首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The active defense of plants against pathogens often includes rapid and localized cell death known as hypersensitive response (HR). Protein phosphorylation and dephosphorylation are implicated in this event based on studies using protein kinase and phosphatase inhibitors. Recent transient gain-of-function studies demonstrated that the activation of salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK), two tobacco mitogen-activated protein kinases (MAPKs) by their upstream MAPK kinase (MAPKK), NtMEK2 leads to HR-like cell death. Here, we report that the conserved kinase interaction motif (KIM) in MAPKKs is required for NtMEK2 function. Mutation of the conserved basic amino acids in this motif, or the deletion of N-terminal 64 amino acids containing this motif significantly compromised or abolished the ability of NtMEK2DD to activate SIPK/WIPK in vivo. These mutants were also defective in interacting with SIPK and WIPK, suggesting protein-protein interaction is required for the functional integrity of this MAPK cascade. To eliminate Agrobacterium that is known to activate a number of defense responses in transient transformation experiments, we generated permanent transgenic plants. Induction of NtMEK2DD expression by dexamethasone induced HR-like cell death in both T1 and T2 plants. In addition, by using PVX-induced gene silencing, we demonstrated that the suppression of all three known components in the NtMEK2-SIPK/WIPK pathway attenuated N gene-mediated TMV resistance. Together with previous report that SIPK and WIPK are activated by TMV in a gene-for-gene-dependent manner, we conclude that NtMEK2-SIPK/WIPK pathway plays a positive role in N gene-mediated resistance, possibly through regulating HR cell death.  相似文献   

3.
Although the involvement of heat shock protein 90 (HSP90), mitogen-activated protein kinase (MAPK) cascades and organelle dysfunction in plant hypersensitive cell death has been suggested, the mutual relationship among them has not been elucidated. Here, we show the molecular network of HSP90, the wound-induced protein kinase (WIPK)/salicylic acid-induced protein kinase (SIPK)-mediated MAPK cascade and mitochondrial dysfunction in tobacco mosaic virus (TMV) resistance gene N-dependent cell death. p50, the Avr component for N, NtMEK2(DD), a constitutively active form of a MAPK kinase of WIPK/SIPK, and a mammalian pro-apoptotic factor Bax were used for cell death induction. Suppression of HSP90 and treatment with geldanamycin, a specific inhibitor of HSP90, compromised p50- but not NtMEK2(DD)- or Bax-mediated cell death accompanying the reduction of NtMEK2, WIPK and SIPK activation. In WIPK/SIPK-double knockdown plants, p50- and NtMEK2(DD)- but not Bax-mediated cell death was suppressed. All three types of cell death induced mitochondrial dysfunction, but they were similarly suppressed by Bcl-xL, which is a mammalian anti-apoptotic factor, and prevents mitochondrial dysfunction in plants as it does in animals in the cell death signal pathway. Taken together with the expression profile of hypersensitive reaction marker genes, it was indicated that the MAPK cascade functions downstream of HSP90 and transduces the cell death signal to mitochondria for N gene-dependent cell death. Furthermore, we found that WIPK and SIPK are functionally redundant in cell death signaling using WIPK/SIPK single or double knockdown plants.  相似文献   

4.
Zhang S  Liu Y 《The Plant cell》2001,13(8):1877-1889
The activation of mitogen-activated protein kinases (MAPKs) is one of the earliest responses in plants challenged by avirulent pathogens or cells treated with pathogen-derived elicitors. Expression of a constitutively active MAPK kinase, NtMEK2(DD), in tobacco induces the expression of defense genes and hypersensitive response-like cell death, which are preceded by the activation of two endogenous MAPKs, salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK). However, the roles that SIPK and WIPK each play in the process are unknown. Here we report that SIPK alone is sufficient to activate these defense responses. In tobacco leaves transiently transformed with SIPK under the control of a steroid-inducible promoter, the induction of SIPK expression after the application of dexamethasone, a steroid, leads to an increase of SIPK activity. The increase of SIPK activity is dependent on the phosphorylation of newly synthesized SIPK by its endogenous upstream kinase. In contrast, the expression of WIPK under the same conditions fails to increase its activity, even though the protein accumulates to a similar level. Studies using chimeras of SIPK and WIPK demonstrated that the C terminus of SIPK contains the molecular determinant for its activation, which is rather surprising because the N termini of SIPK and WIPK are more divergent. SIPK has been implicated previously in the regulation of both plant defense gene activation and hypersensitive response-like cell death based on evidence from pharmacological studies using kinase inhibitors. This gain-of-function study provided more direct evidence for its role in the signaling of multiple defense responses in tobacco.  相似文献   

