首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
White pine blister rust is caused by the fungal pathogen Cronartium ribicola J.C. Fisch (Basidiomycota, Pucciniales). This invasive alien pathogen was introduced into North America at the beginning of the 20th century on pine seedlings imported from Europe and has caused serious economic and ecological impacts. In this study, we applied a population and landscape genetics approach to understand the patterns of introduction and colonization as well as population structure and migration of C. ribicola. We characterized 1,292 samples of C. ribicola from 66 geographic locations in North America using single nucleotide polymorphisms (SNPs) and evaluated the effect of landscape features, host distribution, and colonization history on the structure of these pathogen populations. We identified eastern and western genetic populations in North America that are strongly differentiated. Genetic diversity is two to five times higher in eastern populations than in western ones, which can be explained by the repeated accidental introductions of the pathogen into northeastern North America compared with a single documented introduction into western North America. These distinct genetic populations are maintained by a barrier to gene flow that corresponds to a region where host connectivity is interrupted. Furthermore, additional cryptic spatial differentiation was identified in western populations. This differentiation corresponds to landscape features, such as mountain ranges, and also to host connectivity. We also detected genetic differentiation between the pathogen populations in natural stands and plantations, an indication that anthropogenic movement of this pathogen still takes place. These results highlight the importance of monitoring this invasive alien tree pathogen to prevent admixture of eastern and western populations where different pathogen races occur.  相似文献   

2.
Mediterranean Sea common dolphins have recently been listed as ‘endangered’ in the IUCN Red list, due to their reported decline since the middle of the 20th century. However, little is know about the number or distribution of populations in this region. We analysed 118 samples from the Black Sea, Mediterranean Sea and eastern North Atlantic at nine microsatellite nuclear loci and for 428 bps of the mtDNA control region. We found small but significant population differentiation across the basin between the eastern and the western Mediterranean populations at both nuclear and mtDNA markers (microsatellite F ST = 0.052, mtDNA F ST = 0.107, P values ≤ 0.001). This matched the differential distribution and habitat use patterns exhibited by this species in the eastern and the western parts of the Mediterranean Sea. The assignment test of a small number of samples from the central Mediterranean could not exclude further population structure in the central area of the basin. No significant genetic differentiation at either marker was observed among the eastern north Atlantic populations, though the Alboran population (inhabiting the Mediterranean waters immediately adjacent the Atlantic ocean) showed significant mtDNA genetic differentiation compared to the Atlantic populations. Directional estimates of gene flow suggested movement of females out of the Mediterranean, which may be relevant to the population decline. Phylogenetic analysis suggested that the observed population structure evolved recently.  相似文献   

3.
A phylogeographic analysis of mitochondrial DNA variation was performed in order to test the hypothesis that north-eastern North America has been postglacially recolonized by two races of rainbow smelt Osmerus mordax . This was accomplished by documenting the geographical distribution of two major mtDNA phylogenetic clades among 1290 smelt from 49 lacustrine and anadromous populations covering most of the species' native range. The data set was built by combining previously published results with those generated in this study. The two mtDNA clades showed a geographical dichotomy, independent of life-history types, whereby the more eastern populations were either fixed or largely dominated by one clade and western populations for the other. Such geographical pattern implying a phylogenetic discontinuity provided strong evidence for the persistence of smelt in two distinct glacial refugia as well as their differential postglacial dispersal. The most likely refugium for the so-called Atlantic race was the Atlantic coastal plains, whereas that of the so-called Acadian race was the exundated Grand Banks area. Patterns of postglacial dispersal interpreted from palaeogeographic events suggested that the Atlantic race recolonized northern regions about 5000 years prior the Acadian race. Both races came into contact in the St Lawrence River estuary. While gene flow has been possible, the sympatric occurrence in the estuary of anadromous populations alternatively dominated by one mtDNA clade or the other indicated that reproductive isolation mechanisms between the two races developed within this contact zone. This represents the first evidence of secondary intergradation among distinct races of aquatic organisms in an estuarine environment.  相似文献   

