首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Triacylglycerol hydrolase (TGH) is an enzyme that catalyzes the lipolysis of intracellular stored triacylglycerol (TG). Peroxisomal proliferator-activated receptors (PPAR) regulate a multitude of genes involved in lipid homeostasis. Polyunsaturated fatty acids (PUFA) are PPAR ligands and fatty acids are produced via TGH activity, so we studied whether dietary fats and PPAR agonists could regulate TGH expression. In 3T3-L1 adipocytes, TGH expression was increased 10-fold upon differentiation, compared to pre-adipocytes. 3T3-L1 cells incubated with a PPARγ agonist during the differentiation process resulted in a 5-fold increase in TGH expression compared to control cells. Evidence for direct regulation of TGH expression by PPARγ could not be demonstrated as TGH expression was not affected by a 24-h incubation of mature 3T3-L1 adipocytes with the PPARγ agonist. Feeding mice diets enriched in fatty acids for 3 weeks did not affect hepatic TGH expression, though a 3-week diet enriched in fatty acids and cholesterol increased hepatic TGH expression 2-fold. Two weeks of clofibrate feeding did not significantly affect hepatic TGH expression or microsomal lipolytic activities in wild-type or PPARα-null mice, indicating that PPARα does not regulate hepatic TGH expression. Therefore, TGH expression does not appear to be directly regulated by PPARs or fatty acids in the liver or adipocytes.  相似文献   

2.
3.
Cyclic phosphatidic acid (cPA) is found in cells from slime mold to humans and has a largely unknown function. We previously reported that cPA significantly inhibited the lipid accumulation in 3T3-L1 adipocytes through inhibition of PPARγ activation. We find here that cPA reduced intracellular triglyceride levels and inhibited the phosphodiesterase 3B (PDE3B) expression in 3T3-L1 adipocytes. PPARγ activation in adipogenesis that can be blocked by treatment with cPA then participates in adipocyte function through inhibition of PDE3B expression. We also found the intracellular cAMP levels in 3T3-L1 adipocytes increased after exposure to cPA. These findings contribute to the participation of cPA on the lipolytic activity in 3T3-L1 adipocytes. Our studies imply that cPA might be a therapeutic compound in the treatment of obesity and obesity-related diseases.  相似文献   

4.
Recent evidence indicates that both leptin and eicosapentaenoic acids (EPA) improve insulin sensitivity. In the present study, we examined the effect of EPA on endogenous leptin expression in 3T3-L1 adipocytes to clarify whether the EPA's effect is exerted through leptin expression. EPA caused a time- and dose-dependent increase of leptin mRNA levels in 3T3-L1 adipocytes. Leptin mRNA expression was significantly increased up to 309.4 +/- 17.0% of the control by 24 h (P < 0.01; n = 6). Leptin secretion was also significantly increased up to 193.3 +/- 12.1% of the control by 24 h (P < 0.01; n = 6). EPA is a ligand for peroxisome proliferator-activated receptors (PPARs) with the highest affinity to PPARalpha. We examined the effect on leptin expression of clofibrate, a ligand for PPARalpha, bezafibrate, for PPARbeta, or troglitazone, for PPARgamma, to clarify whether these ligands for PPARs could mimic EPA-induced stimulation of leptin expression. Neither clofibrate nor bezafibrate affected leptin mRNA expression, whereas troglitazone significantly suppressed leptin mRNA expression. On the other hand, inhibition by 6-diazo-5-oxo-l-norleucine of the rate-limiting enzyme in hexosamine biosynthesis blunted EPA-induced stimulation of leptin mRNA expression and its secretion. These data suggest that EPA up-regulates leptin gene expression and its secretion probably through a hexosamine biosynthetic pathway.  相似文献   

5.
We show that testicular orphan nuclear receptor 4 (TR4) increases the expression of pyruvate carboxylase (PC) gene in 3T3-L1 adipocytes by direct binding to a TR4 responsive element in the murine PC promoter. While TR4 overexpression increased PC activity, oxaloacetate (OAA) and glycerol levels with enhanced incorporation of 14C from 14C-pyruvate into fatty acids in 3T3-L1 adipocytes, PC knockdown by short interfering RNA (siRNA) or inhibition of PC activity by phenylacetic acid (PAA) abolished TR4-enhanced fatty acid synthesis. Moreover, TR4 microRNA reduced PC expression with decreased fatty acid synthesis in 3T3-L1 adipocytes, suggesting that TR4-mediated enhancement of fatty acid synthesis in adipocytes requires increased expression of PC gene.  相似文献   

