首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
We have used the bar gene in combination with the herbicide Basta to select transformed rice (Oryza sativa L. cv. Radon) protoplasts for the production of herbicide-resistant rice plants. Protoplasts, obtained from regenerable suspension cultures established from immature embryo callus, were transformed using PEG-mediated DNA uptake. Transformed calli could be selected 2–4 weeks after placing the protoplast-derived calli on medium containing the selective agent, phosphinothricin (PPT), the active component of Basta. Calli resistant to PPT were capable of regenerating plants. Phosphinothricin acetyltransferase (PAT) assays confirmed the expression of the bar gene in plants obtained from PPT-resistant calli. The only exceptions were two plants obtained from the same callus that had multiple copies of the bar gene integrated into their genomes. The transgenic status of the plants was varified by Southern blot analysis. In our system, where the transformation was done via the protoplast method, there were very few escapes. The efficiency of co-transformation with a reporter gene gusA, was 30%. The To plants of Radon were self-fertile. Both the bar and gusA genes were transmitted to progeny as confirmed by Southern analysis. Both genes were expressed in T1 and T2 progenies. Enzyme analyses on T1 progeny plants also showed a gene dose response reflecting their homozygous and heterozygous status. The leaves of To plants and that of the progeny having the bar gene were resistant to application of Basta. Thus, the bar gene has proven to be a useful selectable and screenable marker for the transformation of rice plants and for the production of herbicide-resistant plants.  相似文献   

2.
The phloem sap-sucking hemipteran insect, Aphis craccivora, commonly known as cowpea aphid, cause major yield loss of important food legume crop chickpea. Among different plant lectins Allium sativum leaf agglutinin (ASAL), a mannose binding lectin was found to be potent antifeedant for sap sucking insect A. craccivora. Present study describes expression of ASAL in chickpea through Agrobacterium-mediated transformation of “single cotyledon with half embryo” explant. ASAL was expressed under the control of CaMV35S promoter for constitutive expression and phloem specific rolC promoter for specifically targeting the toxin at feeding site, using pCAMBIA2301 vector containing plant selection marker nptII. Southern blot analysis demonstrated the integration and copy number of chimeric ASAL gene in chickpea and its inheritance in T1 and T2 progeny plants. Expression of ASAL in T0 and T1 plants was confirmed through northern and western blot analysis. The segregation pattern of ASAL transgene was observed in T1 progenies, which followed the 3:1 Mendelian ratio. Enzyme linked immunosorbant assay (ELISA) determined the level of ASAL expression in different transgenic lines in the range of 0.08–0.38% of total soluble protein. The phloem tissue specific expression of ASAL gene driven by rolC promoter has been monitored by immunolocalization analysis of mature stem sections. Survival and fecundity of A. craccivora decreased to 11–26% and 22–42%, respectively when in planta bioassay conducted on T1 plants compared to untransformed control plant which showed 85% survival. Thus, through unique approach of phloem specific expression of novel insecticidal lectin (ASAL), aphid resistance has been successfully achieved in chickpea. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
A silicon carbide whisker-mediated gene transfer system with recovery of fertile and stable transformants was developed for cotton (Gossypium hirsutum L.) cv. Coker-312. Two-month-old hypocotyl-derived embryogenic/non-embryogenic calli at different days after subculture were treated with silicon carbide whiskers for 2 min in order to deliver pGreen0029 encoding GUS gene and pRG229 AVP1 gene, encoding Arabidopsis vacuolar pyrophosphatase, having neomycin phosphotransferaseII (nptII) genes as plant-selectable markers. Three crucial transformation parameters, i.e., callus type, days after subculture and selection marker concentration for transformation of cotton calli were evaluated for optimum efficiency of cotton embryogenic callus transformation giving upto 94% transformation efficiency. Within six weeks, emergence of kanamycin-resistant (kmr) callus colonies was noted on selection medium. GUS and Southern blot analysis showed expression of intact and multiple transgene copies in the transformed tissues. Kanamycin wiping of leaves from T1, T2, and T3 progeny plants revealed that transgenes were inherited in a Mendelian fashion. Salt treatment of T1 AVP1 transgenic cotton plants showed significant enhancement in salt tolerance as compared to control plants. Thus far, this is first viable physical procedure after particle bombardment available for cotton that successfully can be used to generate fertile cotton transformants.  相似文献   