4.
Genetic analyses for many widespread North American species have revealed significant east-west differentiation, indicating that many survived through the Pleistocene in 2 glacial refugia-1 in the eastern and 1 in the western part of the continent. It remains unclear, however, whether other areas may have served as important glacial refugia. Moreover, many such species exhibit widespread genetic similarity within eastern and western regions because of recent expansion from small refugial populations, making it difficult to evaluate current-day levels of gene flow. In this study, we used mitochondrial DNA (mtDNA) control region sequence and amplified fragment length polymorphism markers to survey genetic variation in a widespread migratory bird, the American redstart (Setophaga ruticilla). mtDNA analyses revealed a pattern that contrasts with that found for most other widespread species studied to date: most redstart populations across North America appear to have spread out from a single glacial refugium, possibly located in the southeastern United States, whereas populations in far-eastern Canada may have survived in a second glacial refugium located on the now-submerged Atlantic coastal shelf off the coast of Newfoundland. A pattern of isolation by distance in mtDNA suggested some constraints on current-day gene flow among extant redstart populations. This study thus reveals a recent evolutionary history for this species that differs from that of most other widespread North American passerines and provides evidence for limited gene flow in a species with potentially large dispersal distances.  相似文献   

5.
Peña, C., Nylin, S., Freitas, A. V. L. & Wahlberg, N. (2010). Biogeographic history of the butterfly subtribe Euptychiina (Lepidoptera, Nymphalidae, Satyrinae).—Zoologica Scripta, 39, 243–258. The diverse butterfly subtribe Euptychiina was thought to be restricted to the Americas. However, there is mounting evidence for the Oriental Palaeonympha opalina being part of Euptychiina and thus a disjunct distribution between it (in eastern Asia) and its sister taxon (in eastern North America). Such a disjunct distribution in both eastern Asia and eastern North America has never been reported for any butterfly taxon. We used 4447 bp of DNA sequences from one mitochondrial gene and four nuclear genes for 102 Euptychiina taxa to obtain a phylogenetic hypothesis of the subtribe, estimate dates of origin and diversification for major clades and perform a biogeographic analysis. Euptychiina originated 31 Ma in South America. Early Euptychiina dispersed from North to South America via the temporary connection known as GAARlandia during Eocene–Oligocene times. The current disjunct distribution of the Oriental Palaeonympha opalina is the result of a northbound dispersal of a lineage from South America into eastern Asia via North America. The common ancestor of Palaeonympha and its sister taxon Megisto inhabited the continuous forest belt across North Asia and North America, which was connected by Beringia. The closure of this connection caused the split between Palaeonympha and Megisto around 13 Ma and the severe extinctions in western North America because of the climatic changes of the Late Miocene (from 13.5 Ma onwards) resulted in the classic ‘eastern Asia and eastern North America’ disjunct distribution.  相似文献   

6.
An important criterion for understanding speciation is the geographic context of population divergence. Three major modes of allopatric, parapatric, and sympatric speciation define the extent of spatial overlap and gene flow between diverging populations. However, mixed modes of speciation are also possible, whereby populations experience periods of allopatry, parapatry, and/or sympatry at different times as they diverge. Here, we report clinal patterns of variation for 21 nuclear‐encoded microsatellites and a wing spot phenotype for cherry‐infesting Rhagoletis (Diptera: Tephritidae) across North America consistent with these flies having initially diverged in parapatry followed by a period of allopatric differentiation in the early Holocene. However, mitochondrial DNA (mtDNA) displays a different pattern; cherry flies at the ends of the clines in the eastern USA and Pacific Northwest share identical haplotypes, while centrally located populations in the southwestern USA and Mexico possess a different haplotype. We hypothesize that the mitochondrial difference could be due to lineage sorting but more likely reflects a selective sweep of a favorable mtDNA variant or the spread of an endosymbiont. The estimated divergence time for mtDNA suggests possible past allopatry, secondary contact, and subsequent isolation between USA and Mexican fly populations initiated before the Wisconsin glaciation. Thus, the current genetics of cherry flies may involve different mixed modes of divergence occurring in different portions of the fly''s range. We discuss the need for additional DNA sequencing and quantification of prezygotic and postzygotic reproductive isolation to verify the multiple mixed‐mode hypothesis for cherry flies and draw parallels from other systems to assess the generality that speciation may commonly involve complex biogeographies of varying combinations of allopatric, parapatric, and sympatric divergence.  相似文献   

