首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.

Background

Dietary mineral deficiencies are widespread in Africa. Our previous studies in Malawi revealed population-level shortfalls in dietary calcium and selenium supply but adequate dietary magnesium (Mg) supply. Here we examine dietary Mg supply throughout Africa.

Methods

Food supply data from 1961 to 2007 were compiled using Food and Agriculture Organization (FAO) Food Balance Sheets (FBSs). Magnesium supply was estimated for each country using regional food Mg composition tables.

Results

Mean Mg supply in 2007 was 649 mg capita ?1 d?1, ranging from 188 mg d?1 in Eritrea to 1,828 mg d?1 in Burkina Faso. Magnesium supply was greater in West Africa than in other regions, was dominated by sorghum, maize and wheat and was correlated with calorie supply. The World Health Organization (WHO) Estimated Average Requirement (EAR) for Mg (217 mg capita ?1 d?1 for adult males) was exceeded in most countries. Using the EAR cut-point method, the risk of dietary Mg deficiency in Africa is <4 % and unlikely to be a major problem, assuming access to sufficient food and that phytic acid does not compromise Mg absorption.

Conclusions

Estimating Mg supply is highly sensitive to concentration data available for the primary staple crops. Given that soil factors profoundly affect crop Mg concentration, there is a need to increase the spatial resolution of food composition tables for the staple crops.  相似文献   

3.

Background and aims

The beneficial effects of Si have mainly been observed in herbaceous plants, while little is known about its role in deciduous trees. The aim of this work was to evaluate the effect of foliar application of Si on chestnut leaf growth, photosynthesis and water relations in the presence of short, but intense water deficit.

Methods

Sili-K® solution (containing 0.12 % Si and 0.15 % K) was repeatedly (× 3) sprayed onto leaves of potted chestnut plantlets and irrigation was suspended 7 weeks later, for 8 days. Leaf growth, anatomy, as well as physiological and biochemical traits of the plantlets were studied.

Results

Si application enhanced chestnut growth, due to increased photosynthetic traits, including higher chlorophyll content and chlorophyll a to b ratio, photochemical efficiency of PSII, gas exchange (stomatal conductance, transpiration rate, net CO2 assimilation) and oxygen evolution rate. Meanwhile, Si yielded larger and thinner leaves, higher xylem, specific leaf area and transpiration rate, thus being beneficial to the tree in absorbing sunlight energy for photosynthesis and in alleviating heat stress. However, Si also lowered leaf sap osmotic pressure, causing the plant to lose water more quickly, thus being more susceptible to water stress.

Conclusions

Si improved chestnut photosynthesis, growth, and heat stress tolerance, but it also increased the susceptibility to drought.  相似文献   

4.

Aims

This study aimed to analyse the effect of phosphorus (P) nutritional status on wheat leaf surface properties, in relation to foliar P absorption and translocation.

Methods

Plants of Triticum aestivum cv. Axe were grown with three rates of root P supply (equivalent to 24, 8 and 0 kg P ha?1) under controlled conditions. Foliar P treatments were applied and the rate of drop retention, P absorption and translocation was measured. Adaxial and abaxial leaf surfaces were analysed by scanning and transmission electron microscopy. The contact angles, surface free energy and work-of-adhesion for water were determined.

Results

Wheat leaves are markedly non-wettable, the abaxial leaf side having some degree of water drop adhesion versus the strong repulsion of water drops by the adaxial side. The total leaf area, stomatal and trichome densities, cuticle thickness and contact angles decreased with P deficiency, while the work-of-adhesion for water increased. Phosphorous deficient plants failed to absorb the foliar-applied P.

Conclusions

Phosphorous deficiency altered the surface structure and functioning of wheat leaves, which became more wettable and had a higher degree of water drop adhesion, but turned less permeable to foliar-applied P. The results obtained are discussed within an agronomic and eco-physiological context.  相似文献   

5.