4.
Rice production is known to be severely affected by virus transmitting rice pests, brown planthopper (BPH) and green leafhopper (GLH) of the order hemiptera, feeding by phloem abstraction. ASAL, a novel lectin from leaves of garlic (Allium sativum) was previously demonstrated to be toxic towards hemipteran pests when administered in artificial diet as well as in ASAL expressing transgenic plants. In this report ASAL was targeted under the control of phloem-specific Agrobacterium rolC and rice sucrose synthase-1 (RSs1) promoters at the insect feeding site into popular rice cultivar, susceptible to hemipteran pests. PCR, Southern blot and C-PRINS analyses of transgenic plants have confirmed stable T-DNA integration and the transgenes were co-segregated among self-fertilized progenies. The T0 and T1 plants, harbouring single copy of intact T-DNA expression cassette, exhibit stable expression of ASAL in northern and western blot analyses. ELISA showed that the level of expressed ASAL was as high as 1.01% of total soluble protein. Immunohistofluorescence localization of ASAL depicted the expected expression patterns regulated by each promoter type. In-planta bioassay studies revealed that transgenic ASAL adversely affect survival, growth and population of BPH and GLH. GLH resistant T1 plants were further evaluated for the incidence of tungro disease, caused by co-infection of GLH vectored Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV), which appeared to be dramatically reduced. The result presented here is the first report of such GLH mediated resistance to infection by RTBV/RTSV in ASAL expressing transgenic rice plant.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

5.
The insecticidal activity of the leaf (ASAL) and bulb (ASAII) agglutinins from Allium sativum L. (garlic) against the cotton leafworm, Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae) was studied using transgenic tobacco plants expressing the lectins under the control of the constitutive CaMV35S promoter. PCR analysis confirmed that the garlic lectin genes were integrated into the plant genome. Western blots and semi-quantitative agglutination assays revealed lectin expression at various levels in the transgenic lines. Biochemical analyses indicated that the recombinant ASAL and ASAII are indistinguishable from the native garlic lectins. Insect bioassays using detached leaves from transgenic tobacco plants demonstrated that the ectopically expressed ASAL and ASAII significantly (P < 0.05) reduced the weight gain of 4th instar larvae of S. littoralis. Further on, the lectins retarded the development of the larvae and their metamorphosis, and were detrimental to the pupal stage resulting in weight reduction and lethal abnormalities. Total mortality was scored with ASAL compared to 60% mortality with ASAII. These findings suggest that garlic lectins are suitable candidate insect resistance proteins for the control of S. littoralis through a transgenic approach.  相似文献   

6.
Transgenic pearl millet lines expressing pin gene—exhibiting high resistance to downy mildew pathogen, Sclerospora graminicola—were produced using particle-inflow-gun (PIG) method. Shoot-tip-derived embryogenic calli were co-bombarded with plasmids containing pin and bar genes driven by CaMV 35S promoter. Bombarded calli were cultured on MS medium with phosphinothricin as a selection agent. Primary transformants 1T0, 2T0, and 3T0 showed the presence of both bar and pin coding sequences as evidenced by PCR and Southern blot analysis, respectively. T1 progenies of three primary transformants, when evaluated for downy mildew resistance, segregated into resistant and susceptible phenotypes. T1 plants resistant to downy mildew invariably exhibited tolerance to Basta suggesting co-segregation of pin and bar genes. Further, the downy mildew resistant 1T1 plants were found positive for pin gene in Southern and Northern analyses thereby confirming stable integration, expression, and transmission of pin gene. 1T2 progenies of 1T0 conformed to dihybrid segregation of 15 resistant:1 susceptible plants.  相似文献   

