首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
子痫前期与母体先天免疫系统过度激活有关.激活的循环中性粒细胞形成细胞外诱捕网(neutrophil extracellular traps,NETs).NETs由染色质-DNA、抗微生物肽和抗微生物酶构成,具有捕获与杀灭微生物的作用.中性粒细胞形成NETs是先天免疫应答机制之一.胎盘衍生因子IL-8和合体滋养细胞微粒激活循环中性粒细胞并产生NETs.子痫前期NETs含量增加提示NETs与子痫前期病因有关.  相似文献   

2.
心血管疾病目前被认为是多因素参与的慢性炎症性疾病,中性粒细胞作为机体防御系统的第一道防线,广泛参与心血管疾病的发生发展。近期研究显示,作为先天性免疫吞噬细胞的中性粒细胞,可形成中性粒细胞胞外诱捕网(neutrophil extracellular traps,NETs)促进免疫反应的发展及持续,从而在心血管疾病中发挥重要调控作用。本综述详述了中性粒细胞和NETs在心血管疾病进展中的作用,并讨论了将NETs作为潜在治疗靶点的可能性。  相似文献   

3.
中性粒细胞是抵御病原体入侵机体的第一道防线,通过趋化和吞噬作用使病原体失活,从而进行免疫防御,杀灭病原体。研究证实,中性粒细胞通过吞噬病原体、分泌抗微生物蛋白颗粒来杀灭病原微生物。2004年Brinkmann发现了一种中性粒细胞新型抗感染机制,即中性粒细胞经病原体活化刺激后释放中性粒细胞胞外诱捕网(neutrophil extracellular trap,NET)至细胞外。NET是由双链DNA染色质和镶嵌在染色质上的抗菌蛋白构成的纤维网格状结构,通过网罗、捕获而杀灭病原体。诸多研究表明,NET在炎症相关疾病中起重要作用,其生成和降解会影响急慢性炎性疾病的病理过程。本文主要从NET的特征、产生机制、抗菌作用及其在炎性相关疾病中的作用等方面着手,概述其最新研究进展,为炎性疾病的治疗及其药物开发提供新的思路和方向。  相似文献   

4.
脓毒症是重症监护病房中导致患者死亡的主要原因,它的发病机制至今尚未完全阐明,目前认为主要和病原微生物的清除、炎症反应、凝血功能等有关。中性粒细胞在固有免疫反应中发挥着重要的作用,是机体防御病原体的第一道防线,它可以通过吞噬、脱颗粒来抵抗病原微生物;此外,它还可以通过形成中性粒细胞胞外诱捕网(neutrophil extracelluar traps,NETs)来捕获和杀灭病原体。NETs是由DNA骨架、组蛋白、颗粒成分以及胞浆蛋白组成的网状物。尽管已经有研究发现,NETs在脓毒症的发病过程中起到了对机体的保护作用,但也有证据表明,脓毒症时NETs的产生使得病情加重。现将就NETs的研究进展及其在脓毒症发病过程中的作用进行总结。  相似文献   

5.
中性粒细胞胞外诱捕网(neutrophil extracellular traps,NETs)是中性粒细胞在受到特殊因素影响后释放到细胞外的一种纤维网状复合物。在病毒、细胞因子、活化血小板、补体、自身抗体等因子的诱导下,特定的中性粒细胞亚群产生并释放NETs,NETs在体内发挥多种作用,参与心血管疾病、代谢性疾病、自身免疫性疾病等多种疾病的发展,也与相关非感染性病理过程如凝血障碍、血栓形成、动脉粥样硬化、血管炎等有密切关系。因而在相关疾病中控制NETs的发生和发展可能是潜在的疾病治疗靶点。该文总结了NETs在代谢性疾病、肿瘤和新型冠状病毒感染等相关疾病中的影响,探讨了抗NETs药物的临床应用,以期为临床药物选择和应用提供新思路。  相似文献   

