首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The entire amino acid sequence for Pseudomonas aeruginosa PAO pilin was determined through peptide sequencing and from the complete nucleotide sequence encoding the pilin gene. The precursor PAO pilin is 149 amino acids in length which includes a 6-amino-acid positively charged leader sequence. Comparison of the amino acid sequences of pilin produced by P. aeruginosa PAO and PAK reveals a region of high homology corresponding to the leader peptide and residues 1 to 54 of the mature pilin. The amino acid sequence of the peptide encompassing the major antigenic determinant of PAK differs greatly from that of the equivalent region in PAO. The C-terminal regions of these proteins are semiconserved. Few major differences were found when the predicted secondary structures for PAO and PAK pilins were compared. Major nucleotide sequence variation between the equivalent restriction fragments from PAO and PAK occurred within the areas coding for the peptides containing the immunodominant site for PAK pilin and the C termini.  相似文献   

2.
The DNA of Pseudomonas aeruginosa rough-specific bacteriophage phi PLS27 was studied. The genome size as determined by summing the sizes of restriction fragments was 42.7 kilobase pairs. Of particular interest was the fact that the DNA was insensitive to certain common restriction endonucleases including EcoRI, BamHI, and HindIII. The ends of the phage DNA were cloned and sequenced, revealing direct repeats of 318 nucleotides. The left end of the genome when cloned into the promoter selection vector pKK232-8 exhibited promoter activity in Escherichia coli. Two promoters bearing greater than 70% sequence homology to the plasmid pNM74 TOL operon and PAK pilin promoters were identified.  相似文献   

3.
The adherence of non-mucoid Pseudomonas aeruginosa strains is believed to be mediated by the pilus, which consists of a single protein subunit of 15,000 Daltons called pilin. Ten antipeptide antisera were raised to map the surface regions of pilin from P. aeruginosa strain K (PAK). Only one of the antipeptide antisera to the eight predicted surface regions failed to react with PAK pili in direct ELISA. Five out of eight synthetic peptides representing the eight predicted surface regions reacted with anti-PAK pilus antiserum, indicating their surface exposure. Combining the antipeptide and antipilus antisera results, all eight predicted surface regions were demonstrated to be surface-exposed. The PAK 128-144-OH peptide produced the best binding antiserum to PAK pili. Only antipeptide Fab fragments directed against the disulphide bridged C-terminal region of PAK pilin blocked the adherence of pili to human buccal epithelial cells, which suggests that this region contains the receptor-binding domain of the PAK pilus.  相似文献   

4.
5.
D Nunn  S Bergman    S Lory 《Journal of bacteriology》1990,172(6):2911-2919
The polar pili of Pseudomonas aeruginosa are composed of monomers of the pilin structural subunits. The biogenesis of pili involves the synthesis of pilin precursor, cleavage of a six-amino-acid leader peptide, membrane translocation, and assembly of monomers into a filamentous structure extending from the bacterial surface. This report describes three novel genes necessary for the formation of pili. DNA sequences adjacent to pilA, the pilin structural gene, were cloned and mutagenized with transposon Tn5. Each of the insertions were introduced into the chromosome of P. aeruginosa PAK by gene replacement. The effect of the Tn5 insertions in the bacterial chromosome on pilus assembly was assessed by electron microscopy and sensitivity of mutants to a pilus-specific bacteriophage. The resultant mutants were also tested for synthesis and membrane localization of the pilin antigen in order to define the genes required for maturation, export, and assembly of pilin. A 4.0-kilobase-pair region of DNA adjacent to the pilin structural gene was found to be essential for formation of pili. This region was sequenced and found to contain three open reading frames coding for 62-, 38- to 45-, and 28- to 32-kilodalton proteins (pilB, pilC, and pilD, respectively). Three proteins of similar molecular weight were expressed in Escherichia coli from the 4.0-kilobase-pair fragment flanking pilA with use of a T7 promoter-polymerase expression system. The results of the analyses of the three genes and the implications for pilin assembly and maturation are discussed.  相似文献   

6.
7.
Pseudomonas aeruginosa is a piliated opportunistic pathogen. We have recently reported the cloning of the structural gene for the pilus protein, pilin, from P. aeruginosa PAK (B. L. Pasloske, B. B. Finlay, and W. Paranchych, FEBS Lett. 183:408-412, 1985), and in this paper we present evidence that this chimera (pBP001) expresses P. aeruginosa PAK pilin in Escherichia coli independent of a vector promoter. The strength of the promoter for the PAK pilin gene was assayed, and the cellular location of the pilin protein within E. coli was examined. This protein was present mainly in the inner membrane fraction both with and without its six-amino-acid leader sequence, but it was not assembled into pili.  相似文献   

