首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mainland serow is an endanged artiodactyl of southern Anhui province, China, that is often subject to poaching. To provide an easy, rapid and reliable marker for identification of bushmeat, skin and other tissues of the species, we developed a sequence characterized amplified region (SCAR) based on a species-specific random amplified polymorphic DNA (RAPD) marker. Initially, a 1012-bp species-specific DNA fragment of mainland serow was detected by a RAPD primer S1193. Then, a serow-specific primer pair (SCF/SCR) was designed according to the specific RAPD fragment, resulting in a 438-bp SCAR for the species. Finally, the reliability of the SCAR primers was tested by a common multiplex polymerase chain reaction using the combination of the SCAR and cyt b universal primers. The results that all mainland serow samples presented two target bands but the others failed to produce the SCAR indicated that the designed primers were highly diagnostic. Therefore, the SCAR probe developed in this study will be useful for quick authentication of mainland serow tissue samples for conservation biology and bushmeat regulation.  相似文献   

2.
BACKGROUND AND AIMS: The aim of this study was to develop species-specific molecular markers for Bambusa balcooa and B. tulda to allow for their proper identification, in order to avoid unintentional adulteration that affects the quality and quantity of paper pulp production. METHODS: Two putative, species-specific RAPD markers, Bb836 for B. balcooa and Bt609 for B. tulda were generated using a PCR-based RAPD technique. Species-specificity of these two markers was confirmed through Southern hybridization in which RAPD gels were blotted and hybridized with radiolabelled cloned RAPD markers. Southern hybridization analyses were also performed to validate homology of the co-migrating Bb836 and Bt609 marker bands amplified from 16 different populations of B. balcooa and B. tulda, respectively. Sequence-characterized amplified region (SCAR) markers were developed from Bb836 and Bt609 sequences, using 20-mer oligonucleotide primers designed from both the flanking ends of the respective RAPD primers. KEY RESULTS: As anticipated, Bb836 hybridized with an amplified band from B. balcooa and Bt609 hybridized only with an amplified product from B. tulda; the two markers did not hybridize with the amplified products of any of the other 14 bamboo species studied. The two pairs of SCAR primers amplified the target sequences only in the respective species. The species-specific SCAR fragments were named as 'Balco836' for B. balcooa and 'Tuldo609' for B. tulda. The species-specific 'Balco836' was amplified from the genomic DNA of 80 individuals of 16 populations of B. balcooa studied. Similarly, the presence of 'Tuldo609' was noted in all the 80 individuals representing 16 populations of B. tulda assessed. These SCAR fragments contained no obvious repetitive sequence beyond the primers. CONCLUSION: These two molecular markers are potentially useful for regulatory agencies to establish sovereign rights of the germplasms of B. balcooa and B. tulda. In addition, this is the first report of species-specific SCAR marker development in bamboo.  相似文献   

3.
Larix gmelinii, Larix olgensis, and Larix principis-rupprechtii are the three native and sympatric larch species in North China, and each of these species has a distinctive ecological niche. It is difficult to identify them based only on certain morphological characters, particularly the seed appearance. In this study, the seed endosperms of these three larch species were analysed using the random amplified polymorphic DNA (RAPD) technique to screen for interspecific differences. The following three RAPD markers linked to species-specific segments were observed in the different species: 1475-bp (Larix gmelinii and L. olgensis), 505-bp (Larix principis-rupprechtii), and 1121-bp (Larix gmelinii) markers. The three seed-specific fragments amplified by the RAPD markers were sequenced, and the sequences were used to design and synthesise species-specific SCAR markers. The size of the SCAR fragments was concordant with that of the RAPD species-specific fragments. Therefore, these SCAR markers can be used to identify the seeds of different larch species, thereby providing a new molecular tool for the identification of larch seeds that leads to considerable savings in terms of time and economic resources.  相似文献   