Background and aims

Magnesium (Mg) is an essential macronutrient that plays an important role in numerous physiological and biochemical processes of plant. However, Mg deficiency commonly occurs worldwide. Watermelon is an important crop that often suffers from Mg deficiency. This study aims to test whether watermelon performance can be improved by grafting onto rootstocks under low Mg and to clarify the underlying physiological mechanism.

Methods

Self-grafted, bottle gourd (Jingxinzhen No.1) and pumpkin (Jingxinzhen No.4) rootstock-grafted plants were treated with three Mg concentrations: 2.0 mM (normal condition), 0.4 mM (moderate stress), and 0.04 mM (severe stress) for 16 days under hydroponic conditions. Ungrafted watermelon and pumpkin were treated with 2.0 mM and 0.04 mM for 12 days.

Results

The growth of the plants was not affected by 0.4 mM Mg; however, plant growth decreased under 0.04 mM Mg in all graft combinations compared with control (2.0 mM Mg). Pumpkin rootstock grafting significantly increased watermelon growth under low Mg stress (0.04 mM Mg), compared with self-grafted and bottle gourd-grafted plants. The Mg2+ uptake of watermelon plants was increased by grafting onto pumpkin rootstocks, however, root-to-shoot transport capacity of Mg2+ was similar compared with self-grafted plants under 0.04 mM Mg. Gene expression analysis showed that magnesium transporter genes MGT1, MGT3, MGT4, and MGT5 may play an important role in higher Mg2+ uptake of pumpkin root. The photosynthetic parameters and activities of superoxide dismutase, peroxidase and catalase were significantly higher, but malonaldehyde (MDA) content were lower in the pumpkin rootstock grafted plants compared with other graft combinations under 0.04 mM Mg.

Conclusion

Our results provide strong evidence that pumpkin rootstock ‘Jinxinzhen No. 4’ grafting can improve watermelon performance under low Mg stress. The enhanced plant performance is attributed to higher root Mg2+ uptake and the improvement of photosynthesis and antioxidant enzyme activities.
  相似文献   

6.
7.

Background

Water and nutritional restrictions are limiting factors for the growth of Eucalyptus trees in tropical climates. In the dry season, boron (B) uptake is severely affected.

Aims

The objectives of this study were to evaluate the phloem mobility of B and whether its deficiency can increase plant sensitivity to osmotic stress. It was also tested to what extent foliar application of B could mitigate the negative effects of drought under low B supply.

Methods

Seedlings of a drought tolerant Eucalyptus urophylla (Blake, S. T.) clone were grown in nutrient solution, subjected to low availability of B for 25 days, and then submitted to a progressive osmotic stress. After imposition of osmotic stress, B was applied to young or mature leaves.

Results

B applications, mainly to mature leaf, stimulated root growth and delayed dehydration under osmotic stress and led to an increased B translocation and carbon isotopic composition. The expression of B transporters and pectin metabolism genes were also increased in water-stressed plants supplied with B by foliar application.

Conclusions

B deficiency led to increased plant dehydration and decreased root growth under osmotic stress. The application of B to mature leaf of water-stressed plants proved effective in mitigating the negative effects of water deficit in root growth.  相似文献   

8.

Background and aims

Boron (B) deficiency depresses grain set and grain yield of wheat and maize while having little effect on their vegetative growth. This paper describes effects of B deficiency in rice and how these vary with planting season and variety.

Methods

Three rice varieties (KDML105, CNT1, SPR1) were grown in sand culture without (B0) and with 10 μM (B10) B added to the nutrient solution, in the cool season of 2007/08 and 2008/09 and the hot season of 2011 in Chiang Mai, Thailand (18°47′N, 98°59′E). Boron responses were measured in growth and yield parameters, pollen viability and B concentration of the flag leaf and anthers at anthesis.

Results

Grain weight was strongly depressed by B deficiency ranging from 28 % in SPR1 to 79 % in CNT1, and the yield was much lower in the cool season than in the hot season plantings. The variation in grain weight was closely associated with grain set and number of spikelets but not with shoot dry weight or tillering. Grain set was closely related to pollen viability, and both were increased with increasing anther B concentration at >20 mg B kg?1. In addition to its adverse effect on grain set, B deficiency also depressed grain filling and weight of individual grains in rice.