6.
7.
8.
目的:观察槟榔碱对3T3-L1脂肪细胞脂代谢的影响并探讨其可能机制。方法:采用经典的"鸡尾酒"法诱导3T3-L1前脂肪细胞分化成熟,随后用不同浓度的槟榔碱(0、25、50、100 μmol/L)处理成熟脂肪细胞72 h。72 h后,四甲基偶氮唑盐(MTT)法检测细胞的活性;油红O染色观察胞浆内脂滴情况;Western blot检测脂肪酸合成酶(FAS)、甘油三酯脂肪酶(ATGL)、激素敏感性脂肪酶(HSL)蛋白表达。结果:诱导分化成熟的脂肪细胞胞浆内可见大量脂滴;MTT显示:0~100 μmol/L槟榔碱对脂肪细胞活力无显著影响;油红O染色后脂质含量测定结果表明槟榔碱能减少成熟脂肪细胞中脂质含量;Western blot结果显示:与0 μmol/L组(对照组)相比,槟榔碱可显著降低脂肪细胞内FAS的蛋白表达,增加ATGL和HSL的蛋白表达;其中以50 μmol/L组最为显著。结论:槟榔碱使脂肪细胞脂解增强,可能与降低脂质合成关键酶FAS的表达,增加脂质分解代谢关键酶ATGL和HSL的表达有关。  相似文献   

9.
Choi H  Kim SJ  Park SS  Chang C  Kim E 《FEBS letters》2011,585(17):2763-2767
We show that TR4 facilitates lipid accumulation in 3T3-L1 adipocytes via induction of the FATP1 gene. Further study showed that TR4 transactivated FATP1 5' promoter activity via direct binding to the TR4 responsive element located at the FATP1 5' promoter region. Constitutive overexpression of TR4 in 3T3-L1 adipocytes resulted in increased lipid accumulation, accompanied by an increase in fatty acid uptake. However, small interfering RNA knockdown of FATP1 abolished TR4-enhanced fatty acid uptake. Moreover, microRNA-mediated silencing of TR4 in 3T3-L1 adipocytes drastically reduced basal FATP1 5' promoter activity and FATP1 expression with reduced lipid accumulation.  相似文献   

10.
Rats subcutaneously implanted with AH109A hepatoma cells show hyperlipidemia with high concentrations of serum triglyceride and nonesterified fatty acid, suppression of lipoprotein lipase (LPL), and elevation of hormone-sensitive lipase (HSL) activities during the growth of the hepatoma. Supplementation of the diet with sulfur amino acids such as l-methionine (Met) and l-cystine (Cys) improved hyperlipidemia by restoring LPL and HSL activities. In the present study, we have attempted to examine the effects of sulfur amino acids on the activity and mRNA level of LPL and the activity of HSL using 3T3-L1 cells, which are known to differentiate to adipocytes. The adipocytes were incubated with various concentrations of Met, Cys or l-cysteine (CysH) in the absence or presence of tumor necrosis factor-α (TNF-α). LPL activity was suppressed by TNF-α. In the absence of TNF-α, Met, Cys and CysH did not change the LPL activity. In the presence of TNF-α, Met and Cys significantly increased the LPL activity, and Met also enhanced the LPL mRNA level. HSL activity was also suppressed by TNF-α. In the absence of TNF-α, Met enhanced the HSL activity. In the presence of TNF-α, Met, Cys and CysH suppressed the HSL activity. Sulfur amino acids such as Met, Cys and CysH affected the LPL activity, mRNA level, and HSL activity in 3T3-L1 adipocytes. Some of these effects of sulfur amino acids were different between LPL and HSL, between the absence and the presence of TNF-α, and between 3T3-L1 adipocytes and the adipose tissue from rats.  相似文献   

