首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hemodynamic (blood pressure and heart rate) experiments were conducted in conscious and/or anesthetized male Sprague-Dawley (S.D.), heterozygous and homozygous Brattleboro rats given intravenous (iv) dynorphin A(1-13), arginine vasopressin (AVP), norepinephrine (HCl, (NE) or sterile saline before and 10 min after an iv bolus injection of a specific receptor antagonist. These receptor blockers (kappa receptor antagonist Mr2266, alpha adrenoceptor antagonist phentolamine HCl or the AVP-V1 receptor antagonist d(CH2)5Tyr-(Me)AVP were given in equimolar concentrations (15 nmol/kg iv). In all conscious S.D. groups, iv injection of AVP (60 pmol/kg), NE (12.5 nmol/kg) and dynorphin A(1-13) (60 nmol/kg) evoked significant increases in mean arterial pressure (MAP) associated with concomitant bradycardia. The hemodynamic responses to 'both' AVP and dynorphin A(1-13) were blocked if given subsequent to AVP-V1 administration but not following phentolamine or Mr2266 pretreatment. The pressor and bradycardic responses of conscious heterozygous and homozygous Brattleboro rats after iv AVP or dynorphin again were only blocked by the AVP-V1 receptor antagonist. Anesthetized heterozygous and homozygous Brattleboro rats again showed pressor responses following iv AVP, NE or dynorphin A(1-13) but with slight or no associated bradycardia. The rise in blood pressure with AVP 'and' dynorphin A(1-13) in these groups also was only blocked by the d(CH2)5Tyr(Me)AVP antagonist. The results indicate that the pressor responses of rats given intravenous dynorphin A(1-13) involve the interaction of AVP-V1 receptors and suggest a functional interaction of these two neuropeptides in the modulation of vascular tone.  相似文献   