5.
In tobacco, two mitogen-activated protein (MAP) kinases, designated salicylic acid (SA)-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK) are activated in a disease resistance-specific manner following pathogen infection or elicitor treatment. To investigate whether nitric oxide (NO), SA, ethylene, or jasmonic acid (JA) are involved in this phenomenon, the ability of these defense signals to activate these kinases was assessed. Both NO and SA activated SIPK; however, they did not activate WIPK. Additional analyses with transgenic NahG tobacco revealed that SA is required for the NO-mediated induction of SIPK. Neither JA nor ethylene activated SIPK or WIPK. Thus, SIPK may function downstream of SA in the NO signaling pathway for defense responses, while the signals responsible for resistance-associated WIPK activation have yet to be determined.  相似文献   

6.
7.
Plant defense against pathogens often includes rapid programmed cell death known as the hypersensitive response (HR). Recent genetic studies have demonstrated the involvement of a specific mitogen-activated protein kinase (MAPK) cascade consisting of three tobacco MAPKs, SIPK, Ntf4 and WIPK, and their common upstream MAPK kinase (MAPKK or MEK), NtMEK2. Potential upstream MAPKK kinases (MAPKKKs or MEKKs) in this cascade include the orthologs of Arabidopsis MEKK1 and tomato MAPKKKalpha. Activation of the SIPK/Ntf4/WIPK pathway induces cell death with phenotypes identical to pathogen-induced HR at macroscopic, microscopic and physiological levels, including loss of membrane potential, electrolyte leakage and rapid dehydration. Loss of membrane potential in NtMEK2(DD) plants is associated with the generation of reactive oxygen species (ROS), which is preceded by disruption of metabolic activities in chloroplasts and mitochondria. We observed rapid shutdown of carbon fixation in chloroplasts after SIPK/Ntf4/WIPK activation, which can lead to the generation of ROS in chloroplasts under illumination. Consistent with a role of chloroplast-generated ROS in MAPK-mediated cell death, plants kept in the dark do not accumulate H(2)O(2) in chloroplasts after MAPK activation, and cell death is significantly delayed. Similar light dependency was observed in HR cell death induced by tobacco mosaic virus, which is known to activate the same MAPK pathway in an N-gene-dependent manner. These results suggest that activation of the SIPK/Ntf4/WIPK cascade by pathogens actively promotes the generation of ROS in chloroplasts, which plays an important role in the signaling for and/or execution of HR cell death in plants.  相似文献   

8.
9.
The activation of mitogen-activated protein kinases (MAPKs) is one of the earliest responses in plants challenged by avirulent pathogens or cells treated with pathogen-derived elicitors. Expression of a constitutively active MAPK kinase, NtMEK2DD, in tobacco induces the expression of defense genes and hypersensitive response–like cell death, which are preceded by the activation of two endogenous MAPKs, salicylic acid–induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK). However, the roles that SIPK and WIPK each play in the process are unknown. Here we report that SIPK alone is sufficient to activate these defense responses. In tobacco leaves transiently transformed with SIPK under the control of a steroid-inducible promoter, the induction of SIPK expression after the application of dexamethasone, a steroid, leads to an increase of SIPK activity. The increase of SIPK activity is dependent on the phosphorylation of newly synthesized SIPK by its endogenous upstream kinase. In contrast, the expression of WIPK under the same conditions fails to increase its activity, even though the protein accumulates to a similar level. Studies using chimeras of SIPK and WIPK demonstrated that the C terminus of SIPK contains the molecular determinant for its activation, which is rather surprising because the N termini of SIPK and WIPK are more divergent. SIPK has been implicated previously in the regulation of both plant defense gene activation and hypersensitive response–like cell death based on evidence from pharmacological studies using kinase inhibitors. This gain-of-function study provided more direct evidence for its role in the signaling of multiple defense responses in tobacco.  相似文献   

10.
Ren D  Yang KY  Li GJ  Liu Y  Zhang S 《Plant physiology》2006,141(4):1482-1493
Mitogen-activated protein kinase (MAPK) cascades are important signaling modules in eukaryotic cells. They function downstream of sensors/receptors and regulate cellular responses to external and endogenous stimuli. Recent studies demonstrated that SIPK and WIPK, two tobacco (Nicotiana spp.) MAPKs, are involved in signaling plant defense responses to various pathogens. Ntf4, another tobacco MAPK that shares 93.6% and 72.3% identity with SIPK and WIPK, respectively, was reported to be developmentally regulated and function in pollen germination. We found that Ntf4 is also expressed in leaves and suspension-cultured cells. Genomic analysis excluded the possibility that Ntf4 and SIPK are orthologs from the two parental lines of the amphidiploid common tobacco. In vitro and in vivo phosphorylation and activation assays revealed that Ntf4 shares the same upstream MAPK kinase, NtMEK2, with SIPK and WIPK. Similar to SIPK and WIPK, Ntf4 is also stress responsive and can be activated by cryptogein, a proteinaceous elicitin from oomycetic pathogen Phytophthora cryptogea. Tobacco recognition of cryptogein induces rapid hypersensitive response (HR) cell death in tobacco. Transgenic Ntf4 plants with elevated levels of Ntf4 protein showed accelerated HR cell death when treated with cryptogein. In addition, conditional overexpression of Ntf4, which results in high cellular Ntf4 activity, is sufficient to induce HR-like cell death. Based on these results, we concluded that Ntf4 is multifunctional. In addition to its role in pollen germination, Ntf4 is also a component downstream of NtMEK2 in the MAPK cascade that regulates pathogen-induced HR cell death in tobacco.  相似文献   