7.
8.
Transgenic rice (Oryza sativa) overexpressing Arabidopsis phytochrome A (phyA) was cultivated up to the T3 generation in paddy to elucidate the role of phyA in determining the plant architecture and the productivity of sunlight-grown rice plants. PhyA is light-labile and controls plant growth in response to the far-red light-dependent high-irradiance response as well as the very low fluence response. The Arabidopsis phyA gene linked to the rice rbcS promoter was transformed into embryogenic rice calli, and the calli were regenerated to whole plants. Compared to wild-type seedlings, the rbcS::PHYA transgenic seedlings contained more phyA when grown in the dark, and at least 10-fold more phyA when exposed to white light. When grown in paddy, the phyA transgenic plants in general exhibited reduced plant height (dwarfing), larger grain size, higher chlorophyll content, smaller tiller number, and low grain fertility compared to wild-type plants. The heading stage was not significantly changed. However, it is likely that a certain level of phyA is a prerequisite for induction of such changes. It is suggested that phyA overproduction in rice could be a useful tool to improve rice grain productivity by the larger grain size that increases grain yield and the dwarfing that tolerates lodging-associated damage.  相似文献   

9.
Overexpression of antifungal pathogenesis-related (PR) proteins in crop plants has the potential for enhancing resistance against fungal pathogens. Thaumatin-like proteins (TLPs) are one group (PR-5, permatins) of antifungal PR-proteins isolated from various plants. In the present study, a plasmid containing a cDNA of rice tlp (D34) under the control of the CaMV-35S promoter was introduced into tobacco plants through Agrobacterium-mediated transformation system. A considerable overproduction of TLP was observed in transformed tobacco plants by Western blot analysis. There was a large accumulation of tlp mRNA in transgenic plants as revealed by Northern blot analysis. Southern blot analysis of the DNA from transgenic tobacco plants confirmed the presence of the rice tlp gene in the genomic DNA of transgenic tobacco plants. Immunoblot analysis of intracellular and extracellular proteins of transgenic tobacco leaves using a Pinto bean TLP antibody demonstrated that the 23-kDa TLP was secreted into the extracellular matrix. T2 progeny of regenerated plants transformed with TLP gene were tested for their disease reaction to Alternaria alternata, the brown spot pathogen. Transgenic tobacco plants expressing TLP at high levels showed enhanced tolerance to necrotization caused by the pathogen. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
J. Wang  K. Zuo  W. Wu  J. Song  X. Sun  J. Lin  X. Li  K. Tang 《Biologia Plantarum》2004,48(4):509-515
Tobacco leaf discs were transformed with a plasmid pBIBnNHX1, containing the selectable marker neomycin phosphotransferase gene (nptII) and Na+/H+ vacuolar antiporter gene from Brassica napus (BnNHX1), via Agrobacterium tumefaciens-mediated transformation. Thirty-two independent transgenic plants were regenerated. Polymerase chain reaction (PCR) and Southern blot analyses confirmed that the BnNHX1 gene had integrated into plant genome and Northern blot analysis revealed the transgene expression at various levels in transgenic plants. Transgenic plants expressing BnNHX1 had enhanced salt tolerance and could grow and produce seeds normally in the presence of 200 mM NaCl. Analysis for the T1 progenies derived from seven independent transgenic primary transformants expressing BnNHX1 showed that the transgenes in most tested independent T1 lines were inherited at Mendelian 3:1 segregation ratios. Transgenic T1 progenies could express BnNHX1 and had salt tolerance at levels comparable to their T0 parental lines. This study implicates that the BnNHX1 gene represents a promising candidate in the development of crops for enhanced salt tolerance by genetic engineering.  相似文献   