2.
Conscious, unrestrained rats were used to determine the hemodynamic (blood pressure and heart rate) responses following intravenous (IV) injection of dynorphin A(1-13) and the possible receptor mechanisms mediating those changes. Male Sprague-Dawley rats (300 g) were given IV bolus injections (via femoral venous catheter) of 6.0 to 600 nmoles/kg of dynorphin A(1-13), 8.0 nmoles/kg of norepinephrine HCl (NE), 14.3 pmoles/kg of angiotensin II or a vehicle control solution. Blood pressure (BP) and heart rate (HR) were monitored via femoral arterial catheter (into abdominal aorta) over 90 sec postpeptide or -amine administration before and 10 min after IV injection of 4.2 mumoles/kg of naloxone HCl (opiate antagonist), yohimbine HCl (alpha 2 receptor antagonist) or prazosin HCl (alpha 1 receptor antagonist). Dynorphin A(1-13) caused a transient but dose-related rise in mean arterial pressure (MAP) whereas mean pulse pressures (MPP) and mean heart rates (MHR) concomitantly fell, from preinjection control values in a dose-dependent fashion. Pretreatment with naloxone blocked the pressor response of only a subsequent injection with 20 nmoles/kg but not 60 nmoles/kg of dynorphin A or NE (8.0 nmoles/kg). Pretreatment with yohimbine suppressed the marked pressor responses of subsequent NE or Dyn A (60 nmoles/kg) administration whereas prazosin antagonized the rise in MAP of only the lower doses of dynorphin as well as NE. The suppression of the pressor responses of dynorphin by opiate or alpha receptor antagonists were not caused by tachyphylaxis for repeated injections of 6.0 or 60 nmoles/kg of dynorphin caused the same rise in MAP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Experiments were conducted (i) to determine the hemodynamic (blood pressure and heart rate) responses of conscious rats following intrathecal (IT) administration of endogenous prodynorphin-derived opioids into the lower thoracic space, (ii) to identify the receptors involved in mediating their cardiovascular responses, and (iii) to reveal any possible hemodynamic interactions with the neuropeptide arginine vasopressin. Male Sprague-Dawley rats were surgically prepared with femoral arterial and venous catheters as well as a spinal catheter (into lower thoracic region, T9-T12). After recovery, hemodynamic responses were observed in conscious rats for 5-10 min after IT injections of artificial cerebrospinal fluid (CSF) solution, prodynorphin-derived opioids (dynorphin A, dynorphin B, dynorphin A (1-13), dynorphin A (1-10), alpha- and beta-neoendorphin, leucine enkephalin (LE), methionine enkephalin (ME), arginine vasopressin (AVP), or norepinephrine (NE)). IT injections of AVP (10 or 20 pmol), dynorphin A (1-13), or dynorphin A (10-20 nmol) caused pressor effects associated with a prolonged and significant bradycardia. Equimolar (20 nmol) concentrations of LE, ME, alpha- and beta-neoendorphin, and dynorphin A (1-10) caused no significant blood pressure or heart rate changes. Combined IT injections of dynorphin A (1-13) and AVP caused apparent additive pressor effects when compared with the same dose of either peptide given alone. IT infusion of the specific AVP-V1 antagonist d(CH2)5Tyr(Me)AVP before subsequent IT AVP, dynorphin A (1-13), or NE administration inhibited only the subsequent pressor responses to AVP. The kappa-opioid antagonist (Mr2266) infused IT blocked the pressor actions of subsequent dynorphin A administration and not AVP or NE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Hemodynamic (blood pressure and heart rate) responses of conscious drug-naive rats were studied following intravenous (i.v.) infusion of sterile saline, morphine sulphate, and then naloxone hydrochloride, as well as of other groups previously injected with morphine sulphate. Those groups chronically given morphine sulphate received twice daily injections of morphine sulphate (5 mg/kg, s.c. per injection) for 3 or 6 days before testing with the i.v. infusion of morphine sulphate. Drugs were infused (135 microL/min) through an indwelling femoral venous catheter via a Harvard infusion pump, and blood pressure was recorded from the abdominal aorta via a femoral arterial catheter. Other pretreatment studies were done to determine the receptor mechanisms mediating the blood pressure responses of drug-naive and chronic morphine-treated rats, whereby equimolar doses (0.32 mumol) of specific receptor antagonists were given as a bolus i.v. injection 5 min after saline but before subsequent infusion with morphine sulphate. Intravenous infusion of morphine sulphate (7.5 mg/kg total over 15 min) to drug-native rats caused a transient but precipitous fall in mean arterial pressure and mean heart rate with an associated rise in mean pulse pressure; these effects were blocked in other groups pretreated with atropine. Interestingly, however, rats chronically injected with morphine sulphate for 3 days previously evoked a transient pressor response when subsequently infused i.v. with morphine sulphate, actions that were blocked in other groups when pretreated i.v. with 0.32 mumol of phentolamine, yohimbine, prazosin, or guanethidine. A greater and persistent pressor response occurred following morphine infusion to groups of rats previously injected over 6 days with morphine sulphate, which was associated with tachycardia during the later stages of the 15-min morphine sulphate infusion period. The prolonged pressor and tachycardic responses of this 6-day chronically injected group were completely blocked in another group pretreated i.v. with both phentolamine and propranolol (0.32 mumol). The results suggest that morphine sulphate infusion to conscious, drug-naive rats evokes classical hypotensive effects due to decreases in mean heart rate caused by activation of parasympathetic vagal activity. With 3 or 6 days of chronic morphine sulphate administration beforehand, subsequent i.v. infusion of morphine sulphate evoked pressor actions felt to be caused by a progressive activation of the sympathetic nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
These experiments investigated in the awake rat the involvement of noradrenergic projections to the rostral hypothalamus in the drinking and pressor responses elicited by intracerebroventricular (i.c.v.) injections of 25 ng of angiotensin II. Phentolamine mesylate in doses of 2.5-125 micrograms injected into the rostral hypothalamus produced a dose-dependent depression of both the drinking and pressor responses elicited by i.c.v. administration of angiotensin II. A paradoxical increase in heart rate was associated with a decrease in pressor responses with increasing doses of phentolamine. This response was due to tissue injections, since pretreatment by injecting 12.5 micrograms of phentolamine into the ventricle did not block either the cardiovascular or drinking responses to i.c.v. injections of angiotensin II. Yohimbine (0.33-3.3 micrograms), DL-propranolol (25 micrograms), and atenolol (25 micrograms) did not, but prazosin (0.7 microgram) did significantly alter the pressor responses. Although yohimbine also was without effect on drinking, prazosin reduced the drinking responses. These results suggest that alpha 1-adrenergic receptors in the rostral hypothalamus are involved in the control of both the drinking and pressor responses elicited by i.c.v. injections of angiotensin II. In the case of propranolol and atenolol, beta-adrenergic receptors altered only the drinking response in a nonspecific manner by eliciting competing behaviors. Whether they are involved in modifying the drinking response only remains to be demonstrated.  相似文献   