4.
DNA markers were identified for the molecular detection of the Asian long-horned beetle (ALB), Anoplophora glabripennis (Mot.), based on sequence characterized amplified regions (SCARs) derived from random amplified polymorphic DNA (RAPD) fragments. A 2,740-bp DNA fragment that was present only in ALB and not in other Cerambycids was identified after screening 230 random primers in a PCR-based assay system. Three pairs of nested 22-mer oligonucleotide primers were designed on the basis of the sequence of this fragment and were used to perform diagnostic PCR. The first pair of primers (SCAR1) amplified a single 745-bp fragment of ALB DNA, but this did not differentiate ALB from other species. The other two pairs of SCAR primers (SCAR2 and SCAR3) amplified bands of 1,237- and 2,720-bp, respectively, that were capable of differentiating ALB from other closely related non-native and native Cerambycids, such as A. chinensis (Forster), A. malasiaca (Thomson), A. nobilis (Ganglbauer), Monochamus scutellatus (Say), Plectrodera scalator (Fab), Saperda tridentata (Olivier), and Graphisurus fasciatus (Degeer). The latter two SCAR markers could be amplified using DNA extracted from body parts of ALB such as the wing, the leg, and the antennae as well as tissues from all the developmental stages including the egg, larva, pupa, and adult. These markers were also capable of identifying ALB using the DNA extracted from frass. Our results demonstrate that the SCAR markers we have identified can be used for unambiguously identifying ALB from other closely related Cerambycids using a simple PCR procedure.  相似文献   

5.
Eleusine indica is one of the most common weed species found in agricultural land worldwide. Although herbicide-glyphosate provides good control of the weed, its frequent uses has led to abundant reported cases of resistance. Hence, the development of genetic markers for quick detection of glyphosate-resistance in E. indica population is imperative for the control and management of the weed. In this study, a total of 14 specific random amplified polymorphic DNA (RAPD) markers were identified and two of the markers, namely S4R727 and S26R6976 were further sequence characterized. Sequence alignment revealed that marker S4R727 showing a 12-bp nucleotides deletion in resistant biotypes, while marker S26R6976 contained a 167-bp nucleotides insertion in the resistant biotypes. Based on these sequence differences, three pairs of new sequence characterized amplified region (SCAR) primers were developed. The specificity of these primer pairs were further validated with genomic DNA extracted from ten individual plants of one glyphosate-susceptible and five glyphosate-resistant (R2, R4, R6, R8 and R11) populations. The resulting RAPD–SCAR markers provided the basis for assessing genetic diversity between glyphosate-susceptible and -resistant E. indica biotypes, as well for the identification of genetic locus link to glyphosate-resistance event in the species.  相似文献   

6.
Phyllanthus amarus Schum.& Thonn.has been widely used in traditional medicine in Thailand as an antipyretic.a diuretic.to treat liver diseases and viml infections.Two closely related species,P. debills L.and P.urinaria KIein ex Willd.,with different and less effective medicinal properties,are less commonly used.These three species are similar in morphology and often Occur in overlapping populations in nature.The latter two species can easily be mistaken for P.amarus and collected for medicinal uses, which can lead to undesirable results.DNA fingerprints of these species were obtained using RAPD-PCR techniques.RAPD markers specific for each species were identified.Primers for highly specific sequence-characterized-amplified-regions (SCAR) were then designed from nucleotide sequences of specific RAPD markers.These primers efficiently amplified SCAR markers of 408,501 and 319 bp unique to P.amarus,P.debilis and P.urinaria respectively.This method of plant identification Was rapid and highly specific when tested against DNA of several closely related species and was able to amplify specific markers from mixed DNA samples.  相似文献   