11.
目的:通过培养3T3-L1前脂肪细胞,并诱导其分化至成熟,研究游离脂肪酸对脂肪细胞糖代谢的影响。方法:培养诱导3T3-L1脂肪细胞,用油红O染色鉴定并比较其形态结构的变化。LPS、EPA、SA、PA干预成熟脂肪细胞,收集不同时间的培养基,葡萄糖氧化酶法算出各组脂肪细胞的葡萄糖消耗量。用Western blot检测不同时间各组干预后细胞AMPK、GLUT4蛋白含量。结果:油红O染色鉴定成熟脂肪细胞胞浆中的脂滴染成红色,并出现戒环样结构;诱导分化第8天,90%以上细胞均分化成熟。含LPS、EPA、SA、PA的培养基作用于成熟脂肪细胞,随着时间的延长,显著抑制脂肪细胞对葡萄糖的吸收(P<0.05),同时,脂肪细胞AMPK、GLUT4蛋白含量在减少(P<0.05)。结论:游离脂肪酸可以诱导胰岛素抵抗的分子机制可能是通过胰岛素信号通路激活蛋白激酶(AMPK),进而影响GLUT4的蛋白表达,使脂肪细胞的葡萄糖吸收率减低,影响脂肪细胞的糖代谢。  相似文献   

12.
Eicosapentaenoic acid (EPA), one of the n-3 polyunsaturated fatty acids, has been shown to stimulate leptin mRNA expression and secretion in 3T3-L1 cells. However, other studies have reported inhibitory effects of EPA on leptin expression and secretion in vivo and in vitro. To determine the direct effects of EPA on basal and insulin-stimulated leptin secretion, isolated rat adipocytes were incubated with EPA in the absence and presence of insulin. EPA (10, 100, and 200 microM) increased basal leptin gene expression and secretion (+43.8%, P < 0.05; +71.1%, P < 0.01; and +73.7%, P < 0.01, respectively). EPA also increased leptin secretion in the presence of 1.6 nM insulin; however, the effect was less pronounced than in the absence of it. Because adipocyte glucose and lipid metabolism are involved in the regulation of leptin production, the metabolic effects of this fatty acid were also examined. EPA (200 microM) increased basal glucose uptake in isolated adipocytes (+50%, P < 0.05). Anaerobic metabolism of glucose, as assessed by lactate production and proportion of glucose metabolized to lactate, has been shown to be inversely correlated to leptin secretion and was decreased by EPA in both the absence and presence of insulin. EPA increased basal glucose oxidation as determined by the proportion of (14)C-labeled glucose metabolized to CO(2). Lipogenesis ((14)C-labeled glucose incorporation into triglyceride) was decreased by EPA in the absence of insulin, whereas lipolysis (glycerol release) was unaffected. The EPA-induced increase of basal leptin secretion was highly correlated with increased glucose utilization (r = +0.89, P < 0.01) and inversely related to the anaerobic glucose metabolism to lactate. EPA's effect on insulin-stimulated leptin secretion was not related to increased glucose utilization but was inversely correlated with anaerobic glucose metabolism to lactate (r = -0.84, P < 0.01). Together, the results suggest that EPA, like insulin, stimulates leptin production by increasing the nonanaerobic/oxidative metabolism of glucose.  相似文献   

13.
Various saturated and unsaturated fatty acids were included in the culture medium to test their effects on lipolysis in 3T3-L1 adipocytes. Following prolonged incubation, only oleate was found to exert enhancing effect on basal and isoproterenol-stimulated lipolysis. The effect of oleate was concentration-dependent and was accompanied with increased intracellular cAMP content. Furthermore, the lipolytic response induced by isobutyl-methylxanthine, forskolin or dibutyryl cAMP was also increased in adipocytes treated with oleate. Thus, it appears that in addition to an increased cAMP accumulation, a step distal to cAMP production in the cells may be involved in inducing enhanced lipolysis in 3T3-L1 adipocytes by prolonged exposure to oleate.  相似文献   