Conclusions

Boron deficiency depressed rice grain yield through adverse effects on reproductive growth, panicle and spikelet formation and grain filling, in addition to grain set as in wheat and maize.  相似文献   

9.
10.
11.
Andrea Rosanoff 《Plant and Soil》2013,368(1-2):139-153

Aims

Decreasing mineral concentrations in high-yield grains of the Green Revolution have coincided in time with rising global cardiovascular disease (CVD) mortality rates. Given the Magnesium (Mg) Hypothesis of CVD, it’s important to assess any changes in food crop Mg concentrations over the past 50+ years.

Methods

Using current and historical published sources, Mg concentrations in “old” and “new” wheats, fruits and vegetables were listed/calculated (dry weight basis) and applied to reports of USA’s historic Mg supply, 1900–2006. Resulting trend in USA Mg supply was compared with USA trend in CVD mortality. Human Mg intake studies, old and new, were compared with the range of reported human Mg requirements.

Results

Acknowledging assessment difficulties, since the 1850s, wheats have declined in Mg concentration 7–29 %; USA and English vegetables’ Mg declined 15–23 %, 1930s to 1980s. The nadir of USA food Mg supply in 1968 coincides with the USA peak in CVD mortality. As humans transition from “traditional” to modern processed food diets, Mg intake declines.

Conclusions

Rising global CVD mortality may be linked to lower Mg intakes as world populations transition from traditional high Mg foods to those low in Mg due to declining crop Mg and processing losses.  相似文献   

12.
13.

Background and aims

It is so far a gap in knowledge to assess nitrate (NO3 ?) leaching loss linking with crop yield for a given cereal cropping system.

Methods

We conducted a meta-analysis on 32 published studies reporting both NO3 ? leaching losses and crop yields in the maize (N?=?20) and wheat (N?=?12) systems.

Results

On average, 22 % and 15 % of applied fertilizer N to wheat and maize systems worldwide are leached in the form of NO3 ?, respectively. The average area-scaled NO3 - leaching loss for maize (57.4 kg N ha?1) was approx. two times higher than for wheat (29.0 kg N ha?1). While, if scaled to crop yields, the average yield-scaled NO3 ? losses were comparable between maize (5.40 kg N Mg?1) and wheat (5.41 kg N Mg?1) systems. Across all sites, the lowest yield-scaled NO3 ? leaching losses were observed at slightly suboptimal fertilization rates, corresponding to 90 % and 96 % of maximum maize or wheat yields, respectively.

Conclusions

Our findings suggest that small adjustments of agricultural N management practices can effectively reduce yield-scaled NO3 ? leaching losses. However, further targeted field experiments are still needed to identify at regional scale best agricultural management practices for reducing yield-scaled NO3 ? leaching losses in maize and wheat systems.  相似文献   

14.

Aims

A pot study spanning four consecutive crop seasons was conducted to compare the effects of successive rice straw biochar/rice straw amendments on C sequestration and soil fertility in rice/wheat rotated paddy soil.

Methods

We adopted 4.5 t ha?1, 9.0 t ha?1 biochar and 3.75 t ha?1 straw for each crop season with an identical dose of NPK fertilizers.

Results

We found no major losses of biochar-C over the 2-year experimental period. Obvious reductions in CH4 emission were observed from rice seasons under the biochar application, despite the fact that the biochar brought more C into the soil than the straw. N2O emissions with biochar were similar to the controls without additives over the 2-year experimental period. Biochar application had positive effects on crop growth, along with positive effects on nutrient (N, P, K, Ca and Mg) uptake by crop plants and the availability of soil P, K, Ca and Mg. High levels of biochar application over the course of the crop rotation suppressed NH3 volatilization in the rice season, but stimulated it in the wheat season.

Conclusions

Converting straw to biochar followed by successive application to soil is viable for soil C sequestration, CH4 mitigation, improvements of soil and crop productivity. Biochar soil amendment influences NH3 volatilization differently in the flooded rice and upland wheat seasons, respectively.  相似文献   

15.

