首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The present study was undertaken to investigate the redox status in the retina of an experimental model that combines hypertension and diabetes. Spontaneously hypertensive rats (SHR) and their control Wystar Kyoto (WKY) rats were rendered diabetic and, after 20 days, the rats were sacrificed and the retinas collected. The superoxide production was higher in diabetic than in control WKY (p < 0.03) and SHR rats showed elevated superoxide production compared with WKY groups (p < 0.009). The glutathione antioxidant system was diminished only in diabetic SHR (p < 0.04). Tirosyne nitration was higher in diabetic WKY and control SHR compared with control WKY (p < 0.03), and further increment was observed in diabetic SHR (p < 0.02). The DNA damage estimated by immunohystochemistry for 8-OHdG was higher in control SHR than in WKY, mainly in diabetic SHR (p < 0.0001). Hypertension aggravates oxidative-induced cytotoxicity in diabetic retina due to increasing of superoxide production and impairment of antioxidative system.  相似文献   

2.
The present study was undertaken to investigate the redox status in the retina of an experimental model that combines hypertension and diabetes. Spontaneously hypertensive rats (SHR) and their control Wystar Kyoto (WKY) rats were rendered diabetic and, after 20 days, the rats were sacrificed and the retinas collected. The superoxide production was higher in diabetic than in control WKY (p<0.03) and SHR rats showed elevated superoxide production compared with WKY groups (p<0.009). The glutathione antioxidant system was diminished only in diabetic SHR (p<0.04). Tirosyne nitration was higher in diabetic WKY and control SHR compared with control WKY (p<0.03), and further increment was observed in diabetic SHR (p<0.02). The DNA damage estimated by immunohystochemistry for 8-OHdG was higher in control SHR than in WKY, mainly in diabetic SHR (p<0.0001). Hypertension aggravates oxidative-induced cytotoxicity in diabetic retina due to increasing of superoxide production and impairment of antioxidative system.  相似文献   

3.
Using diabetes mellitus as a model of oxidative damage, this study investigated whether subacute treatment (10 mg/kg/day, intraperitoneally for 14 days) with the compound piperine would protect against diabetes-induced oxidative stress in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione (GSH and GSSG, respectively) content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Piperine treatment of normal rats enhanced hepatic GSSG concentration by 100% and decreased renal GSH concentration by 35% and renal glutathione reductase activity by 25% when compared to normal controls. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with piperine reversed the diabetic effects on GSSG concentration in brain, on renal glutathione peroxidase and superoxide dismutase activities, and on cardiac glutathione reductase activity and lipid peroxidation. Piperine treatment did not reverse the effects of diabetes on hepatic GSH concentrations, lipid peroxidation, or glutathione peroxidase or catalase activities; on renal superoxide dismutase activity; or on cardiac glutathione peroxidase or catalase activities. These data indicate that subacute treatment with piperine for 14 days is only partially effective as an antioxidant therapy in diabetes.  相似文献   

4.
BACKGROUND: VEGF seems to have a protective role on cardiac microcirculation, but no data are available on its action on cardiac function and morphology in diabetic patients. We sought to test the hypothesis that circulating VEGF levels could influence the cardiac performance in type 2 diabetic hypertensive patients. METHODS: We studied 30 patients with type 2 diabetes and hypertension, without severe cardiac, retinal, renal and peripheral vascular damage. Ten non-diabetic hypertensive patients represented the control group. VEGF plasma levels (ELISA) and echocardiographic parameters were evaluated. RESULTS: Diabetic patients had VEGF plasma levels higher than hypertensive non-diabetic subjects [median 82 (IQR 12-190) vs 50.5 (IQR 28-77) pg/mL, p=0.05]. Simple linear regression analysis showed that VEGF levels are related to relative wall thickness (RWT) and both endocardial and midwall systolic parameters in the diabetic patients. Multiple linear regression analysis showed that RWT and ejection fraction (EF) were the only independent correlates of VEGF (r2=0.274, p=0.03, p=0.05; respectively). CONCLUSIONS: Our data showed that high VEGF plasma levels are associated to a better systolic function in diabetic hypertensive patients with cardiac remodeling. VEGF may play a role in the improvement of cardiac performance in diabetes.  相似文献   