11.
To develop a salt-tolerant upland rice cultivar (Oryza sativa L.), OsNHX1, a vacuolar-type Na+/H+ antiporter gene from rice was transferred into the genome of an upland rice cultivar (IRAT109), using an Agrobacterium-mediated method. Seven independent transgenic calli lines were identified by polymerase chain reaction (PCR) analysis. These 35S::OsNHX1 transgenic plants displayed a little accelerated growth during seedling stage but showed delayed flowering time and a slight growth retardation phenotype during late vegetative stage, suggesting that the OsNHX1 has a novel function in plant development. Northern and western blot analyses showed that the expression levels of OsNHX1 mRNA and protein in the leaves of three independent transgenic plant lines were significantly higher than in the leaves of wild type (WT) plants. T2 generation plants exhibited increased salt tolerance, showing delayed appearance and development of damage or death caused by salt stress, as well as improved recovery upon removal from this condition. Several physiological traits, such as increased Na+ content, and decreased osmotic potential in transgenic plants grown in high saline concentrations, further indicated that the transgenic plants had enhanced salt tolerance. Our results suggest the potential use of these transgenic plants for further agricultural applications in saline soil.  相似文献   

12.
Plasmid DNA (pChlCOD), containing the selectable hygromycin phosphotransferase hpt gene for hygromycin B resistance and the Arthrobacter globiformis codA gene for choline oxidase which catalyzes the direct conversion of choline to glycinebetaine, was delivered into rice plants using Agrobacterium-mediated gene transfer via scutellum-derived calli. Southern, Northern and Western blot analyses demonstrated that the foreign gene had been transferred, integrated into rice chromosomal DNA and expressed. Drought test indicated that glycinebetaine acts as an osmoprotectant and its production in transgenic rice plant helped the cells to maintain osmotic potential and increased root growth, and thus enhanced the ability of the plants to tolerate water deficit This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Agrobacterium tumefaciens-mediated genetic transformation and the regeneration of transgenic plants was achieved in Hevea brasiliensis. Immature anther-derived calli were used to develop transgenic plants. These calli were co-cultured with A. tumefaciens harboring a plasmid vector containing the H. brasiliensis superoxide dismutase gene (HbSOD) under the control of the CaMV 35S promoter. The -glucuronidase gene (uidA) was used for screening and the neomycin phosphotransferase gene (nptII) was used for selection of the transformed calli. Factors such as co-cultivation time, co-cultivation media and kanamycin concentration were assessed to establish optimal conditions for the selection of transformed callus lines. Transformed calli surviving on medium containing 300 mg l-1 kanamycin showed a strong GUS-positive reaction. Somatic embryos were then regenerated from these transgenic calli on MS2 medium containing 2.0 mg l-1 spermine and 0.1 mg l-1 abscisic acid. Mature embryos were germinated and developed into plantlets on MS4 medium supplemented with 0.2 mg l-1 gibberellic acid, 0.2 mg l-1 kinetin (KIN) and 0.1 mg l-1 indole-3-acetic acid. A transformation frequency of 4% was achieved. The morphology of the transgenic plants was similar to that of untransformed plants. Histochemical GUS assay revealed the expression of the uidA gene in embryos as well as leaves of transgenic plants. The presence of the uidA, nptII and HbSOD genes in the Hevea genome was confirmed by polymerase chain reaction amplification and genomic Southern blot hybridization analyses.Communicated by L. Peña  相似文献   

14.
Chang T  Chen L  Chen S  Cai H  Liu X  Xiao G  Zhu Z 《Transgenic research》2003,12(5):607-614
The effects of the hta gene encoding Helianthus tuberosus agglutinin (HTA) on an insect in the order Homoptera were investigated. Homologous cDNAs of hta-a, hta-b, hta-c and hta-d with CaMV35S as promoter were introduced into tobacco via Agrobacterium tumefaciens. Southern blot results showed that the exogenous hta gene was inserted into the genome of host plants, and northern blot analysis confirmed that hta was expressed in transgenic plants. A bioassay with peach-potato aphid (Myzus persicae) demonstrated that transgenic plants had deleterious effects on the insect. The average population of aphids fed on transgenic T0 plants during an 11-day assay decreased by 70%, compared controls. In transgenic plants of T1 generation, aphid fecundity inhibitions were 53.0%(hta-b) and 64.6% (hta-c), respectively. The development of aphids was notably retarded. We conclude that hta could be a novel and promising candidate for plant transgenic engineering against homopteran insect pests.  相似文献   