7.
The genetic population structure of the small cyprinid Hemigrammocypris rasborella, distributed widely in lowlands of western Japan, was examined using partial sequence data of mitochondrial DNA (mtDNA). Molecular phylogenetic analysis revealed that the populations of the western Kyushu region were markedly differentiated from all eastern populations, such that the groups would be comparable to different species; their divergence was inferred to have occurred in the Late Miocene–Pliocene. Also, a largely divergent mtDNA group (with divergence in the early Pleistocene) was found in the Sanyo and northeastern Shikoku regions, forming a secondary contact zone in the western Kinki with the eastern mtDNA group. To date, these aspects of the population structure of H. rasborella appear to be unique among lowland fishes in western Japan. Deeper understanding of the formation processes of freshwater faunas in western Japan will require further comparisons of the phylogeographic patterns and ecological traits of constituent species.  相似文献   

8.
Gene flow, in combination with selection and drift, determines levels of differentiation among local populations. In this study we estimate gene flow in a stream dwelling, flightless waterstrider, Aquarius remigis. Twenty-eight Aquarius remigis populations from Quebec, Ontario, New Brunswick, Iowa, North Carolina, and California were genetically characterized at 15 loci using starch gel electrophoresis. Sampling over two years was designed for a hierarchical analysis of population structure incorporating variation among sites within streams, streams within watersheds, watersheds within regions, and regions within North America. Hierarchical F statistics indicated that only sites within streams maintained enough gene flow to prevent differentiation through drift (Nm = 27.5). Above the level of sites within streams gene flow is highly restricted (Nm ≤ 0.5) and no correlation is found between genetic and geographic distances. This agrees well with direct estimates of gene flow based on mark and recapture data, yielding an Ne of approximately 170 individuals. Previous assignment of subspecific status to Californian A. remigis is not supported by genetic distances between those populations and other populations in North America. Previous suggestion of specific status for south-eastern A. remigis is supported by genetic distances between North Carolina populations and other populations in North America, and a high proportion of region specific alleles in the North Carolina populations. However, because of the high degree of morphological and genetic variability throughout the range of this species, the assignment of specific or subspecific status to parts of the range may be premature.  相似文献   

9.
There has been considerable discussion on the origin of the red wolf and eastern wolf and their evolution independent of the gray wolf. We analyzed mitochondrial DNA (mtDNA) and a Y‐chromosome intron sequence in combination with Y‐chromosome microsatellites from wolves and coyotes within the range of extensive wolf–coyote hybridization, that is, eastern North America. The detection of divergent Y‐chromosome haplotypes in the historic range of the eastern wolf is concordant with earlier mtDNA findings, and the absence of these haplotypes in western coyotes supports the existence of the North American evolved eastern wolf (Canis lycaon). Having haplotypes observed exclusively in eastern North America as a result of insufficient sampling in the historic range of the coyote or that these lineages subsequently went extinct in western geographies is unlikely given that eastern‐specific mtDNA and Y‐chromosome haplotypes represent lineages divergent from those observed in extant western coyotes. By combining Y‐chromosome and mtDNA distributional patterns, we identified hybrid genomes of eastern wolf, coyote, gray wolf, and potentially dog origin in Canis populations of central and eastern North America. The natural contemporary eastern Canis populations represent an important example of widespread introgression resulting in hybrid genomes across the original C. lycaon range that appears to be facilitated by the eastern wolf acting as a conduit for hybridization. Applying conventional taxonomic nomenclature and species‐based conservation initiatives, particularly in human‐modified landscapes, may be counterproductive to the effective management of these hybrids and fails to consider their evolutionary potential.  相似文献   

10.
Changes in symbiont assemblages can affect the success and impact of invasive species, and may provide knowledge regarding the invasion histories of their vectors. Bark beetle symbioses are ideal systems to study changes in symbiont assemblages resulting from invasions. The red turpentine beetle (Dendroctonus valens) is a bark beetle species that recently invaded China from its native range in North America. It is associated with ophiostomatalean fungi in both locations, although the fungi have previously been well-surveyed only in China. We surveyed the ophiostomatalean fungi associated with D. valens in eastern and western North America, and identified the fungal species using multi-gene phylogenies. From the 307 collected isolates (147 in eastern North America and 160 in western North America), we identified 20 species: 11 in eastern North America and 13 in western North America. Four species were shared between eastern North America and western North America, one species (Ophiostoma floccosum) was shared between western North America and China, and three species (Grosmannia koreana, Leptographium procerum, and Ophiostoma abietinum) were shared between eastern North America and China. Ophiostoma floccosum and O. abietinum have worldwide distributions, and were rarely isolated from D. valens. However, G. koreana and L. procerum are primarily limited to Asia and North America respectively. Leptographium procerum, which is thought to be native to North America, represented >45% of the symbionts of D. valens in eastern North America and China, suggesting D. valens may have been introduced to China from eastern North America. These results are surprising, as previous population genetics studies on D. valens based on the cytochrome oxidase I gene have suggested that the insect was introduced into China from western North America.  相似文献   