6.
Experiments were designed using conscious Sprague-Dawley rats to determine the blood pressure (BP) and heart rate (HR) responses to intravenous doses of (1) the adrenal catecholamines noradrenaline (NA) and adrenaline (A), (2) adrenal pentapeptides methionine enkephalin (ME) and leucine enkephalin (LE), (3) combination (i.v.) injections of both ME or LE with NA or A that modulate the hemodynamic responses when the adrenal catecholamines were given alone, and (4) the possible receptor mechanisms mediating the resultant BP and HR response to i.v. pentapeptide administration. NA (0.48 and 2.4 nmol) and A (0.3 and 1.5 nmol) given i.v. evoked potent, dose-related pressor responses associated with reflex bradycardia. ME and LE (1.6 - 48 nmol) elicited transient (10-20 s) increases in mean arterial pressure (MAP), which was associated either with no change in mean heart rate (MHR), such as ME, or with slight bradycardia (i.e., LE). Combining ME or LE (16 nmol) with NA (2.4 nmol) or A (0.3 or 1.5 nmol) did not change MAP and MHR from when these respective doses of NA or A were given alone. However, 16 nmol of ME or LE with a low dose of NA (0.48 nmol) increased the pressor response compared with NA (0.48 nmol) given alone. Other experiments whereby specific receptor blockers (naloxone, diprenorphine, atropine, propranolol, phentolamine or guanethidine) were given i.v. 5 min before subsequent i.v. administration of LE or ME (16 nmol) indicated that only phentolamine or guanethidine could completely suppress the pressor responses of LE and ME. Naloxone and diprenorphine pretreatment attenuated the pressor response of LE but did not affect the BP response to ME.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effects of adrenoreceptor blocking agents on corticotropin-releasing factor (CRF)-induced behavioral changes in rats were examined. The i.c.v. injection of 1 micrograms ovine CRF significantly increased the grooming frequency, number of occurrences of rearing and total distance moved. I.c.v. administered phentolamine at a dose of 10 nmol completely suppressed the increase in rearing and total distance moved induced by CRF without affecting the grooming frequency, whereas 100 nmol phentolamine significantly decreased the grooming frequency as well as the rearing and total distance moved. In contrast, propranolol reduced the increase in rearing induced by CRF only at a dose which induced ataxia in rats. The increases in rearing and total distance moved induced by CRF were reduced by 10 nmol of yohimbine and 100 nmol of prazosin. S.c. injection of caffeine (10 mg/kg) produced a significant increase in grooming frequency, rearing, and total movement. Administration of 10 nmol phentolamine and yohimbine did not affect these behavioral changes induced by caffeine, while 100 nmol prazosin suppressed them. Therefore, prazosin depressed the behavior of rats non-specifically. These results suggest that CRF-induced behavioral hyperactivity is mediated at least in part by alpha-noradrenergic, mainly alpha 2-noradrenergic, systems in the brain.  相似文献   

8.
A pressor response has been observed with propranolol, a nonselective beta-adrenoceptor antagonist, in animals given a nonselective alpha-adrenoceptor antagonist. This study investigates whether a pressor response to propranolol occurs in conscious unrestrained rats following a hypotensive response induced by phentolamine (nonselective alpha-antagonist), prazosin (selective alpha 1-antagonist) and (or) rauwolscine (selective alpha 2-antagonist), sodium nitroprusside (smooth muscle relaxant), or methacholine (muscarinic agonist). The rats were subjected to a continuous infusion of a hypotensive agent or normal saline followed by i.v. injection of propranolol. The infusion of phentolamine significantly decreased mean arterial pressure (MAP). Subsequent injection of propranolol restored MAP to the control level. Prazosin and rauwolscine each caused a small but not significant decrease in MAP which was reversed by propranolol. Concurrent infusions of prazosin and rauwolscine caused a significant decrease in MAP. Subsequent injection of propranolol caused a large pressor response which increased MAP to 20% above control MAP prior to the administration of drugs. Nitroprusside or methacholine each caused a significant decrease in MAP, but the hypotension was not antagonized by propranolol. The concurrent infusions of a low dose of nitroprusside and prazosin caused a significant decrease in MAP which was reversed by propranolol. The infusion of saline did not alter MAP, and propranolol did not cause a pressor response. It is concluded that propranolol antagonizes the hypotensive effect of an alpha-blocker but not that of sodium nitroprusside or methacholine. Our results suggest the presence of a specific interaction between alpha- and beta-antagonists.  相似文献   