15.
Müller  Alexander  Iser  Markus  Hess  Dieter 《Transgenic research》2001,10(5):435-444
Stable transformation of sunflower was achieved using a non-meristematic hypocotyl explant regeneration protocol of public inbred HA300B. Uniformly transformed shoots were obtained after co-cultivation with Agrobacterium tumefaciens carrying a gfp (green fluorescent protein) gene containing an intron that blocks expression of gfp in Agrobacterium. Easily detectable, bright green fluorescence of transformed tissues was used to establish an optimal regeneration and transformation procedure. By Southern blot analysis, integration of the gfp and nptII genes was confirmed. Stable transformation efficiency was 0.1%. From 68 T1 plants analyzed, 17 showed transmission of transgene DNA and 15 of them contained the intact gfp gene. Expression of gfp was detected in 10 T1 plants carrying the intact gfp gene using a fluorimetric assay or western blot analysis. Expression of the nptII gene was confirmed in 13 T1 plants. The transformation system enables the rapid transfer of agronomically important genes.  相似文献   

16.
Inheritance of gusA and neo genes in transgenic rice   总被引:21,自引:0,他引:21  
Inheritance of foreign genes neo and gusA in rice (Oryza sativa L. cv. IR54 and Radon) has been investigated in three different primary (T0) transformants and their progeny plants. T0 plants were obtained by co-transforming protoplasts from two different rice suspension cultures with the neomycin phosphotransferase II gene [neo or aph (3) II] and the -glucuronidase gene (uidA or gusA) residing on separate chimeric plasmid constructs. The suspension cultures were derived from callus of immature embryos of indica variety IR54 and japonica variety Radon. One transgenic line of Radon (AR2) contained neo driven by the CaMV 35S promoter and gusA driven by the rice actin promoter. A second Radon line (R3) contained neo driven by the CaMV 35S promoter and gusA driven by a promoter of the rice tungro bacilliform virus. The third transgenic line, IR54-1, contained neo driven by the CaMV 35S promoter and gusA driven by the CaMV 35S.Inheritance of the transgenes in progeny of the transgenic rice was investigated by Southern blot analysis and enzyme assays. Southern blot analysis of genomic DNA showed that, regardless of copy numbers of the transgenes in the plant genome and the fact that the two transgenes resided on two different plasmids before transformation, the introduced gusA and neo genes were stably transmitted from one generation to another and co-inherited together in transgenic rice progeny plants derived from self-pollination. Analysis of GUS and NPT II activities in T1 to T2 plants provided evidence that inheritance of the gusA and neo genes was in a Mendelian fashion in one plant line (AR2), and in an irregular fashion in the two other plant lines (R3 and IR54-1). Homozygous progeny plants expressing the gusA and neo genes were obtained in the T2 generation of AR2, but the homozygous state was not found in the other two lines of transgenic rice.  相似文献   

17.
We compared rice transgenic plants obtained by Agrobacterium-mediated and particle bombardment transformation by carrying out molecular analyses of the T0, T1 and T2 transgenic plants. Oryza sativa japonica rice (c.v. Taipei 309) was transformed with a construct (pWNHG) that carried genes coding for neomycin phosphotransferase (nptII), hygromycin phosphotransferase (Hygr), and -glucuronidase (GUS). Thirteen and fourteen transgenic lines produced via either method were selected and subjected to molecular analysis. Based on our data, we could draw the following conclusions. Average gene copy numbers of the three transgenes were 1.8 and 2.7 for transgenic plants obtained by Agrobacterium and by particle bombardment, respectively. The percentage of transgenic plants containing intact copies of foreign genes, especially non-selection genes, was higher for Agrobacterium-mediated transformation. GUS gene expression level in transgenic plants obtained from Agrobacterium-mediated transformation was more stable overall the transgenic plant lines obtained by particle bombardment. Most of the transgenic plants obtained from the two transformation systems gave a Mendelian segregation pattern of foreign genes in T1 and T2 generations. Co-segregation was observed for lines obtained from particle bombardment, however, that was not always the case for T1 lines obtained from Agrobacterium-mediated transformation. Fertility of transgenic plants obtained from Agrobacterium-mediated transformation was better. In summary, the Agrobacterium-mediated transformation is a good system to obtain transgenic plants with lower copy number, intact foreign gene and stable gene expression, while particle bombardment is a high efficiency system to produce large number of transgenic plants with a wide range of gene expression.  相似文献   