5.
摘要 目的:探讨慢性肾功能不全患者应用三维斑点追踪技术对其左心室收缩功能和右心室功能的评估价值。方法:选择我院收治的慢性肾功能不全患者82例,根据患者肾功能将其分为轻度慢性肾功能不全组[慢性肾脏病(CKD) 2期,47例],中-重度慢性肾功能不全组(CKD 3~5期,35例),另选取同期医院体检的健康志愿者30例作为对照组,应用二维超声及三维斑点追踪技术检测各组心脏指标,比较三组二维超声指标、三维斑点追踪技术指标,应用受试者工作特征(ROC)曲线分析三维斑点追踪技术对患者左心室收缩功能和右心室功能的评估价值。结果:中-重度慢性肾功能不全组室间隔舒张末期厚度(IVSTd)、肺动脉收缩压(PASP)显著高于轻度慢性肾功能不全组、对照组,右心室面积变化分数(RVFAC)、组织运动三尖瓣环位移(TAPSE)、左心室射血分数(LVEF)显著低于轻度慢性肾功能不全组、对照组(P<0.05)。中-重度慢性肾功能不全组左室整体圆周收缩期峰值应变(LGCS)、左室整体纵向收缩期峰值应变(LGLS)、右室整体圆周收缩期峰值应变(RGCS)右室整体纵向收缩期峰值应变(RGLS)、显著高于轻度慢性肾功能不全组、对照组,左室整体径向收缩期峰值应变(LGRS)、三维左室射血分数(3D-LVEF)、右室整体径向收缩期峰值应变(RGRS)、三维右室射血分数(3D-RVEF)显著低于轻度慢性肾功能不全组、对照组(P<0.05)。ROC曲线分析显示,三维斑点追踪技术对慢性肾功能不全患者左心室收缩功能和右心室功能的评估价值较高。结论:三维斑点追踪技术可以准确检测心脏的纵向运动、圆周运动、径向运动,为临床早期发现慢性肾功能不全患者的心脏功能异常提供依据。  相似文献   

6.
Spontaneously hypertensive rats (SHR) have a higher level of oxidative stress and exhibit a greater depressor response to a superoxide scavenger, tempol, than normotensive Wistar-Kyoto rats (WKY). This study determined whether an increase in oxidative stress with a superoxide/NO donor, molsidomine, would amplify the blood pressure in SHR. Male SHR and WKY were given molsidomine (30 mg.kg(-1).day(-1)) or vehicle (0.01% ethanol) for 1 wk, and blood pressure, renal hemodynamics, nitrate and nitrite excretion (NOx), renal superoxide production, and expression of renal antioxidant enzymes, Mn- and Cu,Zn-SOD, catalase, and glutathione peroxidase (GPx), were measured. Renal superoxide and NOx were higher in control SHR than in WKY. Molsidomine increased superoxide by approximately 35% and NOx by 250% in both SHR and WKY. Mean arterial blood pressure (MAP) was also higher in control SHR than WKY. Molsidomine increased MAP by 14% and caused renal vasoconstriction in SHR but reduced MAP by 16%, with no effect on renal hemodynamics, in WKY. Renal expression of Mn- and Cu,Zn-SOD was not different between SHR and WKY, but expression of catalase and GPx were approximately 30% lower in kidney of SHR than WKY. The levels of Mn- and Cu,Zn-SOD were not increased with molsidomine in either WKY or SHR. Renal catalase and GPx expression was increased by 300-400% with molsidomine in WKY, but there was no effect in SHR. Increasing oxidative stress elevated blood pressure further in SHR but not WKY. WKY are likely protected because of higher bioavailable levels of NO and the ability to upregulate catalase and GPx.  相似文献   