7.
Phyllanthus amarus Schum. & Thonn. has been widely used in traditional medicine in Thailand as an antipyretic, a diuretic, to treat liver diseases and viral infections. Two closely related species, P. debilis L. and P. urinaria Klein ex Willd., with different and less effective medicinal properties, are less commonly used. These three species are similar in morphology and often occur in overlapping populations in nature. The latter two species can easily be mistaken for P. amarus and collected for medicinal uses, which can lead to undesirable results. DNA fingerprints of these species were obtained using RAPD-PCR techniques. RAPD markers specific for each species were identified. Primers for highly specific sequence-characterized-amplified-regions (SCAR) were then designed from nucleotide sequences of specific RAPD markers. These primers efficiently amplified SCAR markers of 408, 501 and 319 bp unique to P. amarus, P. debilis and P. urinaria respectively. This method of plant identification was rapid and highly specific when tested against DNA of several closely related species and was able to amplify specific markers from mixed DNA samples.  相似文献   

8.
Species containing E genome of Thinopyrum offered potential to increase the genetic variability and desirable characters for wheat improvement. However, E genome specific marker was rare. The objective of the present report was to develop and identify sequenced characterized amplified region (SCAR) markers that can be used in detecting E chromosome in wheat background for breeding purpose. Total 280 random amplified polymorphic DNA (RAPD) primers were amplified for seeking of E genome specific fragments by using the genomic DNA of Thinopyrum elongatum and wheat controls as templates. As a result, six RAPD fragments specific for E genome were found and cloned, and then were converted to SCAR markers. The usability of these markers was validated using a number of Egenome-containing species and wheat as controls. These markers were subsequently located on E chromosomes using specific PCR and fluorescence in situ hybridization (FISH). SCAR markers developed in this research could be used in molecular marker assisted selection of wheat breeding with Thinopyrum chromatin introgressions.  相似文献   

9.
Definitive identification of original plant species is important for standardizing herbal medicine. The herbal medicines Cynanchi Wilfordii Radix (Baekshuoh in Korean and Beishuwu in Chinese) and Polygoni Multiflori Radix (Hashuoh in Korean and Heshuwu in Chinese) are often misidentified in the Korean herbal market due to morphological similarities and similar names. Therefore, we developed a reliable molecular marker for the identification of Cynanchi Wilfordii Radix and Polygoni Multiflori Radix. We used random amplified polymorphic DNA (RAPD) analysis of three plant species, Polygoni multiflorum, Cynanchum wilfordii, and Cynanchum auriculatum, to obtain several species-specific RAPD amplicons. From nucleotide sequences of these RAPD amplicons, we developed six sequence characterized amplification region (SCAR) markers for distinguishing Polygoni Multiflori Radix and Cynanchi Wilfordii Radix. Furthermore, we established SCAR markers for the simultaneous discrimination of the three species within a single reaction by using multiplex-PCR. These SCAR markers can be used for efficient and rapid authentication of these closely related species, and will be useful for preventing the distribution of adulterants.  相似文献   

10.
The fungus Peronosclerospora sorghi [Weston and Uppal (Shaw)] infects both sorghum and maize and incites downy mildew disease. Pathogenic and molecular variability among isolates of P. sorghi from sorghum and maize has been reported. In the present study we developed a DNA sequence characterized amplified region (SCAR) marker for identification of isolates of P. sorghi from maize by using polymerase chain reaction (PCR). The random amplified polymorphic DNA (RAPD) primer OPB15 consistently amplified a 1,000 base pairs (bp) product in PCR only from DNA of P. sorghi isolates from maize and not from isolates of sorghum. The PCR-amplified 1,000-bp product was cloned and sequenced. The sequence of the SCAR marker was used for designing specific primers for identification of maize isolates of P. sorghi. The SCAR primers amplified a 800 bp fragment only from genomic DNA of maize isolates of P. sorghi. The SCAR primers developed in this study are highly specific and reproducible, and proved to be powerful tool for identification of P. sorghi isolates from maize.  相似文献   