11.
Ips pini bark beetles use myrcene hydroxylases to produce the aggregation pheromone component, ipsdienol, from myrcene. The enantiomeric ratio of pheromonal ipsdienol is an important prezygotic mating isolation mechanism of I. pini and differs among geographically distinct populations. We explored the substrate and product ranges of myrcene hydroxylases (CYP9T2 and CYP9T3) from reproductively-isolated western and eastern I. pini. The two cytochromes P450 share 94% amino acid identity. CYP9T2 mRNA levels were not induced in adults exposed to myrcene-saturated atmosphere. Functional assays of recombinant enzymes showed both hydroxylated myrcene, (+)- and (?)-α-pinene, 3-carene, and R-(+)-limonene, but not α-phellandrene, (?)-β-pinene, γ-terpinene, or terpinolene, with evidence that CYP9T2 strongly preferred myrcene over other substrates. They differed in the enantiomeric ratios of ipsdienol produced from myrcene, and in the products resulting from different α-pinene enantiomers. These data provide new information regarding bark beetle pheromone evolution and factors affecting cytochrome P450 structure–function relationships.  相似文献   

12.
Dispersal triggers gene flow, which in turn strongly affects the ensuing genetic population structure of a species. Using nuclear microsatellite loci and mitochondrial DNA (mtDNA), we estimated the genetic population structure of the wasp Polistes olivaceus throughout Bangladesh. The level of population differentiation using nuclear markers (F ST) appeared to be much lower than that estimated using mtDNA haplotype sequences (ФST), even after correcting for effective population size differences between the two markers. These results suggest a philopatric tendency, in which gynes disperse less than males. We observed no isolation by distance among the study populations at either the nuclear or mtDNA level, suggesting nonequilibrium between gene flow and drift as a result of very frequent interpopulation movement. For the nuclear markers, an individual assignment test showed no genetically and geographically distinct groups. Instead, phylogenetic analyses as well as a minimum spanning network using mtDNA haplotypes consistently revealed two distinct lineages. The distribution of haplotypes indicated western populations with a single lineage and offered clear evidence for restricted gene flow across the Jamuna–Padma–Upper Meghna river system. Mismatch distributions exhibited a unimodal distribution, which along with a starlike haplotype network, suggested a population expansion in lineage I but not in lineage II. Overall, these results suggest that gene flow among populations of P. olivaceus was affected by both female philopatry and a major river system across Bangladesh.  相似文献   

13.
Although tomato psyllid, Bactericera cockerelli (Sulc) (Homoptera, Psyllidae), annually causes significant losses in potato and tomato crops in eastern Mexico and the central United States, infestations in western North America have been historically rare. However, substantial populations appeared in 2001 in western North America and caused losses in tomato production exceeding 80%; losses in 2004 reached 50%. To determine if these new outbreaks were the result of a simple range expansion or the evolution of a new B. cockerelli biotype, inter simple sequence repeat (ISSR) markers, as well as mitochondrial gene cytochrome oxidase I (COI), internal transcribed spacer 2 (ITS2), and wsp sequence data were used to characterize populations of the psyllid. Western populations from Baja, Mexico, Orange County, and Ventura County were compared with populations from central USA (Colorado and Nebraska) and eastern Mexico (Coahuila). Based on ISSR markers, the psyllid populations clustered into two groups, with one group including populations from western North America and the other group including populations from central USA and eastern Mexico. For COI comparisons, there was one base‐pair difference found in the 544 bp‐long COI fragments, but the populations again segregated along the same geographic lines. Two strains of Wolbachia were identified, the maximal differences between wsp clones from all populations was 5 bp for strain Bac1 and 23 bp for strain Bac2 out of a 555‐bp fragment. The ISSR data, therefore, were consistent in indicating the development of a new psyllid biotype that has adapted to western North America rather than a simple range expansion, but the other genetic data sets were less conclusive.  相似文献   