7.
Plasma concentrations of the nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) increase already in the early stages of renal insufficiency. There is no agreement as to whether reduced renal plasma clearance (RPCL) contributes to this increase. Therefore, we investigated the relationship between estimated glomerular filtration rate (eGFR), RPCL, and plasma ADMA and SDMA in essential hypertensive patients with mild to moderate renal insufficiency. In 171 patients who underwent renal angiography, we drew blood samples from the aorta and both renal veins and measured mean renal blood flow (MRBF) using the (133)Xe washout technique. RPCL was calculated using arteriovenous concentration differences and MRBF. After correction for potential confounders, reduced eGFR was associated with higher plasma ADMA and SDMA [standardized regression coefficient (β) = -0.22 (95% confidence intervals: -0.41, -0.04) and β = -0.66 (95% confidence intervals: -0.83, -0.49), respectively]. However, eGFR was not independently associated with RPCL of ADMA. Moreover, reduced RPCL of ADMA was not associated with higher plasma ADMA. Contrary to ADMA, reduced eGFR was indeed associated with lower RPCL of SDMA [β = 0.21 (95% confidence intervals: 0.02, 0.40)]. In conclusion, our findings indicate that RPCL of ADMA is independent of renal function in hypertensive patients with mild to moderate renal insufficiency. Unlike the case for SDMA, reduced RPCL of ADMA is of minor importance for the increase in plasma ADMA in these patients, which indicates that increased plasma ADMA in this population is not a direct consequence of the kidneys failing as a plasma ADMA-regulating organ.  相似文献   

8.
The aim of this study was to investigate how dietary lactose, compared with sucrose, in association with copper deficiency influences the antioxidant and copper status in the diabetic rat. Two groups of male rats (n = 12) were fed copper-deficient diets containing either 300 g/kg of sucrose or 300 g/kg of lactose in a pair-feeding regime for 35 days. Six rats from each group were injected with streptozotocin to induce diabetes. After a further 16 days the animals were killed and the liver, heart, and kidney removed for the measurement of copper levels and the activities of antioxidant and related enzymes. Diabetes resulted in higher hepatic and renal copper levels compared with controls. The copper content of the heart and kidney in diabetic rats consuming sucrose was also significantly higher than in those consuming lactose. Catalase activity in the liver, heart, and kidney was significantly increased in diabetic rats compared with controls. Hepatic glutathione S-transferase and glucose-6-phosphate dehydrogenase and cardiac copper zinc superoxide dismutase activities were also higher in diabetes. Sucrose, compared with lactose feeding, resulted in higher cytochrome c oxidase and glutathione peroxidase activities in the kidney while glucose-6-phosphate dehydrogenase activity was lower. The combination of lactose feeding and diabetes resulted in significantly higher activities of cardiac managanese superoxide dismutase and catalase and renal manganese superoxide dismutase and glucose-6-phosphate dehydrogenase. These results suggest that sucrose consumption compared with lactose appears to be associated with increased organ copper content and in general decreased antioxidant enzyme activities in copper-deficient diabetic rats.  相似文献   

9.
Metallothionein (MT) as a potent antioxidant can affect energy metabolism. The present study was undertaken to investigate the association between MT gene polymorphism and type 2 diabetes mellitus. Using the PCR-based restriction fragment length polymorphism method, seven single nucleotide polymorphisms (SNPs) in MT genes (rs8052394 and rs11076161 in MT1A gene, rs8052334, rs964372, and rs7191779 in MT1B gene, rs708274 in MT1E gene, and rs10636 in MT2A gene) were detected in 851 Chinese people of Han descent (397 diabetes and 454 controls). Several serum measurements were also examined randomly for 43 diabetic patients and 41 controls. The frequency distributions of the G allele in SNP rs8052394 of MT1A gene were significantly associated with the incidence of type 2 diabetes. There was no difference between patients and controls for the rest of six SNPs. Serum levels of interleukin-6 and tumor necrosis factor-alpha were higher, and serum superoxide dismutase activity was significantly lower in the diabetic group than those in the control group. For diabetic patients, serum superoxide dismutase activity was significantly lower in GG or GA carriers than those of AA carriers of rs8052394 SNP. Increased serum levels in diabetic patients were positively associated with rs964372 SNP, and type 2 diabetes with neuropathy was positively associated with rs10636 and rs11076161. These results suggest that multiple SNPs in MT genes are associated with diabetes and its clinical symptoms. Furthermore, MT1A gene in rs8052394 SNP is most likely the predisposition gene locus for diabetes or changes of serum superoxide dismutase activity.  相似文献   