11.
The aim of this study was to identify the molecular markers (SSR, RAPD and SCAR) associated with Mungbean yellow mosaic virus resistance in an interspecific cross between a mungbean variety, VRM (Gg) 1 X a ricebean variety, TNAU RED. The parental survey was carried out by using 118 markers (including 106 azuki bean primers, seven mungbean primers and five ricebean primers). This study revealed that 42 azuki bean markers (39.62%) and four mungbean markers (54.07%) showed parental polymorphism. These polymorphic markers were surveyed among the 187 F2 plants and the results showed distorted segregation or chromosomal elimination at all the marker loci (thus, deviating from the expected 1:2:1 segregation). None of the plants harboured the homozygous ricebean allele for the markers surveyed and all of them were skewed towards mungbean, VRM (Gg) 1, allele, except a few plants which were found to be heterozygous for few markers. Among the 42 azuki bean SSR markers surveyed, only 10 markers produced heterozygotic pattern in six F2 lines viz. 3, 121, 122, 123, 185 and 186. These markers were surveyed in the corresponding F3 individuals, which too skewed towards the mungbean allele. In this study, one species-specific SCAR marker was developed for ricebean by designing primers from the sequenced putatively species-specific RAPD bands. A single, distinct and brightly resolved band of 400?bp was found amplified only in the resistant parent, TNAU RED, and not in any other six species or in the resistant or the susceptible bulks of the mapping population clearly indicated the identification of SCAR marker specific to the ricebean.  相似文献   

12.
RAPD markers were used to characterize the genetic diversity and relationships of root-knot nematodes (RKN) (Meloidogyne spp.) in Brazil. A high level of infraspecific polymorphism was detected in Meloidogyne arenaria, Meloidogyne exigua, and Meloidogyne hapla compared with the other species tested. Phylogenetic analyses showed that M. hapla and M. exigua are more closely related to one another than they are to the other species, and illustrated the early divergence of these meiotically reproducing species from the mitotic ones. To develop a PCR-based assay to specifically identify RKN associated with coffee, three RAPD markers were further transformed into sequence-characterized amplified region (SCAR) markers specific for M. exigua, Meloigogyne incognita and Meloidogyne paranaensis, respectively. After PCR using the SCAR primers, the initial polymorphism was retained as the presence or absence of amplification. Moreover, multiplex PCR using the three pairs of SCAR primers in a single reaction enabled the unambiguous identification of each species, even in mixtures. Therefore, it is concluded that the method developed here has potential for application in routine diagnostic procedures.  相似文献   

13.
Miscanthus is referred to as an ideal lignocellulosic bioenergy crop, which can be used to generate heat, power, and fuel, as well as to reduce carbon dioxide emissions. The new Miscanthus sacchariflorus genotype named Geodae-Uksae 1 was recently collected from damp land in southern Korea. This study investigated the growth characteristics of Miscanthus genotypes, and developed a specific, sensitive, and reproducible sequence characterized amplified region (SCAR) marker to distinguish new M. sacchariflorus genotype Geodae-Uksae 1 from other native Miscanthus species in Korea. Growth characteristics such as stem length, stem diameter, and dry weight of Geodae-Uksae 1 were greater than those of normal M. sacchariflorus. The genotypes within Geodae-Uksae 1 were had the highest genetic similarity. A putative 1,800-bp polymorphic sequence specific to Geodae-Uksae 1 was identified with the random amplified polymorphic DNA (RAPD) N8018 primer. The sequence-characterized amplified region (SCAR) primers Geodae 1-F and Geodae 1-R were designed based on the unique RAPD amplicon. The SCAR primers produced a specific 1,799-bp amplicon in authentic Geodae-Uksae 1, whereas no amplification was observed in other Miscanthus species. The SCAR marker could contribute to identify Geodae-Uksae 1 among native Miscanthus species. The new Miscanthus genotype Geodae-Uksae 1 has great potential as an alternative lignocellulosic biomass feedstock for bioenergy productions.  相似文献   