11.
12.
Samuel MA  Ellis BE 《The Plant cell》2002,14(9):2059-2069
In plants, the role of mitogen-activated protein kinase (MAPK) in reactive oxygen species (ROS)-based signal transduction processes is elusive. Despite the fact that ROS can induce MAPK activation, no direct genetic evidence has linked ROS-induced MAPK activation with the hypersensitive response, a form of programmed cell death. In tobacco, the major ROS-induced MAPK is salicylate-induced protein kinase (SIPK). We found through gain-of-function and loss-of-function approaches that both overexpression and RNA interference-based suppression of SIPK render the plant sensitive to ROS stress. Transgenic lines overexpressing a nonphosphorylatable version of SIPK were not ROS sensitive. Analysis of the MAPK activation profiles in ROS-stressed transgenic and wild-type plants revealed a striking interplay between SIPK and another MAPK (wound-induced protein kinase [WIPK]) in the different kinotypes. During continuous ozone exposure, abnormally prolonged activation of SIPK was seen in the SIPK-overexpression genotype, without WIPK activation, whereas strong and stable activation of WIPK was observed in the SIPK-suppressed lines. Thus, one role of activated SIPK in tobacco cells upon ROS stimulation appears to be control of the inactivation of WIPK.  相似文献   

13.
The mitogen-activated protein kinase (MAPK) cascade is involved in responses to biotic and abiotic stress in plants. In this study, we isolated a new MAPK, NtMPK4, which is a tobacco homolog of Arabidopsis MPK4 (AtMPK4). NtMPK4 was activated by wounding along with two other wound-responsive tobacco MAPKs, WIPK and SIPK. We found that NtMPK4 was activated by salicylic acid-induced protein kinase kinase (SIPKK), which has been isolated as an SIPK-interacting MAPK kinase. In NtMPK4 activity-suppressed tobacco, wound-induced expression of jasmonic acid (JA)-responsive genes was inhibited. NtMPK4-silenced plants showed enhanced sensitivity to ozone. Inversely, transgenic tobacco plants, in which SIPKK or the constitutively active type SIPKK(EE) was overexpressed, exhibited greater responsiveness to wounding with enhanced resistance to ozone. We further found that NtMPK4 was expressed preferentially in epidermis, and the enhanced sensitivity to ozone in NtMPK4-silenced plants was caused by an abnormal regulation of stomatal closure in an ABA-independent manner. These results suggest that NtMPK4 is involved in JA signaling and in stomatal movement.  相似文献   

14.
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in plant innate immunity. Overexpression of StMEK1(DD), a constitutively active MAPK kinase that activates salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), provokes hypersensitive response-like cell death in Nicotiana benthamiana. Here we purified a 51-kD MAPK, which was activated in potato (Solanum tuberosum) tubers treated with hyphal wall elicitor of a plant pathogen, and isolated the cDNA designated StMPK1. The deduced amino acid sequence of the StMPK1 showed strong similarity to stress-responsive MAPKs, such as tobacco (Nicotiana tabacum) SIPK and Arabidopsis (Arabidopsis thaliana) AtMPK6. To investigate the downstream signaling of StMPK1, we identified several proteins phosphorylated by StMPK1 (PPSs) using an in vitro expression cloning method. To dissect the biological function of PPSs in the plant defense, we employed virus-induced gene silencing (VIGS) in N. benthamiana. VIGS of NbPPS3 significantly delayed cell death induced by the transient expression of StMEK1(DD) and treatment with hyphal wall elicitor. Furthermore, the mobility shift of NbPPS3 on SDS-polyacrylamide gel was induced by transient expression of StMEK1(DD). The mobility shift of NbPPS3 induced by StMEK1(DD) was not compromised by VIGS of WIPK or SIPK alone, but drastically reduced by the silencing of both WIPK and SIPK. This work strongly supports the idea that PPS3 is a physiological substrate of StMPK1 and is involved in cell death activated by a MAPK cascade.  相似文献   