10.
Changes in carbonic anhydrase (CA) activity have been associated with metabolic diseases like diabetes mellitus and hypertension. To explore the exchange of H+ for Na+ and 22Na+, the sodium pool, CA activity and H2O content in erythrocytes from the two groups of diabetic chronic renal failure (CRF) patients with and without hypertension before dialysis were studied. The results were compared with those from the normotensive controls. The CA activity was determined spectrophotometrically, the sodium pool by ouabain insensitive 22Na+ influx and the percent H2O content gravimetrically. The 22Na+ influx in CRF patients with hypertension was significantly higher (p less than 0.025) than in the normotensive CRF patients and the controls. The levels of CA activity (U/min/mL) and the percent H2O content were significantly different in the hypertensive and the normotensive CRF patients from the control group (2.24 +/- 0.69 and 67.11 +/- 1.33, 1.95 +/- 0.63 and 66.43 +/- 1.51, 1.44 +/- 0.07 and 63.61 +/- 1.72, respectively). The present study implies a relationship between the 22Na+ influx and CA activity in CRF patients with hypertension. The variation of CA activity may thus result in changes in H+ production and ultimately in the intracellular Na+ pool.  相似文献   

11.
Coenzyme Q10 is an endogenous lipid soluble antioxidant. Because oxidant stress may exacerbate some complications of diabetes mellitus, this study investigated the effects of subacute treatment with exogenous coenzyme Q10 (10 mg/kg/day, i.p. for 14 days) on tissue antioxidant defenses in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione contents, and activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. All tissues from diabetic animals exhibited increased oxidative stress and disturbances in antioxidant defense when compared with normal controls. Treatment with the lipophilic compound coenzyme Q10 reversed diabetic effects on hepatic glutathione peroxidase activity, on renal superoxide dismutase activity, on cardiac lipid peroxidation, and on oxidized glutathione concentration in brain. However, treatment with coenzyme Q10 also exacerbated the increase in cardiac catalase activity, which was already elevated by diabetes, further decreased hepatic glutathione reductase activity, augmented the increase in hepatic lipid peroxidation, and further increased glutathione peroxidase activity in the heart and brain of diabetic animals. Subacute dosing with coenzyme Q10 ameliorated some of the diabetes-induced changes in oxidative stress. However, exacerbation of several diabetes-related effects was also observed.  相似文献   

12.
Superoxide anions react with nitric oxide to form peroxynitrite and hence reduce the bioavailability of nitric oxide in the arteries. Extracellular superoxide dismutase (EC-SOD) is a major superoxide scavenger in human plasma and vascular tissues. The objective of this study is to assess whether essential hypertension is associated with an alteration in EC-SOD activity. In this report, blood samples were obtained from hypertensive (n=39) and normotensive (n=37) African-Americans. Plasma EC-SOD activity was measured using in-gel activity staining and spectrophotometric assays, EC-SOD protein level was measured using Western blotting, nitrotyrosine was measured using slot blotting, 8-isoprostane was measured with an enzyme immunoassay, and plasma copper and zinc concentrations were measured using an atomic absorption assay. Our data demonstrate that the copper, zinc, and plasma EC-SOD protein concentrations in the hypertensive and normotensive subjects are indistinguishable. Compared to normotensive controls, hypertensive patients have significantly reduced plasma EC-SOD activity. Plasma nitrotyrosine and 8-isoprostane levels are significantly higher in the hypertensive patients than in normotensive controls. Results from this study suggest that a reduction in EC-SOD activity in hypertensive patients is not due to a down-regulation of the SOD3 gene (encoding EC-SOD) or deficiency in mineral cofactors. Furthermore, the reduced EC-SOD activity might be at least partially responsible for the increased oxidative stress, as reflected by increased plasma nitrotyrosine and 8-isoprostane, in hypertensive subjects.  相似文献   