9.
Studies were performed in conscious and anesthetized Sprague-Dawley rats to examine whether the cardiovascular responses to intracerebroventricular (i.c.v.) administration of corticotropin-releasing factor (CRF) required concomitant locomotor activation. I.c.v. administration of CRF to conscious animals elicited significant increases in arterial pressure, heart rate, mesenteric resistance, and iliac blood flow, as well as intermittent locomotor, grooming and chewing activity. Intravenous infusion of the anesthetic agent, Saffan, at the minimal dose required to abolish locomotor activity caused slight but significant elevations of heart rate and mesenteric vascular resistance. I.c.v. administration of CRF to anesthetized animals produced delayed, yet significant and sustained increases in the heart rate and arterial pressure, without altering regional blood flow. These results demonstrate that locomotor activation is not requisite for the expression of CRF-induced pressor and tachycardic responses. It is concluded that CRF acts within the central nervous system to influence cardiovascular function in the absence of locomotor activity.  相似文献   

10.
J Y Chan  S Pan  S H Chan 《Life sciences》1991,48(13):1293-1301
Conscious, adult, male Sprague-Dawley rats, instrumented with in-dwelling cannula for drug application into the lateral cerebral ventricle, were used to evaluate the participation of noradrenergic neurotransmission in angiotensin III (AIII)-induced dipsogenic behavior. Intracerebroventricular (i.c.v.) administration of AIII (20, 40 or 80 pmol) elicited a robust and dose-related drinking response. Chemical lesion produced by i.c.v. injection of the catecholaminergic neurotoxin, 6-hydroxydopamine (25 micrograms x 3), or the selective noradrenergic neurotoxin, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (250 micrograms), promoted significant antagonization of the dipsogenic behavior produced by AIII (40 or 80 pmol, i.c.v.). Under equimolar doses (3.25 or 6.50 nmol), the specific alpha 1-adrenoceptor blocker, prazosin, antagonized; the specific alpha 2-adrenoceptor antagonist, yohimbine, enhanced; and the nonselective alpha-adrenoceptor blocker, phentolamine, elicited minimal action, on AIII (40 pmol)-induced drinking response. These results suggest that central noradrenergic neurotransmission may participate actively in AIII-induced dipsogenesis, in a process that may involve both alpha 1- and alpha 2-adrenoceptors.  相似文献   

11.
Experiments were conducted to compare the blood pressure and heart rate responses of conscious rats given intracerebroventricular (ICV) injections of adrenocorticotropin (ACTH 1-24) and corticotropin releasing factor (CRF). Under sodium pentobarbital anaesthesia, rats were implanted with a stainless-steel cannula into the lateral cerebral ventricle and had their right femoral artery and vein cannulated. Upon recovery (24-48 hr later) conscious, unrestrained rats were given ICV injections (total volume 5 microliter by gravity flow) of sterile saline, ACTH (1-24) (0.85 and 1.7 nmoles) or CRF (0.55 and 1.1 nmoles) and blood pressure and heart rate were monitored over the next 2 hr (from the abdominal aorta via the femoral arterial catheter). Both ACTH and CRF caused mean arterial pressure (MAP) to increase, which was paralleled with increases in mean heart rate (MHR). Moreover, these elevations in MAP and MHR were temporally associated with excessive grooming (for ACTH) and locomotor activity (for CRF), which occurred before and lasted as long as MAP and MHR were enhanced. Intravenous (IV) pretreatment whereby naloxone was given 10 min before ICV administration of ACTH (1.7 nmoles) or CRF (1.1 nmoles), showed that naloxone blocked the behavioral, pressor and tachycardic effects of both ACTH and CRF. The results demonstrate that the pressor, tachycardic and locomotor effects evoked in conscious rats by ICV administration of ACTH or CRF are antagonized by naloxone and that their hemodynamic changes may, in part, be mediated by prior behavioral activation.  相似文献   