14.
Bombus bifarius is a widespread bumble bee that occurs in montane regions of western North America. This species has several major color pattern polymorphisms and shows evidence of genetic structuring among regional populations, and the taxonomic status of regional populations has repeatedly been debated. We test whether observed structure is evidence for discrete gene flow barriers that might indicate isolation or instead reflects clinal variation associated with spatially limited dispersal in a complex landscape. We first consider color pattern variation and identify geographical patterns of B. bifarius color variation using cluster analysis. We then use climate data and a comprehensive set of B. bifarius natural history records with an existing genetic data set to model the distribution of environmentally suitable habitat in western North America and predict pathways of potential gene flow using circuit theory. Resistance distances among populations that incorporate environmental suitability information predict patterns of genetic structure much better than geographic distance or Bayesian clustering alone. Results suggest that there may not be barriers to gene flow warranting further taxonomic considerations, but rather that the arrangement of suitable habitat at broad scales limits dispersal sufficiently to explain observed levels of population differentiation in B. bifarius.  相似文献   

15.
Agastache sect. Agastache consists of seven species in North America and one disjunct in eastern Asia. Starch-gel electrophoresis of enzymatic proteins was employed to assess genetic relationships among these species and to estimate the amount of genetic divergence between the North American and Asian populations. Species of the western United States appear to be better adapted for outcrossing than are the others and are much more genetically variable, with higher levels of heterozygosity per individual, more alleles per species, and higher percentages of polymorphic loci per population. Nonmetric multidimensional scaling of Nei's genetic distances among 32 populations partitioned the section into four discrete groups: 1) A. nepetoides (eastern North America), 2) A. scrophulariifolia and A. foeniculum (eastern and central North America), 3) the four species of the western United States (A. urticifolia, A. occidentalis, A. parvifolia and A. cusickii) and 4) A. rugosa (eastern Asia). Asian Agastache, separated from its American congeners for over twelve million years, differed from American populations at two of fifteen loci surveyed. Nei's genetic distances between Asian and North American populations ranged from 0.2877 to 0.6734.  相似文献   

16.
Mitochondrial DNA lineage frequencies in prehistoric Aleut, eastern Utah Fremont, Southwestern Anasazi, Pyramid Lake, and Stillwater Marsh skeletal samples from northwest Nevada and the Oneota of western Illinois are compared with those in 41 contemporary aboriginal populations of North America. The ancient samples range in age from 300 years to over 6,000 years. The results indicate that the prehistoric inhabitants of North America exhibit the same level of mtDNA variability as contemporary populations of the continent. Variation in modern mtDNA haplogroup frequencies is highly geographically structured, and the prehistoric samples exhibit the same geographic pattern of variation. This indicates that differentiation of regional patterns of mtDNA lineage variation occurred early in North American prehistory (much more than 2,000 years B.P.), has remained relatively stable since its origin, and was little influenced by the disruptions hypothesized for other genetic systems as a result of population declines and relocations at contact.  相似文献   

17.
To illustrate phylogeography of red deer (Cervus elaphus) populations of Xinjiang, we determined their mitochondrial DNA (mtDNA) control region sequences, and then investigated geographic variations and phylogenetic relationships between Xinjiang populations and other populations from Asia, Europe, and North America. The C. elaphus mtDNA control region shared different copy numbers of tandem repeats of 38 to 43-bp motifs which clearly distinguished the Western lineage from the Eastern lineage of this species in Eurasia. The western lineage comprised the Tarim populations from southern Xinjiang and the European populations, all of which had four copies of the motifs. By contrast, the Eastern lineage consisted of populations from northern Xinjiang (Tianshan and Altai Mountains), other Asian areas (Alashan, Gansu, Tibet, Mongolia, and northeastern China), and North America, all of which shared six copies of the motifs. MtDNA phylogenetic trees showed that there are two major clusters of haplotypes which referred to the Western and Eastern lineages, and that subgroupings of haplotypes in each cluster were congruent with their geographic distributions. The present study revealed that a boundary separating the Western lineage from the Eastern lineage occurs between Tarim Basin and Tianshan Mountains in Xinjiang. Meanwhile, North American populations were genetically closer to those of northern Xinjiang, northeastern China, and Mongolia, supporting that C. elaphus immigrated from northeastern Eurasia to North America through the glacier-induced land-bridge (Beringia) which had formed between the two continents after Late Pleistocene.  相似文献   