13.
In the present study several parameters associated with oxidative stress were examined in the blood of 25 chronic renal failure (CRF) patients and the results were compared with 18 healthy subjects. Mean creatinine concentration in patients was 1,216 +/- 292 micromol/l. Selenium (Se) concentration in red cells, whole blood and in plasma of CRF patients (106 +/- 32.5, 59.0 +/- 16.7 and 42.4 +/- 13.8 ng/ml, respectively) was significantly (0.0001 < P 0.01) lower (by 20-42%) compared with the controls. Red cell and plasma glutathione peroxidase (GSH-Px) activities (16.6 +/- 3.4 U/g Hb and 93.7 +/- 32.9 U/l plasma) were lower by 12 and 53% (P < 0.05 and < 0.0001, respectively) in patients than in healthy subjects. GSH concentration in red cells of patients (2.81 +/- 0.45 mmol/l) was significantly (P < 0.001) higher (by 20%) than in control group. Malonyldialdehyde (MDA) concentration (expressed as thiobarbituric acid-reactive substances) in red cells of patients (725 +/- 155 nmol/g Hb) was significantly (P < 0.001) higher (by 28%) than in control group. No significant difference was observed in the activity of superoxide dismutase in pLasma between the two groups. In conclusion, our results confirm that the aLterations in Se levels in blood components and in GSH-Px activity in plasma show that the kidney plays an important role in Se homeostasis and in plasma GSH-Px synthesis.  相似文献   

14.
P Yan  X Zhu  H Li  MJ Shrubsole  H Shi  MZ Zhang  RC Harris  CM Hao  Q Dai 《PloS one》2012,7(7):e37837

Background

The relationship between hypertension and kidney disease is complicated. Clinical trials found intense blood pressure control was not associated with alterations in glomerular filtration rate (GFR) in all patients but did slow the rate of GFR decline among those with a higher baseline proteinuria. However, the underlying mechanism has been unclear.

Methods

We tested the hypothesis that the association between high blood pressure and renal function is modified by albuminuria status by conducting analyses in a cross-sectional study with 12,440 adult participants without known kidney diseases, diabetes or cardiovascular diseases, participating in the National Health and Nutrition Examination Survey (NHANES) 1999–2006.

Results

1226 out of 12440 were found to have unknown high blood pressure and 4494 were found to have reduced renal function. Overall, a moderate association was found between high blood pressure and renal function insufficiency in all participants analyzed. However, among participants with albuminuria, the prevalence of moderate-severe renal insufficiency substantially and progressively increased from normal subjects to prehypertensive and undiagnosed hypertensive subjects (1.43%, 3.44%, 10.96%, respectively, P for trend<0.0001); on the other hand, the prevalence of undiagnosed hypertension was also significantly higher among subjects with moderate-severe renal insufficiency than those with mild renal insufficiency (35.54% Vs 19.09%, P value <0.05), supporting an association between hypertension and renal function damage. In contrast, no association between hypertension and renal insufficiency was observed among those without albuminuria in this population. Similar findings were observed when the CKD-EPI equation was used.