14.
A method is described for the development of DNA markers for detection of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) in predator gut analysis, based on sequence characterized amplified regions (SCARs) derived from a randomly amplified polymorphic DNA (RAPD) band. A 1200-bp DNA fragment of H. armigera, absent in the predator band pattern and in other closely related prey species, was identified by RAPD analysis. This fragment was cloned and its extremes sequenced to design extended strand-specific 20-mer oligonucleotide primers. Three pairs of SCAR primers, which amplified three different DNA fragments, were used to study the effect of fragment length on detection of prey in the predator gut. Using the pair of primers that amplified the longest fragment of H. armigera DNA, a single band of 1100 bp was obtained, but its detection was not possible in the predator gut. Detection of the ingested prey was possible with the other two pairs of SCAR primers, obtaining bands of 600 and 254 bp, respectively. Detection of H. armigera DNA in the gut of the predator Dicyphus tamaninii was evaluated immediately after ingestion (t = 0) and after 4 h. Detection of H. armigera DNA after 4 h was only possible using the pair of primers that amplified the shortest fragment (254 bp). The test for specificity, using these last pair of primers, showed that H. armigera was the only species detected. The detection threshold was defined at a 1:8192 dilution of a H. armigera whole egg in all samples.  相似文献   

15.
Bulk segregant analysis, random amplified polymorphic DNA (RAPD), and sequence characterized amplified region (SCAR) methods were used to identify sex‐linked molecular markers in the haploid‐diploid rhodophyte Gracilaria chilensis C. J. Bird, McLachlan et E. C. Oliveira. One hundred and eighty 10 bp primers were tested on three bulks of DNA: haploid males, haploid females, and diploid tetrasporophytes. Three RAPD primers (OPD15, OPG16, and OPN20) produced male‐specific bands; and one RAPD primer (OPD12), a female‐specific band. The sequences of the cloned putative sex‐specific PCR fragments were used to design specific primers for the female marker SCAR‐D12‐386 and the male marker SCAR‐G16‐486. Both SCAR markers gave unequivocal band patterns that allowed sex and phase to be determined in G. chilensis. Thus, all the females presented only the female band, and all the males only the male band, while all the tetrasporophytes amplified both male and female bands. Despite this sex‐specific association, we were able to amplify SCAR‐D12‐386 and SCAR‐G16‐486 in both sexes at low melting temperature. The differences between male and female sequences were of 8%–9% nucleotide divergence for SCAR‐D12‐386 and SCAR‐G16‐486, respectively. SCAR‐D12‐386 and SCAR‐G16‐486 could represent degenerated or diverged sequences located in the nonrecombining region of incipient sex chromosomes or heteromorphic sex chromosomes with sequence differences at the DNA level such that PCR primers amplify only one allele and not the other in highly specific PCR conditions. Seven gametic progenies composed of 19 males, 19 females, and the seven parental tetrasporophytes were analyzed. In all of them, the two SCAR markers segregated perfectly with sexual phenotypes.  相似文献   

16.
目的:通过烟草随机扩增多态性DNA(RAPD)标记技术建立烟草特征序列扩增区域(SCAR)标记技术,用于烟草品种鉴定。方法:对12个烟草品种的复烤叶片DNA进行RAPD分析,得到2个RAPD特异片段S1和S2,通过切胶回收,连接pUCm-T载体克隆转化,片段测序,设计特异性引物S1-1/S1-2和S2-1/S2-2,对SCAR-PCR扩增退火温度进行优化。结果:2个RAPD标记成功地转化为稳定快捷的SCAR标记,可将红花大金元和NC102等2个品种从12个烟草品种中快捷准确地鉴别出来。结论:SCAR标记可作为准确稳定的DNA水平的烟草品种鉴定方法,可对种植、复烤和配方品种的烟叶或叶片进行鉴别。  相似文献   