12.
1.大景以辐射热甩尾法测痛。应用脊髓蛛网膜下腔,连续累加注射法观察药物的镇痛作用。脊髓蛛网膜下腔单独注射甲啡肽100nmol不能提高痛阈,但与吗啡或强啡肽A-(1—13)合用时,可明显加强后者的镇痛作用。 2.脊髓蛛网膜下腔单独注射强啡肽A-(—13)2.5nmol本身无镇痛作用,但与吗啡合用时,却能明显加强吗啡的镇痛作用。 3.本文对连续累加注射法的特点及三类阿片受体及其配基对痛觉的调制作用,进行了讨论。  相似文献   

13.
The present study set out to investigate the pharmacological profile of the cardiovascular responses induced by the antimigraine agent, isometheptene, in pithed rats. For this purpose, intravenous (i.v.) administration of blocking doses of the antagonists prazosin (alpha1; 100 microg/kg), rauwolscine (alpha2; 300 microg/kg), the combination of prazosin (100 microg/kg) plus rauwolscine (300 microg/kg), propranolol (beta; 1000 microg/kg), ritanserin (5-HT2; 100 microg/kg) or equivalent volumes of saline (1 ml/kg) were used. Isometheptene (0.03, 0.1, 0.3, 1 and 3 mg/kg, i.v.) produced dose-dependent increases in heart rate and diastolic blood pressure which were highly reproducible as they remained unaltered after saline. These tachycardic responses to isometheptene remained unaffected after prazosin, rauwolscine, ritanserin or the combination prazosin plus rauwolscine, but were abolished after propranolol. In contrast, the isometheptene-induced vasopressor responses were not significantly modified after the above doses of rauwolscine, ritanserin or propranolol, but were markedly blocked after prazosin or the combination of prazosin plus rauwolscine; the latter blockade did not significantly differ from that produced by prazosin alone. Interestingly, in rats pretreated intraperitoneally (i.p.) with reserpine (5 mg/kg; -24 h), isometheptene-induced tachycardic responses were abolished whereas the corresponding vasopressor responses were markedly attenuated and subsequently blocked by prazosin. It is concluded that isometheptene-induced tachycardic responses seem to involve only an indirect (tyramine-like action) mechanism mediated by beta-adrenoceptors, whilst the corresponding vasopressor responses are mediated by a predominantly indirect (tyramine-like action), as well as a minor direct (alpha1-adrenoceptors), sympathomimetic mechanism.  相似文献   

14.
Cardiovascular effects of the essential oil of Croton zehntneri (EOCZ) were investigated in conscious rats. In these preparations, intravenous (i.v.) injections of EOCZ (1-20 mg kg(-1)) and its main constituents anethole and estragole (both at 1-10 mg kg(-1)) elicited brief and dose-dependent hypotension and bradycardia (phase I) that were followed by a significant pressor effect associated with a delayed bradycardia (phase II). The initial hypotension and bradycardia (phase I) of EOCZ were unchanged by atenolol (1.5 mg kg(-1), i.v.) or L-NAME (20 mg kg(-1), i.v.) pretreatment, but were respectively reversed into pressor and tachycardic effects by methylatropine (1 mg kg(-1), i.v.) pretreatment. The subsequent pressor effect and the delayed bradycardia (phase II) remained unaffected by atenolol, but were abolished by L-NAME and methylatropine pretreatment, respectively. In rat endothelium-containing aorta preparations, the vasoconstrictor responses to phenylephrine were enhanced and reduced, respectively, by the lower (1-30 microg mL(-1)) and higher (300-1000 microg mL(-1)) concentrations of EOCZ. Only the enhancement of phenylephrine-induced contraction was abolished by either the incubation with L-NAME (50 microM) or in the absence of the endothelium. These data show, for the first time, that i.v. administration EOCZ induces an initial hypotension followed by a pressor response, two effects that appear mainly attributed to the actions of anethole and estragole. The EOCZ-induced hypotension (phase I) is mediated by a cholinergic mechanism and seems to result mainly from the concomitant bradycardia. The pressor response of EOCZ (phase II) seems to be caused by an indirect vasoconstrictive action of EOCZ most likely through inhibition of endothelial nitric oxide production.  相似文献   