14.
Peroxisome proliferator-activated receptor-α (PPARα) is a dietary lipid sensor, whose activation results in hypolipidemic effects. In this study, we investigated whether PPARα activation affects energy metabolism in white adipose tissue (WAT). Activation of PPARα by its agonist (bezafibrate) markedly reduced adiposity in KK mice fed a high-fat diet. In 3T3-L1 adipocytes, addition of GW7647, a highly specific PPARα agonist, during adipocyte differentiation enhanced glycerol-3-phosphate dehydrogenase activity, insulin-stimulated glucose uptake, and adipogenic gene expression. However, triglyceride accumulation was not increased by PPARα activation. PPARα activation induced expression of target genes involved in FA oxidation and stimulated FA oxidation. In WAT of KK mice treated with bezafibrate, both adipogenic and FA oxidation-related genes were significantly upregulated. These changes in mRNA expression were not observed in PPARα-deficient mice. Bezafibrate treatment enhanced FA oxidation in isolated adipocytes, suppressing adipocyte hypertrophy. Chromatin immunoprecipitation (ChIP) assay revealed that PPARα was recruited to promoter regions of both adipogenic and FA oxidation-related genes in the presence of GW7647 in 3T3-L1 adipocytes. These findings indicate that the activation of PPARα affects energy metabolism in adipocytes, and PPARα activation in WAT may contribute to the clinical effects of fibrate drugs.  相似文献   

15.
16.
BackgroundThe expressions of genes related to lipid metabolism are decreased in adipocytes with insulin resistance. In this study, we examined the effects of fatty acids on the reduced expressions and histone acetylation of lipid metabolism-related genes in 3T3-L1 adipocytes treated with insulin resistance induced by tumor necrosis factor (TNF)-α.MethodsShort-, medium-, and long-chain fatty acid were co-administered with TNF-α in 3T3-L1 adipocytes. Then, mRNA expressions and histone acetylation of genes involved in lipid metabolism were determined using mRNA microarrays, qRT-PCR, and chromatin immunoprecipitation assays.ResultsWe found in microarray and subsequent qRT-PCR analyses that the expression levels of several lipid metabolism-related genes, including Gpd1, Cidec, and Cyp4b1, were reduced by TNF-α treatment and restored by co-treatment with a short-chain fatty acid (C4: butyric acid) and medium-chain fatty acids (C8: caprylic acid and C10: capric acid). The pathway analysis of the microarray showed that capric acid enhanced mRNA levels of genes in the PPAR signaling pathway and adipogenesis genes in the TNF-α-treated adipocytes. Histone acetylation around Cidec and Gpd1 genes were also reduced by TNF-α treatment and recovered by co-administration with short- and medium-chain fatty acids.General significanceMedium- and short-chain fatty acids induce the expressions of Cidec and Gpd1, which are lipid metabolism-related genes in insulin-resistant adipocytes, by promoting histone acetylation around these genes.  相似文献   

17.
Fibroblast growth factor 21 (FGF21) is active in murine adipocytes and has beneficial metabolic effects in animal models of type 2 diabetes mellitus. We assessed whether FGF21 influences lipolysis in human adipocytes and 3T3-L1 cells. FGF21 had no short-time effect (h) while a 3-day incubation with FGF21 attenuated hormone-stimulated lipolysis. FGF21 did not influence the mRNA expression of genes involved in regulating lipolysis, but significantly reduced the expression of the lipid droplet-associated phosphoprotein perilipin without affecting differentiation. Via reduced release of fatty acids into the circulation, the anti-lipolytic effect could be a mechanism through which FGF21 promotes insulin sensitivity in man.  相似文献   

18.
In the current study, we tested a hypothesis that CD36 fatty acid (FA) transporter might affect insulin sensitivity by indirect effects on FA composition of adipose tissue. We examined the effects of CD36 downregulation by RNA interference in 3T3-L1 adipocytes on FA transport and composition and on sensitivity to insulin action. Transfected 3T3-L1 adipocytes, without detectable CD36 protein, showed reduced neutral lipid levels and significant differences in FA composition when levels of essential FA and their metabolites were lower or could not be detected including gamma linolenic (C18:3 n6), eicosadienic (C20:2 n6), dihomo-gamma linolenic (C20:3 n6), eicosapentaenoic (EPA) (C20:5 n3), docosapentaenoic (DPA) (C22:5 n3), and docosahexaenoic (DHA) (C22:6 n3) FA. Transfected 3T3-L1 adipocytes exhibited a significantly higher n6/n3 FA ratio, reduced 5-desaturase and higher 9-desaturase activities. These lipid profiles were associated with a significantly reduced insulin-stimulated glucose uptake (4.02+/-0.1 vs. 8.42+/-0.26 pmol.10(-3) cells, P=0.001). These findings provide evidence that CD36 regulates FA composition thereby affecting sensitivity to insulin action in 3T3-L1 adipocytes.  相似文献   