8.
Biochemical studies on pili isolated from Pseudomonas aeruginosa strain PAO.   总被引:17,自引:0,他引:17  
Pseudomonas aeruginosa strains PAO and PAK bear polar pili which are flexible filaments having a diameter of 6 nm and an average length of 2500 nm. Both types of pili are retractile and promote infection by a number of bacteriophages. The present communication describes the partial biochemical characterization of PAO pili isolated from a multipiliated nonretractile mutant of PAO. The observed properties are compared to those of PAK pili which were characterized previously. PAO pili were found to contain a single polypeptide subunit of 18 700 daltons. This is similar to PAK pili which contain a single polypeptide of 18 100 daltons. The amino acid composition of PAO pilin was also similar to that of PAK pilin. Neither protein contained phosphate or carbohydrate residues and both were found to contain N-methylphenylalanine at the amino terminus. Sequencing of 20 amino acid residues at the amino terminal end of PAO pilin revealed the sequence to be identical with that of PAK pilin, while tryptic peptide analyses of PAO and PAK pilin indicated that the two proteins probably contain a number of homologous regions within the polypeptide. It was concluded that PAO and PAK pili were closely related structures.  相似文献   

9.
The nucleotide sequence of the gene encoding pilin from Bacteroides nodosus 265 has been determined. The pilin is encoded by a single-copy gene, from which can be predicted a prepilin comprising a single protein chain of Mr 16,637. The prepilin sequence differs in several respects from the mature protein sequence. Seven additional N-terminal amino acid residues are present in prepilin, whereas residue 8, phenylalanine, undergoes posttranslational modification to become the N-methylated amino-terminal residue of mature pilin. In addition, further processing occurs through internal cleavage to produce two noncovalently linked subunits characteristic of pilins from serogroup H of B. nodosus, of which strain 265 is a member. The position of cleavage has been identified between alanine residues at positions 72 and 73 of the mature 149-residue pilin protein. The predicted pilin sequence of B. nodosus 265 shows extensive N-terminal amino acid sequence homology with other pilins of the N-methylphenylalanine type. In addition this sequence also shows homology with these N-methylphenylalanine-type pilins in the C-terminal region of the molecule, especially with pilin from Pseudomonas aeruginosa PAK.  相似文献   

10.
11.
12.
Previous work has demonstrated the expression of the cloned pilin gene of Pseudomonas aeruginosa PAK within Escherichia coli and has pinpointed this protein's localization exclusively to the cytoplasmic membrane (Finlay et al., 1986). To define regions of the pilin subunit necessary for its stability and transport within E. coli, we constructed six mutants of the pilin gene and studied their expression and localization using a T7 promoter system. Two of the mutants have either a 4- or 8-amino-acid deletion at the N-terminus and both were stably expressed and transported primarily to the cytoplasmic membrane of E. coli. The other four mutants are C-terminal truncations having between 36 and 56 amino acids of the N-terminal region of the unprocessed pilin. Studies with these truncated mutants revealed that only the first 36 residues of the unprocessed pilin subunit were required for insertion into the E. coli membrane.  相似文献   

13.
14.
The HLA class I gene family in lymphoblastoid cell line 721 has been studied in detail and a number of sequences in addition to the classical genes have been identified. The cloning, characterization, and nucleotide sequences of four sequences, all full length HLA class I pseudogenes, are described in this report. These pseudogenes, contained within 5.4-, 5.9-, 7.0-, and 9.2-kb HindIII fragments, each have the class I exon-intron structure as well as class I homology in their 5' and 3' flanking regions. However, all four sequences have one or more substitutions that perturb the coding region, leaving little doubt that they are in fact pseudogenes. Comparisons among these sequences and the HLA class I genes revealed that their homology with the class I genes is patchwork. Thus, although some regions have diverged, other contiguous intron-exon sequences are highly conserved. Comparisons in the 5' regions indicate that the pseudogene promoters more closely resemble the classical HLA promoters than the nonclassical promoters as none of the unique structural features found in the HLA-E, -F, or -G regulatory regions are present in any of the pseudogene promoters. Further comparisons revealed that at least two putative gene conversion events, similar to those hypothesized to have occurred in the evolution of some HLA genes, may have occurred in the evolution of some of the pseudogenes. These and other hypothetical events in the evolution of the class I gene family are discussed.  相似文献   