18.
Gracilaria vermiculophylla (Ohmi) Papenf., an agar‐producing red alga introduced from northeast Asia to Europe and North America, is often highly abundant in invaded areas. To assay its genetic diversity and identify the putative source of invasive populations, we analyzed the mitochondrial cytochrome c oxidase subunit I (cox1) gene from 312 individuals of G. vermiculophylla collected in 37 native and 32 introduced locations. A total of 19 haplotypes were detected: 17 in northeast Asia and three in Europe and eastern and western North America, with only one shared among all regions. The shared haplotype was present in all introduced populations and in ~99% of individuals in the introduced areas. This haplotype was also found at three native locations in east Korea, west Japan, and eastern Russia. Both haplotype and nucleotide diversities were extremely low in Europe and North America compared to northeast Asia. Our study indicates that the East Sea/Sea of Japan is a likely donor region of the invasive populations of G. vermiculophylla in the east and west Atlantic and the east Pacific.  相似文献   

19.
Abstract The plethodontid salamander Desmognathus orestes, a member of the D. ochrophaeus species complex, is distributed in southwestern Virginia, eastern Tennessee, and western North Carolina. Previous allozyme analyses indicate that D. orestes consists of two distinct groups of populations (D. orestes‘B’ and D. orestes‘C’) with extensive intergradation and probable gene flow between these two groups. Spatially varying allele frequencies can reflect historical associations, current gene flow, or a combination of population‐level processes. To differentiate among these processes, we use multiple markers to further characterize divergence among populations of D. orestes and assess the degree of intergradation between D. orestes‘B’ and D. orestes‘C’, specifically investigating variation in allozymes, mitochondrial DNA (mtDNA), and reproductive behavior among populations. On a broad scale, the mtDNA genealogies reconstruct haplotype clades that correspond to the species identified from previous allozyme analyses. However, at a finer geographic scale, the distributions of the allozyme and mtDNA markers for D. orestes‘B’ and D. orestes‘C’ are discordant. MtDNA haplotypes corresponding to D. orestes‘B’ are more broadly distributed across western North Carolina than predicted by allozyme data, and the region of intergradation with D. orestes‘C’ indicates asymmetric gene flow of these markers. Asymmetric mating may contribute to observed discordance in nuclear versus cytoplasmic markers. Results support describing D. orestes as a single species and emphasize the importance of using multiple markers to examine fine‐scale patterns and elucidate evolutionary processes affecting gene flow when making species‐level taxonomic decisions.  相似文献   

20.
Mauremys leprosa, distributed in Iberia and North‐west Africa, contains two major clades of mtDNA haplotypes. Clade A occurs in Portugal, Spain and Morocco north of the Atlas Mountains. Clade B occurs south of the Atlas Mountains in Morocco and north of the Atlas Mountains in eastern Algeria and Tunisia. However, we recorded a single individual containing a clade B haplotype in Morocco from north of the Atlas Mountains. This could indicate gene flow between both clades. The phylogenetically most distinct clade A haplotypes are confined to Morocco, suggesting both clades originated in North Africa. Extensive diversity within clade A in south‐western Iberia argues for a glacial refuge located there. Other regions of the Iberian Peninsula, displaying distinctly lower haplotype diversities, were recolonized from within south‐western Iberia. Most populations in Portugal, Spain and northern Morocco contain the most common clade A haplotype, indicating dispersal from the south‐western Iberian refuge, gene flow across the Strait of Gibraltar, and reinvasion of Morocco by terrapins originating in south‐western Iberia. This hypothesis is consistent with demographic analyses, suggesting rapid clade A population increase while clade B is represented by stationary, fragmented populations. We recommend the eight, morphologically weakly diagnosable, subspecies of M. leprosa be reduced to two, reflecting major mtDNA clades: Mauremys l. leprosa (Iberian Peninsula and northern Morocco) and M. l. saharica (southern Morocco, eastern Algeria and Tunisia). Peripheral populations could play an important role in evolution of M. leprosa because we found endemic haplotypes in populations along the northern and southern range borders. Previous investigations in another western Palearctic freshwater turtle (Emys orbicularis) discovered similar differentiation of peripheral populations, and phylogeographies of Emys orbicularis and Mauremys rivulata underline the barrier status of mountain chains, in contrast to sea straits, suggesting common patterns for western Palearctic freshwater turtles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号