in central New Mexico, U.S.A. Extracellular enzyme activity levels were fairly consistent under different plant species across the grassland to shrubland transition. Activity levels of two enzymes (alkaline phosphatase and beta-N-acetyl-glucosaminidase) were lower in the ecotone, presumably because soil organic matter content was also lower in ecotone soils. Community composition of soil fungi mirrored patterns in the plant community, with distinct plant and fungal communities in the shrubland and grassland, while grassland-shrubland ecotone soils hosted a mix of taxa from both habitats. We show that shrubs cultivate a distinct microbial community on the leading edge of the invasion, which may be necessary for shrub colonization, establishment, and persistence.  相似文献   

19.
Microbial characteristics of soils on a latitudinal transect in Siberia   总被引:2,自引:0,他引:2  
Soil microbial properties were studied from localities on a transect along the Yenisei River, Central Siberia. The 1000 km‐long transect, from 56°N to 68°N, passed through tundra, taiga and pine forest characteristic of Northern Russia. Soil microbial properties were characterized by dehydrogenase activity, microbial biomass, composition of microbial community (PLFAs), respiration rates, denitrification and N mineralization rates. Relationships between vegetation, latitude, soil quality (pH, texture), soil organic carbon (SOC) and the microbial properties were examined using multivariate analysis. In addition, the temperature responses of microbial growth (net growth rate) and activity (soil respiration rate) were tested by laboratory experiments. The major conclusions of the study are as follows: 1. Multivariate analysis of the data revealed significant differences in microbial activity. SOC clay content was positively related to clay content. Soil texture and SOC exhibited the dominant effect on soil microbial parameters, while the vegetation and climatic effects (expressed as a function of latitude) were weaker but still significant. The effect of vegetation cover is linked to SOC quality, which can control soil microbial activity. 2. When compared to fine‐textured soils, coarse‐textured soils have (i) proportionally more SOC bound in microbial biomass, which might result in higher susceptibility of SOC transformation to fluctuation of environmental factors, and (ii) low mineralization potential, but with a substantial part of the consumed C being transformed to microbial products. 3. The soil microbial community from the northernmost study region located within the permafrost zone appears to be adapted to cold conditions. As a result, microbial net growth rate became negative when temperature rose above 5 °C and C mineralization then exceeded C accumulation.  相似文献   

20.
Tree growth limitation at treeline has mainly been studied in terms of carbon limitation while effects and mechanisms of potential nitrogen (N) limitation are barely known, especially in the southern hemisphere. We investigated how soil abiotic properties and microbial community structure and composition change from lower to upper sites within three vegetation belts (Nothofagus betuloides and N. pumilio forests, and alpine vegetation) across an elevation gradient (from 0 to 650 m a.s.l.) in Cordillera Darwin, southern Patagonia. Increasing elevation was associated with a decrease in soil N‐NH4+ availability within the N. pumilio and the alpine vegetation belt. Within the alpine vegetation belt, a concurrent increase in the soil C:N ratio was associated with a shift from bacterial‐dominated in lower alpine sites to fungal‐dominated microbial communities in upper alpine sites. Lower forested belts (N. betuloides, N. pumilio) exhibited more complex patterns both in terms of soil properties and microbial communities. Overall, our results concur with recent findings from high‐latitude and altitude ecosystems showing decreased nutrient availability with elevation, leading to fungal‐dominated microbial communities. We suggest that growth limitation at treeline may result, in addition to proximal climatic parameters, from a competition between trees and soil microbial communities for limited soil inorganic N. At higher elevation, soil microbial communities could have comparably greater capacities to uptake soil N than trees, and the shift towards a fungal‐dominated community would favour N immobilization over N mineralization. Though evidences of altered nutrient dynamics in tree and alpine plant tissue with increasing altitude remain needed, we contend that the measured residual low amount of inorganic N available for trees in the soil could participate to the establishment limitation. Finally, our results suggest that responses of soil microbial communities to elevation could be influenced by functional properties of forest communities for instance through variations in litter quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号