Conclusions

The association between high blood pressure and reduced renal function could be dependent upon the albuminuria status. This finding may provide a possible explanation for results observed in clinical trials of intensive blood pressure control. Further studies are warranted to confirm our findings.  相似文献   

15.
It has been shown that the development of generalized epileptic activity in rats led to the decrease in superoxide dismutase (SOD) activity without affecting glutathione peroxidase (GP) and glutathione reductase (GR) activity. Long-term examination of 13 patients suffering from generalized forms of epilepsy has shown an about 30% decrease in SOD and GP activity in red blood cells. It is assumed that the functional insufficiency of the antioxidative system plays an essential role in the development of lipid peroxidation disturbances during epilepsy.  相似文献   

16.
The present study was designed to evaluate, in Wistar rats, the effect of high- or low-salt diet on the hemodynamic parameters and on the renal and lumbar sympathetic nerve activity. The renal gene expression of the renin angiotensin system components was also evaluated, aiming to find some correlation between salt intake, sodium homeostasis and blood pressure increase. Male Wistar rats received low (0.06% Na, TD 92141-Harlan Teklad), a normal (0.5% Na, TD 92140), or a high-salt diet (3.12% Na, TD 92142) from weaning to adulthood. Hemodynamic parameters such as cardiac output and total peripheral resistance, and the renal and lumbar sympathetic nerve activity were determined (n=45). Plasma renin activity, plasma and renal content of angiotensin (ANG) I and II, and the renal mRNA expression of angiotensinogen, renin, AT1 and AT2 receptors were also measured (n=24). Compared to normal- and low-salt diet-, high-salt-treated rats were hypertensive and developed an increase (P<0.05) in total peripheral resistance and lumbar sympathetic nerve activity. A decrease in renal renin and angiotensinogen-mRNAs and in plasma ANG II and plasma renin activity was also found in salt overloaded animals. The renal sympathetic nerve activity was higher (P<0.05) in low- compared to high-salt-treated rats, and was associated with an increase (P<0.05) in renal ANG I and II and with a decrease (P<0.05) in AT2 renal mRNA. Plasma ANG I and II and plasma renin activity were higher in low- than in normal-salt rats. Our results show that increased blood pressure is associated with increases in lumbar sympathetic nerve activity and total peripheral resistance in high-salt-treated rats. However, in low-salt-treated rats an increase in the renal sympathetic nerve was correlated with an increase in the renal content of ANG I and II and with a decrease in AT2 renal mRNA. These changes are probably in favor of the antinatriuretic response and the sodium homeostasis in the low-salt group.  相似文献   

17.
Yun MR  Kim JJ  Im DS  Yang SD  Kim CD 《Life sciences》2004,75(20):2463-2472
The increased levels of cell adhesion molecules (CAM) have been identified in diabetic vasculatures, but the underlying mechanisms remain unclear. To determine the relationship among vascular production of superoxide, expression of CAM and diabetes, superoxide generation and expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E- and P-selectin in the aorta from control (C57BL/6J) and diabetic mice (ob/ob) were measured. In situ staining for superoxide using dihydroethidium showed an increased superoxide production in diabetic aorta in association with an enhanced NAD(P)H oxidase activity. Immunohistochemical analysis revealed that the endothelial expression of ICAM-1 (3.5 +/- 0.4) and VCAM-1 (3.8 +/- 0.3) in diabetic aorta was significantly higher than that in control aorta (0.9 +/- 0.5 and 1.6 +/- 0.3, respectively). Furthermore, there was a strong positive correlation (r = 0.89, p < 0.01 in ICAM-1 and r = 0.88, p < 0.01 in VCAM-1) between ICAM-1/VCAM-1 expression and vascular production of superoxide. The present data indicate that the increased production of superoxide via NAD(P)H oxidase may explain the enhanced expression of CAM in diabetic vasculatures.  相似文献   