18.
Salinity stress is a major limiting factor in cereal productivity. Many studies report improvements in salt tolerance using model plants, such as Arabidopsis thaliana or standard varieties of rice, e.g., the japonica rice cultivar Nipponbare. However, there are few reports on the enhancement of salt tolerance in local rice cultivars. In this work, we used the indica rice (Oryza sativa) cultivar BR5, which is a local cultivar in Bangladesh. To improve salt tolerance in BR5, we introduced the Escherichia coli catalase gene, katE. We integrated the katE gene into BR5 plants using an Agrobacterium tumefaciens-mediated method. The introduced katE gene was actively expressed in the transgenic BR5 rice plants, and catalase activity in T1 and T2 transgenic rice was approximately 150% higher than in nontransgenic plants. Under NaCl stress conditions, the transgenic rice plants exhibited high tolerance compared with nontransgenic rice plants. T2 transgenic plants survived in a 200 mM NaCl solution for 2 weeks, whereas nontransgenic plants were scorched after 4 days soaking in the same NaCl solution. Our results indicate that the katE gene can confer salt tolerance to BR5 rice plants. Enhancement of salt tolerance in a local rice cultivar, such as BR5, will provide a powerful and useful tool for overcoming food shortage problems.  相似文献   

19.
Transgenic sorghum plants expressing a synthetic cry1Ac gene from Bacillus thuringiensis (Bt) under the control of a wound-inducible promoter from the maize protease inhibitor gene (mpiC1) were produced via particle bombardment of shoot apices. Plants were regenerated from the transformed shoot apices via direct somatic embryogenesis with an intermittent three-step selection strategy using the herbicide Basta. Molecular characterisation based on polymerase chain reaction and Southern blot analysis revealed multiple insertions of the cry1Ac gene in five plants from three independent transformation events. Inheritance and expression of the Bt gene was confirmed in T1 plants. Enzyme-linked immunosorbant assay indicated that Cry1Ac protein accumulated at levels of 1–8 ng per gram of fresh tissue in leaves that were mechanically wounded. Transgenic sorghum plants were evaluated for resistance against the spotted stem borer (Chilo partellus Swinhoe) in insect bioassays, which indicated partial resistance to damage by the neonate larvae of the spotted stem borer. Reduction in leaf damage 5 days after infestation was up to 60%; larval mortality was 40%, with the surviving larvae showing a 36% reduction in weight over those fed on control plants. Despite the low levels of expression of Bt -endotoxin under the control of the wound-inducible promoter, the transgenic plants showed partial tolerance against first instar larvae of the spotted stem borer.  相似文献   

20.
Four different pearl millet breeding lines were transformed and led to the regeneration of fertile transgenic plants. Scutellar tissue was bombarded with two plasmids containing the bar selectable marker and the -glucuronidase reporter gene (gus or uidA) under control of the constitutive CaMV 35S promoter or the maize Ubiquitin1 promoter (the CaMV 35S is not a maize promoter). For the delivery of the DNA-coated microprojectiles, either the particle gun PDS 1000/He or the particle inflow gun was used. The calli and regenerants were selected for their resistance to the herbicide Basta (glufosinate ammonium) mediated by the bar gene. Putative transformants were screened for enzyme activity by painting selected leaves or spraying whole plants with an aqueous solution of the herbicide Basta and by the histochemical GUS assay using cut leaf segments. PCR and Southern blot analysis of genomic DNA indicated the presence of introduced foreign genes in the genomic DNA of the transformants. Five regenerated plants represent independent transformation events and have been grown to maturity and set seed. The integration of the bar selectable and the gus reporter gene was confirmed by genomic Southern blot analysis in all five plants. All five plants had multiple integrations of both marker genes. To date, the T1 progeny of three out of four lines generated by the PDS particle gun shows co-segregating marker genes, indicating an integration of the bar and the gus gene at the same locus in the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号