Aims

This study evaluated how iron nutrition affect leaf anatomical and photosynthetic responses to low cadmium and its accumulation in peanut plants.

Methods

Seedlings were treated with Cd (0 and 0.2 μM CdCl2) and Fe (0, 10, 25, 50 or 100 μM EDTA-Na2Fe) in hydroponic culture.

Results

Cadmium accumulation is highest in Fe-deficient plants, and dramatically decreased with increasing Fe supply. The biomass, gas exchange, and reflectance indices were highest at 25 μM Fe2+ treatments, indicating the concentration is favorable for the growth of peanut plants. Both Fe deficiency and Cd exposure impair photosynthesis and reduce reflectance indices. However, they show different effects on leaf anatomical traits. Fe deficiency induces more and smaller stomata in the leaf surface, but does not affect the inner structure. Low Cd results in a thicker lamina with smaller stomata, thicker palisade and spongy tissues, and lower palisade to spongy thickness ratio. The stomatal length and length/width ratio in the upper epidermis, spongy tissue thickness, and palisade to spongy thickness ratio were closely correlated with net photosynthetic rate, stomatal conductance, and transpiration rate.

Conclusions

Cd accumulation rather than Fe deficiency alters leaf anatomy that may increase water use efficiency but inhibit photosynthesis.  相似文献   

16.

Background and aims

Roots have morphological plasticity to adapt to heterogeneous nutrient distribution in soil, but little is known about crop differences in root plasticity. The objective of this study was to evaluate root morphological strategies of four crop species in response to soil zones enriched with different nutrients.

Methods

Four crop species that are common in intercropping systems [maize (Zea mays L.), wheat (Triticum aestivum L.), faba bean (Vicia faba L.), and chickpea (Cicer arietinum L.)] and have contrasting root morphological traits were grown for 45 days under uniform or localized nitrogen and phosphorus supply.

Results

For each species tested, the nutrient supply patterns had no effect on shoot biomass and specific root length. However, localized supply of ammonium plus phosphorus induced maize and wheat root proliferation in the nutrient-rich zone. Localized supply of ammonium alone suppressed the whole root growth of chickpea and maize, whereas localized phosphorus plus ammonium reversed (maize and chickpea ) the negative effect of ammonium. The localized root proliferation of chickpea in a nutrient-rich zone did not increase the whole root length and root surface area. Faba bean had no significant response to localized nutrient supply.

Conclusions

The root morphological plasticity is influenced by nutrient-specific and species-specific responses, with the greater plasticity in graminaceous (eg. maize) than leguminous species (eg. faba bean and chickpea).  相似文献   

17.

Background and aims

Although foliar fertilisation using liquid forms of phosphorus (P) is not a new concept, its adoption has been hindered by a limited understanding of the variability in performance of fluid forms of foliar P applied to broadacre crops. There is a need to identify how the surface structure of leaves influences the absorption and subsequent translocation of foliar-applied P in above ground plant parts.

Methods

This study examined the surface properties of wheat leaves using scanning electron microscopy and measured the recovery of foliar-applied fertiliser that was labelled with either 32P or 33P from both the adaxial (upper) and abaxial (lower) leaf sides into untreated plant parts.

Results

We found that the adaxial leaf surface absorbed and translocated more foliar-applied P away from the treated leaf than the abaxial surface, likely related to the higher abundance of trichomes and stomata present on that side of the leaf. The recovery of the foliar-applied fertiliser varied with rate and timing of application; ranging from <30 % to as much as 80 % of the adaxial-applied fertiliser translocated from the treated leaf into the wheat ear.