19.
Here, we show that Elovl3 (elongation of very long-chain fatty acids 3) was involved in the regulation of the progression of adipogenesis through activation of peroxisome proliferator-activated receptor (PPAR)γ in mouse adipocytic 3T3-L1 cells. The expression of the Elovl3 gene increased during adipogenesis, the expression pattern of which was similar to that of the PPARγ gene. Troglitazone, a PPARγ agonist, enhanced Elovl3 expression in adipocytes, as it did that of other PPARγ target genes. Promoter-reporter analysis demonstrated that three PPAR-responsive elements in the Elovl3 gene promoter had the potential to activate its expression in 3T3-L1 cells. Moreover, a chromatin immunoprecipitation assay revealed that PPARγ bound these PPAR-responsive elements of the Elovl3 promoter. When the Elovl3 mRNA level was suppressed by its siRNAs, the level of intracellular triglycerides was significantly decreased, and the expression levels of adipogenic, lipolytic, and lipogenic genes were also repressed. In a mammalian two-hybrid assay, C18:1 and C20:1 very long-chain fatty acids (VLCFAs), which are the products of Elovl3 and activated PPARγ function. In addition, these same VLCFAs could prevent the Elovl3 siRNA-mediated suppression of adipogenesis by enhancing the expression of adipogenic, lipolytic, and lipogenic genes in adipocytes. Moreover, this VLCFAs-mediated activation was repressed by a PPARγ antagonist. These results indicate that the expression of the Elovl3 gene was activated by PPARγ during adipogenesis. Elovl3-produced C18:1 and C20:1 VLCFAs acted as agonists of PPARγ in 3T3-L1 cells. Thus, the Elovl3-PPARγ cascade is a novel regulatory circuit for the regulation of adipogenesis through improvement of PPARγ function in adipocytes.  相似文献   

20.
We investigated the effects of the estrogen receptor-alpha (ERalpha) and -beta (ERbeta) in the regulation of leptin, resistin, and adiponectin expression in 3T3-L1 adipocytes. Mature adipocytes were exposed to estradiol (E2), ERalpha agonist (PPT (4,4',4'-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol)), ERbeta agonist (DPN (2,3-bis(4-Hydroxyphenyl)-propionitrile)), E2 with ERalpha antagonist (MPP (1,3-Bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride)), and E2 with ERbeta antagonist (R,R-THC ((R,R)-5,11-diethyl-5,6,11,12-tetrahydro-2,8-chrysenediol)) at different concentrations. To clarify the expression and regulation of adipokines by ER subtypes, total RNA was extracted from cells and measured using quantitative PCR. Western blot analysis was performed to evaluate the protein expression of adipokines, ERalpha, and ERbeta. The leptin expression was significantly increased in the cells treated with high concentrations (10(-5) and 10(-6) mol/l) of the PPT (P < 0.01, P < 0.05). By contrast, the leptin expression decreased in a dose-dependent manner in the MPP-treated groups (P < 0.05). High concentrations (10(-5) mol/l) of R,R-THC with E2 (10(-7) mol/l) caused a significant increase of the leptin expression (P < 0.01). The leptin mRNA levels were positively correlated with the ERalpha mRNA levels (r = 0.584, P < 0.01) and negatively correlated with the ERbeta mRNA levels (r = -0.236, P = 0.03) in the adipocytes. The ratio of the ERalpha to ERbeta mRNA levels in the adipocytes was significantly associated with leptin mRNA levels (r = 0.454, P < 0.01). ERalpha induced leptin expression and ERbeta inhibited its expression in 3T3-L1 adipocytes. The ratio of the ERalpha-to-ERbeta expression in 3T3-L1 adipocytes may be an important potential regulatory factor in leptin expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号