15.
The purpose of the current experiment was to study the role of various adrenoceptor subtypes in the cardiovascular response to cocaine in conscious squirrel monkeys. A variety of adrenoceptor antagonists were administered i.v. prior to the administration of 0.3 mg/kg cocaine (i.v.). Cocaine alone produced an increase in both blood pressure and heart rate. The non-selective alpha adrenoceptor antagonist phentolamine produced a dose-dependent antagonism of the pressor effect of cocaine, as did the alpha-1 selective antagonist prazosin. The alpha-2 selective antagonist yohimbine had no effect on the pressor effect of cocaine. The non-selective beta antagonist propranolol enhanced the pressor effect of cocaine as did the beta-1 selective antagonist atenolol. However, the effect of atenolol was not dose-dependent. The beta-2 selective antagonist ICI 118,551 and labetalol, which blocks both alpha and beta adrenoceptors, did not alter the pressor effect of cocaine. Propranolol, atenolol, and labetalol all antagonized the tachycardiac effect of cocaine in a dose-dependent manner, while the beta-2 antagonist ICI 118,551 did not. Phentolamine, prazosin and yohimbine also reduced the tachycardiac effect of cocaine, although these effects were dose-dependent only for yohimbine, which also significantly elevated baseline heart rate. These results indicate that alpha-1 adrenoceptor mechanisms mediate the pressor effect of cocaine, while beta-1 adrenoceptor mechanisms are involved in the tachycardiac effect of cocaine in squirrel monkeys. Propranolol potentiated cocaine's pressor effect through beta-2 independent mechanisms. Thus, neither alpha-2 nor beta-2 adrenoceptor mechanisms appear to be involved in cocaine's cardiovascular effects.  相似文献   

16.
The cardiovascular and sympathetic effects of TRH in discrete cardiovascular-related brain nuclei were studied. Microinjections of TRH were made into the nucleus preopticus medialis (POM) of conscious rats and the nucleus tractus solitarius (NTS) of pentobarbitone-anesthetized, artificially respired rats. POM injections (1 μl, 0.8–80 nM) elicited dose dependent pressor and tachycardic responses which were accompanied by increased levels of norepinephrine (NE) and epinephrine (EPI) in the plasma. These pressor/tachycardic effects of TRH were also elicited in adrenal demedullated (ADM-x) rats, but completely abolished in ADM-x rats pretreated with bretylium (30 mg/kg, IA). NTS injections (0.1 μl, 30 and 150 nM) had a short depressor effect on blood pressure (BP) and a delayed increase in heart rate (HR). From these findings we suggest that the POM, a central nucleus in the AV3V region, may be an important forebrain site for autonomic regulation by TRH, mediated through the sympathetic nervous system.  相似文献   

17.
The effects of intracerebroventricular (i.c.v.) administration of opioid peptides with mu-(DAGO), mu- and delta-(DALAMIDE, DADLE) and kappa-(dynorphin) properties on normal and stimulated (cholera toxin) net fluxes of water, Na+ and K+ through a jejunal Thiry-Vella loop were investigated in conscious dogs. Basal net water absorption was slightly, but significantly (P less than 0.05) increased during i.c.v. infusion of DALAMIDE or DAGO (0.5 ng/kg/min) but not DADLE and dynorphin-(1-13) at the same rate; DALAMIDE and DAGO also markedly reduced (by 72.3 and 79.5% respectively) the secretory effects of cholera toxin (0.4 micrograms/ml). Similar effects were obtained with DALAMIDE and DAGO when injected i.c.v. as a bolus (100 ng/kg) prior to cholera toxin infusion; they were suppressed after i.v. pretreatment with naltrexone (0.3 mg/kg) but also with propranolol (0.2 mg/kg). In contrast, i.v. phentolamine (0.2 mg/kg) and bilateral truncal vagotomy, were unable to block their effects. These results suggest that Met-enkephalin can act centrally to affect intestinal transport of (i) water and (ii) electrolytes in dogs. They act probably at central mu-receptors which are involved in the regulation of intestinal secretion mediated through a central or peripheral beta-adrenergic pathway.  相似文献   