Conclusions

This study demonstrated that the differences in surface morphological features between leaf sides influenced the combined absorption and subsequent translocation of foliar-applied P in the above ground plant parts. This is due to a direct effect on the foliar pathway and/or due to differences in wettability affecting both the leaf coverage and drying time of fertilisers on the leaves. Although foliar fertilisation in this study contributed less than 10 % of the total P in the plant, it provided a more efficient pathway for P fertilisation than soil-applied P.  相似文献   

18.
The aims of this study were to describe the distribution of magnesium (Mg) and its retranslocation within wheat, in order to develop diagnostic procedures for Mg deficiency. Plants were grown in solution culture with both constant supply (0, 5, 10, 20, 40, 80, 160 MMg) and discontinued supply (40 M and 160 M decreased to nil).Magnesium was depleted from old leaves when Mg supply to the roots was halted. However, initial deficiency symptoms occurred on young leaves under constant but inadequate supply, contrasting with previous reports. Magnesium concentrations were also lower in young leaves compared to old leaves. Symptoms of yellowing and necrosis occurred if the leaf tissue contained <1194 gg–1, irrespective of leaf age. The minimum Mg concentration in whole shoots associated with maximum shoot weight was 932 gg–1; for the youngest emerged blade (YEB) it was 861 gg–1. Symptoms were apparent on the young leaf before a reduction in shoot weight was measurable. The concentration of Mg in the YEB and whole shoot were better related to solution Mg concentration than was the Mg concentration in the old leaf.  相似文献   

19.

Aims

Regrowth of dual-purpose canola after grazing is important for commercial success and the aim of this research was to investigate the effects of defoliation on the development, growth, photosynthesis and allocation of carbohydrates.

Methods

We conducted two pot experiments in which defoliation was conducted at multiple intensities with scissors. Experiment 1 determined changes in flowering date due to defoliation while Experiment 2 investigated the effects of defoliation on growth, photosynthesis and allocation of carbohydrates in canola.

Results

Time to the appearance of the first flower was delayed by up to 9 days after the removal of all leaves at the start of stem elongation (GS30), and up to 19 days if the elongating bud was also removed. Stem growth rate decreased by 56–86 % due to defoliation and tap roots did not increase in mass when plants were completely defoliated. Leaf area continued to expand at the same rate as in un-defoliated plants. The new leaf area established per gram of regrowth biomass over 20 days was 158 cm2.g-1 for the complete defoliation treatments compared with 27 cm2.g?1 for the half-defoliated treatment and 13 cm2.g?1 for the un-defoliated treatment. Despite a reduction in total biomass of up to 60 %, the proportion of dry matter partitioned to the leaves was 18 % for all treatments within 20 days after defoliation. Total non-structural carbohydrate levels were reduced rapidly in the stem by day two (predominately sucrose) and the tap root by day four (predominately starch) after defoliation and did not recover to match un-defoliated plant levels within 20 days. Residual leaves on defoliated plants maintained photosynthetic rate compared with the same leaf cohorts on un-defoliated plants in which photosynthetic rate decreased to 39 % by day 12.

Conclusions

The rapid recovery of leaf area in defoliated canola was facilitated by the sustained high photosynthetic rate in remaining leaves, rapid mobilisation of stored sugars (stem) and starch (root), and a cessation of root and stem growth.  相似文献   

20.

Background and aims

Liming is considered normal agricultural practise for remediating soil acidity and improving crop productivity; however recommended lime applications can reduce yield. We tested the hypothesis that elevated xylem sap Ca2+ limited gas exchange of Phaseolus vulgaris L. and Pisum sativum L. plants that exhibited reduced shoot biomass and leaf area when limed.

Methods

We used Scholander and whole-plant pressure chamber techniques to collect root and leaf xylem sap, a calcium-specific ion-selective electrode to measure xylem sap Ca2+, infra-red gas analysis to measure gas exchange of limed and unlimed (control) plants, and a detached leaf transpiration bioassay to determine stomatal sensitivity to Ca2+.

Results

Liming reduced shoot biomass, leaf area and leaf gas exchange in both species. Root xylem sap Ca2+ concentration was only increased in P. vulgaris and not in P. sativum. Detached leaves of both species required 5 mM Ca2+ supplied to via the transpiration stream to induce stomatal closure, however, maximum in vivo xylem sap Ca2+ concentrations of limed plants was only 1.7 mM and thus not high enough to influence stomata.

Conclusion

We conclude that an alternative xylem-borne antitranspirant other than Ca2+ decreases gas exchange of limed plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号