18.
Rats fed a galactose-rich diet have been used for several years as a model for diabetes to study, particularly in the eye, the effects of excess blood hexoses. This study sought to determine the utility of galactosemia as a model for oxidative stress in extraocular tissues by examining biomarkers of oxidative stress in galactose-fed rats and experimentally-induced diabetic rats. Sprague-Dawley rats were divided into four groups: experimental control; streptozotocin-induced diabetic; insulin-treated diabetic; and galactose-fed. The rats were maintained on these regimens for 30 days, at which point the activities of catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase, as well as levels of lipid peroxidation and reduced and oxidized glutathione were determined in heart, liver, and kidney. This study indicates that while there are some similarities between galactosemic and diabetic rats in these measured indices of oxidative stress (hepatic catalase activity levels and hepatic and renal levels of oxidized glutathione in both diabetic and galactosemic rats were significantly decreased when compared to normal), overall the galactosemic rat model is not closely parallel to the diabetic rat model in extra-ocular tissues. In addition, several effects of diabetes (increased hepatic glutathione peroxidase activity, increased superoxide dismutase activity in kidney and heart, decreased renal and increased cardiac catalase activity) were not mimicked in galactosemic rats, and glutathione concentration in both liver and heart was affected in opposite ways in diabetic rats and galactose- fed rats. Insulin treatment reversed/prevented the activity changes in renal and cardiac superoxide dismutase, renal and cardiac catalase, and hepatic glutathione peroxidase as well as the hepatic changes in lipid peroxidation and reduced and oxidized glutathione, and the increase in cardiac glutathione. Thus, prudence should be exercised in the use of experimentally galactosemic rats as a model for diabetes until the correspondence of the models has been more fully characterized.  相似文献   

19.
Impaired homeostasis under diabetic conditions is connected with the increased production of free radicals and deficiency of antioxidative systems. The aim of this study was to analyze the effect of new oral antidiabetic drug-pioglitazone on activity of antioxidant factors and lipid peroxidation in vivo. The liver and kidney of alloxan-induced diabetic rabbits were examined after 4 and 8 weeks of treatment. After 4 weeks of diabetes the superoxide dismutase (Cu,Zn-SOD) activity in the liver was diminished while the catalase (CAT) activity and the level of ascorbic acid (AA) were elevated in comparison with the control group. Pioglitazone treatment during 4 weeks decreased the catalase activity in relation to the control diabetic animals. After 8 weeks of diabetes the CAT activity in the liver was elevated in comparison with the control group. Pioglitazone treatment during 8 weeks decreased the CAT activity and the level of lipid peroxidation products (LPO), and increased the Cu,Zn-SOD activity in relation to control diabetic animals. After 4 weeks of diabetes in the kidney the Cu,Zn-SOD activity and the level of ascorbic acid (AA) were diminished while the CAT activity and the LPO level were elevated in comparison with the control group. Pioglitazone treatment during 4 weeks increased the AA and decreased the LPO levels in relation to non-treated diabetic animals. After 8 weeks of disease the Cu,Zn-SOD activity in the kidney was diminished in comparison with the control group. Pioglitazone during 8 weeks decreased the LPO level in relation to non-treated diabetic animals. This study shows that diabetic animals undergo an important oxidative stress, which is partially corrected by pioglitazone treatment.  相似文献   

20.
Lim YS  So HS  Kim MS  Moon G  Won JH  Baek SW  Moon SR  Yang SH  Kim BJ  Ko CB  Park R 《Life sciences》2002,70(20):2391-2401
The hypoglycemic drug, troglitazone (TGZ) has antioxidant activity. Superoxide dismutase (SOD) removes superoxide produced by cells. We measured the response of SOD-like activity (deltaSOD) to ascorbic acid (AA) or TGZ using electron spin resonance at various glucose concentrations in polymorphonuclear leukocytes from 18 type 2 diabetic patients and 18 healthy controls. In control and diabetic subjects, ASOD in response to AA was dose-dependent (maximal effect at 100 ng/ml). Maximal response occurred 2 min after AA addition (50 ng/ml). In cells from diabetic patients, ASOD with 25 ng/ml AA was significantly less than for healthy controls. The deltaSOD with AA changed little at glucose concentration from 0 to 200 mg/dl. In patient and control cells, higher glucose concentrations (400 to 800 mg/dl) reduced ASOD with AA. Response patterns with TGZ resembled those with AA. deltaSOD with AA correlated positively with glycosylated hemoglobin A1c. Conclusions: The present data suggest that an amerioration of blood glucose on high levels in diabetic patients plays an important role in an antioxidant efficacy of TGZ and AA on leukocytes in patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号