15.
16.
A tobacco MAP kinase termed SIPK (Salicylic acid-Induced Protein Kinase) is activated in response to a variety of stress signals, including pathogen attack and wounding (S. Zhang and D.F. Klessig, Proc. Natl. Acad. Sci. USA 95:7225-7230, 1998; S. Zhang and D.F. Klessig, Proc. Natl. Acad. Sci. USA 95:7433-7438, 1998). Using the yeast two-hybrid system, we have identified a gene encoding a protein that interacts with SIPK but not the wounding induced protein kinase (WIPK), which is another tobacco MAP kinase. Sequence analysis indicated that this SIPK-interacting protein is a member of the MAP kinase kinase family; thus, it was named SIPK kinase (SIPKK). Co-immunoprecipitation experiments demonstrated that SIPKK and SIPK interact in vitro. Consistent with its putative function as a kinase, SIPKK phosphorylated myelin basic protein in vitro. Interestingly, SIPKK was induced at the mRNA level after Tobacco mosaic virus (TMV) infection or wounding, albeit with kinetics that are too slow to account for the activation of SIPK following these stimuli.  相似文献   

17.
18.
MAP kinase cascades in elicitor signal transduction   总被引:3,自引:0,他引:3  
 Protein kinases play important roles in elicitor signal transduction. In this article, I describe the current view of the role of mitogen-activated protein kinase (MAPK) cascades in elicitor signal transduction of plant cells based on our own research and recent developments in this field. In the past several years, it has become apparent that MAPK cascades play important roles in elicitor signal transduction in plants. Our early studies demonstrated the identification of p47 MAPK in tobacco as an elicitor-responsive protein kinase and possible involvement of p47 MAPK in elicitor signal transduction to induce defense responses, including defense gene expression and hypersensitive cell death. However, the molecular identity of p47 MAPK is still unclear. Recent important studies suggest that tobacco MAPK cascades that include SIPK, and/or WIPK, and NtMEK2, an upstream kinase for both SIPK and WIPK, have a crucial function in induction of defense responses and hypersensitive cell death. The orthologs of these protein kinases in Arabidopsis and alfalfa are also suggested to have similar functions. Furthermore, the identification of loss-of-function mutation in Arabidopsis reveals a negative regulatory role for putative MAPK cascades in plant defense mechanisms. Received: February 7, 2002 / Accepted: February 25, 2002  相似文献   

19.
A cultured cell line, GTH4 (Nicotiana gossei Domin x N. tabacum L.), which exhibits hybrid lethality, died at 26 degrees C, but not at 37 degrees C. Pharmacological experiments using inhibitors of protein phosphatases and protein kinases indicated the involvement of a protein kinase signalling pathway in the cell death process. Immunoblot analysis revealed that salicylic acid-induced protein kinase (SIPK) was phosphorylated soon after the shift in temperature from 37 degrees C to 26 degrees C. Cultured cells of the hybrid of N. gossei x transgenic N. tabacum harboring a steroid (dexamethasone; DEX)-inducible NtMEK2 (DD) or NtMEK2 (KR), constitutively active and inactive forms of NtMEK2, respectively, were established. Induction of NtMEK2 (DD) by DEX in the hybrid cells induced the activation of SIPK, the generation of hydrogen peroxide (H (2)O (2)), and cell death at 37 degrees C. The activation of SIPK, generation of H (2)O (2), and cell death at 26 degrees C were compromised by DEX treatment in hybrid cells harbouring NtMEK2 (KR). This study provides evidence for the involvement of MAPK signalling in the regulation of cell death in hybrids.  相似文献   

20.
Polyamines (PAs) play important roles in cell proliferation, growth and environmental stress responses of all living organisms. In this study, we examine whether these compounds act as signal mediators. Spermine (Spm) specifically activated protein kinases of tobacco leaves, which were identified as salicylic acid (SA)-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), using specific antibodies. Upon Spm treatment, upregulation of WIPK, but not SIPK, was observed. Spm-induced mitogen-activated protein kinases (MAPKs) activation and WIPK upregulation were prevented upon pre-treatment with antioxidants and Ca2+ channel blockers. Additionally, Spm specifically stimulated expression of the alternative oxidase (AOX) gene, which was disrupted by these antioxidants and Ca2+ channel blockers. Bongkrekic acid (BK), an inhibitor of the opening of mitochondrial permeability transition (PT) pores, suppressed MAPKs activation and accumulation of WIPK and AOX mRNA. Our data collectively suggest that Spm causes mitochondrial dysfunction via a signalling pathway in which reactive oxygen species and Ca2+ influx are involved. As a result, the phosphorylation activities of the two MAPK enzymes SIPK and WIPK are stimulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号