18.
The cardiovascular effects of substance P (SP) microinjections in the nucleus tractus solitarii (NTS) were evaluated in conscious rats. We chose this model because it is an effective way to access some of the cardiovascular effects of neurotransmitters in the NTS without the inconvenience of blunting pathways with anesthetic agents or removing forebrain projections by decerebration. The cardiovascular responses to SP injections were also evaluated after chronic nodose ganglionectomy. We found that, in conscious rats, SP microinjections into the NTS induced hypertension and tachycardia. Unilateral and bilateral SP injections into the NTS caused a slow increase in blood pressure and heart rate that peaked 1.5-5 min after injection and lasted for 20-30 min. Nodose ganglionectomy increased the duration of the pressor and tachycardic effects of SP and enhanced the pressor response. These data show that SP in the NTS is involved in pressor pathways. The supersensitivity to SP seen after nodose ganglionectomy suggests that vagal afferent projections are involved in those pressor pathways activated by SP in the NTS.  相似文献   

19.
The aim of the current study was to determine the central cyclooxygenase (COX) pathway and central thromboxane signaling in the cardiovascular effects evoked by arachidonic acid (AA). As a main control for the study, different doses of AA (75, 150, or 300?μg) were administered intracerebroventricularly (i.c.v.). Centrally injected AA dose- and time-dependently increased mean arterial pressure and decreased heart rate in conscious normotensive Sprague-Dawley rats. The maximal cardiovascular effects of AA were observed at min 10 of the injection and lasted almost 30?min. To investigate the central mechanism of the AA-induced cardiovascular effect in conscious normotensive animals, pretreatment with nonselective COX inhibitor indomethacin (200?μg; i.c.v.), thromboxane A2 (TXA2) synthesis inhibitor furegrelate (250 or 500?μg; i.c.v.), or TXA2 receptor antagonist SQ-29548 (8 or 16?μg; i.c.v.) was carried out 15?min before AA (150?μg; i.c.v.) injection. While indomethacin completely prevented the pressor and bradycardic responses to AA, furegrelate and SQ-29548 attenuated these effects in part in awake normotensive rats. In conclusion, these findings suggest that the pressor and bradycardic cardiovascular effects of centrally injected AA are dependent on COX activity being totally central and the TXA2 signaling pathway being subsequently central, at least in part.  相似文献   

20.
In the current study, we aimed to determine the cardiovascular effects of arachidonic acid and peripheral mechanisms mediated these effects in normotensive conscious rats. Studies were performed in male Sprague Dawley rats. Arachidonic acid was injected intracerebroventricularly (i.c.v.) at the doses of 75, 150 or 300 microg and it caused dose- and time-dependent increase in mean arterial pressure and decrease in heart rate in normal conditions. Maximal effects were observed 10 min after 150 and 300 microg dose of arachidonic acid and lasted within 30 min. In order to evaluate the role of main peripheral hormonal mechanisms in those cardiovascular effects, plasma adrenaline, noradrenaline, vasopressin levels and renin activity were measured after arachidonic acid (150 microg; i.c.v.) injection. Centrally injected arachidonic acid increased plasma levels of all these hormones and renin activity. Intravenous pretreatments with prazosin (0.5 mg/kg), an alpha1 adrenoceptor antagonist, [beta-mercapto-beta,beta-cyclopentamethylenepropionyl1, O-Me-Tyr2-Arg8]-vasopressin (10 microg/kg), a vasopressin V1 receptor antagonist, or saralasin (250 microg/kg), an angiotensin II receptor antagonist, partially blocked the pressor response to arachidonic acid (150 microg; i.c.v.) while combined administration of these three antagonists completely abolished the effect. Moreover, both individual and combined antagonist pretreatments fully blocked the bradycardic effect of arachidonic acid. In conclusion, our findings show that centrally administered arachidonic acid increases mean arterial pressure and decreases heart rate in normotensive conscious rats and the increases in plasma adrenaline, noradrenaline, vasopressin levels and renin activity appear to mediate the cardiovascular effects of the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号