15.
The 1479-base pair (bp) nucleotide sequence of the serotype 5 M protein gene (smp5) from Streptococcus pyogenes contains three distinct types of tandemly repeated sequences, designated A, B, and C. Repeat A (21 bp x 6, in the 5'-half of smp5), shares no homology with the types 6 or 24 M protein genes (Hollingshead, S. K., Fischetti, V. A., and Scott, J. R. (1986) J. Biol. Chem. 261, 1677-1686; Mouw, A. R., Beachey, E. H., and Burdett, V. (1988) J. Bacteriol., in press). Repeat B (75 bp x 3.6, in the center of smp5) is also present in the M6, but not in the M24 gene. Repeat C (105 bp x 2.7, just distal to the B repeats) shares homology with repeats in both the M6 and M24 genes. All three genes share extensive homology in their 3'-halves and in 5' sequences encoding the N-terminal signal peptides, but between these two regions there are highly variable sequences that are responsible for antigenic diversity. These relationships suggest that both intergenic and intragenic recombination has occurred during the evolution of distinct M protein serotypes. All three M proteins contain conserved hydrophobic and proline-rich sequences at their C-terminal ends, suggestive of a membrane anchor and a peptidoglycan spanning region.  相似文献   

16.
The pilin structural gene of Pseudomonas aeruginosa 1244 was cloned in both cosmids and lambda. Expression of the cloned gene was detected in P. aeruginosa strains PAO2003, PA103, and 653A by an immunoblot reaction utilizing monoclonal antibodies. Western blot analysis showed that pilin expressed from the cloned gene was slightly larger than native 1244 pilin when produced in strains PAO2003 and 653A, but distinctly smaller in PA103. Bacteriophages specific for the 1244 pilus did not lyse strain PAO2003 containing the cloned 1244 pilin gene, indicating that functional 1244 pili were not assembled in this recombinant strain. Nucleotide sequencing revealed a coding region which when translated would produce a 15,615 dalton peptide. The amino-terminal region of this peptide is identical with published pilin sequences. While the rest of the peptides are generally dissimilar, common residues are seen within potentially antigenic regions.  相似文献   

17.
In Pseudomonas aeruginosa, most proteins involved in type IVa pilus (T4aP) biogenesis are highly conserved except for the major pilin PilA and the minor pilins involved in pilus assembly. Here we show that each of the five major pilin alleles is associated with a specific set of minor pilins, and unrelated strains with the same major pilin type have identical minor pilin genes. The sequences of the minor pilin genes of strains with group III and V pilins are identical, suggesting that these groups diverged recently through further evolution of the major pilin cluster. Both gene clusters are localized on a single ‘pilin island’ containing putative tRNA recombinational hotspots, and a similar organization of pilin genes was identified in other Pseudomonas species. To address the biological significance of group‐specific differences, cross‐complementation studies using group II (PAO1) and group III (PA14) minor pilins were performed. Heterologous minor pilins complemented twitching motility to various extents except in the case of PilX, which was non‐functional in non‐native backgrounds. A recombinant PA14 strain expressing the PAO1 minor pilins regained motility only upon co‐introduction of the PA14 pilX gene. Comparison of PilX and PilQ secretin sequences from group II, III and V genomes revealed discrete regions of sequence that co‐varied between groups. Our data suggest that changes in PilX sequence have led to compensatory changes in the PilQ secretin monomer such that heterologous PilX proteins are no longer able to promote opening of the secretin to allow pili to appear on the cell surface.  相似文献   

18.
19.
Intermediate filaments (IF) isolated from the oesophagus epithelium of the snail Helix pomatia contain two polypeptides of mol. wt 66,000 (A) and 52,000 (B), which we have now characterized by in vitro self-assembly studies and by protein sequences. A and B can each form morphologically normal IF and share extended regions of sequence identity. All A-specific sequences seem to locate to an extension of the carboxyl-terminal domain. Although the Helix protein(s) reveal the IF-consensus sequences at the ends of the coiled-coil, the remainder of the rod domain shows conservation of sequence principles rather than extended homology, when compared with any subtype of vertebrate IF proteins. Interestingly, the Helix proteins have the longer coil 1b domain found in nuclear lamins and not in cytoplasmic IF proteins of vertebrates. They lack, however, the karyophilic signal sequence typical for lamins. Obvious implications for IF evolution and structure are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号