17.
SCAR标记是一种在RAPD技术的基础上发展起来的新型分子标记技术,提高了分子标记辅助选择育种的效率,在茶树种质资源的合理开发与利用中具有广阔的应用前景.运用优化后的RAPD反应体系对10个茶树品种的基因组DNA进行遗传差异分析,随机引物S89、S4分别在白毫早和福云6号中扩增得到长度为498 bp、1 622 bp的差异片段,命名为BHZ498、FY1622.根据它们的测序结果分别设计了一对特异引物,BHZ498的特异引物为SB1/SB2;FY1622的特异引物为SC1/SC2,用这两对特异引物对10个茶树品种的基因组DNA进行扩增.引物SB1/SB2和SC1/SC2分别在白毫早和福云6号中扩增出唯一的一条扩增带,而这两对引物在其他供试茶树材料中均无相应的扩增带,结果表明已将BHZ498、FY1622标记成功转化成SCAR标记.  相似文献   

18.
Isolates of white truffles were identified as Tuber magnatum Pico species using a pair of primers selected from a sequence characterised amplified region (SCAR) and a specific random amplified polymorphic DNA (RAPD) marker. The present study reveals that PCR-fragment-pattern polymorphisms, the construction of probes and couples of primers from one or more of these polymorphic fragments may provide a useful and rapid tool for identifying species of ectomycorrhizal fungi in addition to conventional methods (morphological parameters).  相似文献   

19.
葡萄感霜霉病基因的分子标记(英文)   总被引:4,自引:0,他引:4  
 在葡萄抗病育种中 ,幼苗期排除感霜霉病的后代具有特别重要的意义 .用 BSA,RAPD和SCAR方法研究了葡萄感霜霉病基因的分子标记 .分析了两个种间杂交组合 [毛葡萄 (抗病 )×欧洲葡萄 (感病 ) ]88- 1 1 0和 88- 84与 88- 1 1 0的 F1代自交或互交所得的 3个 F2 代 ,以及欧洲葡萄品种和中国野生葡萄种 .共筛选了 2 80个随机引物 .引物 OPO1 0产生了一个 RAPD标记 OPO1 0 - 80 0与葡萄感霜霉病主效基因紧密联锁 .将该 DNA片段克隆并测序 .OPO1 0 - 80 0的实际长度为 835bp,所以 OPO1 0 - 80 0应为 OPO1 0 - 835.据其两端序列 ,设计了一对长度为 2 6bp和 2 8bp的特异引物分别扩增上述试材 ,获得了与该 RAPD标记相同大小的一条带 ,将 RAPD标记转化为 SCAR标记SCO1 0 - 835.并证实了此 SCAR标记的通用性 ,该 SCAR标记可用于葡萄抗病育种中杂种后代对霜霉病的抗病与感病性鉴定 .  相似文献   

20.
Among 34 grapevine cultivars (Vitis vinifera L.), eight putative genotype-specific RAPD markers, from ’Albariño’, ’Caíño blanco’, ’Chardonnay’, ’Folle blanche’, ’Grenache blanc’, ’Malvasía Sitges’, ’Torrontés’ and ’Treixadura’ respectively, were selected to transform into SCAR markers. Of these, seven markers were cloned and then five which showed a positive specific hybridization signal were sequenced. For these five markers, 30 sequence-specific primers ranging from 14 to 29 bases were designed to amplify genomic DNA from 64 grapevine cultivars under more-stringent PCR conditions. Only, two primer pairs, OpA111175p17R/ p17F and OpD10800p14R/p14F, still produced a specific SCAR marker, the ’Folle blanche’ ScA111175 and the ’Malvasía Sitges’ ScD10800 respectively. Moreover, the ScA111175 marker was amplified only in ’Folle blanche’ among the 64 cultivars tested with a large annealing temperature range using either two different Taq DNA polymerases or two separate thermocyclers. In addition, we discuss the initial polymorphism originated by the RAPD technique and suggest a new design of SCAR primers to obtain reliable cultivar-specific SCAR markers from single PCR-based bands for identification purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号