6.
系统性红斑狼疮脑损伤(neuropsychiatric systemic lupus erythematosus, NPSLE)是自身免疫病系统性红斑狼疮累及神经系统发生损害后产生的严重并发症,多发于年轻女性,患病率极高,目前尚未找到有效的治疗方案。中性粒细胞胞外诱捕网(neutrophil extracellular traps, NETs)的形成和降解之间的稳态失衡,导致机体免疫功能紊乱,产生自身免疫性疾病。本文从血脑屏障、脑血管病变、血清和脑脊液、细胞因子、炎症反应的发生以及补体系统等方面对NPSLE的发病机制进行了总结,并进一步分析了NETs形成在NPSLE中的作用。  相似文献   

7.
中性粒细胞胞外诱捕网(NETs)是新发现的中性粒细胞抗病原机制,是天然免疫系统的重要组成部分。但病原体在进化中形成了针对NETs的免疫逃逸机制。不同的病原体逃逸NET的机制不同,本文主要介绍3种机制:降解NETs-DNA、表面分子机制和NETosis调控。  相似文献   

8.
细胞外诱捕网介导的抗微生物途径   总被引:1,自引:0,他引:1  
活化中性粒细胞与肥大细胞在细胞外形成纤维样诱捕网结构(ETs)。ETs以染色质-DNA为骨架,吸附有抗微生物肽和抗微生物酶组成,具有捕获与杀灭微生物的作用。由ETs介导的抗微生物途径构成了一种重要的先天免疫应答机制。  相似文献   

9.
目的:通过构建二氧化硅诱导动物矽肺模型,探讨中性粒细胞胞外诱捕网(neutrophil nxtracellular traps,NETs)在矽肺中可能的作用。方法:将C57BL/6J雄性小鼠完全随机分为磷酸盐缓冲液(phosphate buffered solution,PBS)组、脱氧核糖核酸酶Ⅰ(deoxyribonuclease Ⅰ, DNase Ⅰ)组、二氧化硅+PBS组、二氧化硅+DNase Ⅰ组。通过气管内滴注二氧化硅(0.2 g/kg)混悬液构建小鼠矽肺模型,PBS组与DNase Ⅰ组注入等体积的PBS。在二氧化硅(silicon dioxide,SiO_2)混悬液注入后的第0小时、10小时小鼠气管内注入DNase Ⅰ(5 mg/kg),以后DNase Ⅰ持续给药:5 mg/kg/day,直到SiO_2混悬液注入后的28天。二氧化硅(SiO_2)干预28天后,取各组小鼠肺组织与肺泡灌洗液,通过PicoGreen荧光染料检测支气管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)中NETs水平,酶联免疫吸附实验(enzyme-linked immunosorbent assay, ELISA)检测BALF中转化生长因子β1 (transforming growth factor-β1,TGF-β1)与炎症因子白细胞介素6(interleukin-6,IL-6)、白细胞介素1β(interleukin-1β,IL-1β)、肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)水平,HE染色和Masson染色观察肺组织的病理学变化,Western Blot检测肺组织中NETs特异性组分瓜氨酸化组蛋白3(citrullinated-histone3,Cit-H3)表达。结果:SiO_2干预28天后,与PBS组相比,二氧化硅+PBS组小鼠肺组织炎症损伤加重,BALF中促炎介质IL-1β、IL-6、TNF-α水平上升;肺组织发生纤维化,大量硅结节形成;肺组织中Cit-H3蛋白表达量增加,BALF中NETs水平显著升高。予以NETs抑制剂DNase Ⅰ进行干预后,肺组织NETs水平显著下降,二氧化硅诱导的肺部炎症损伤、纤维化显著减轻。结论:NETs水平升高可能介导了二氧化硅诱导的小鼠矽肺模型肺部炎症损伤与纤维化。  相似文献   

10.
肝细胞癌(HCC)是一种炎症相关癌症,肿瘤免疫微环境在HCC的发生和发展中起关键作用。该文旨在研究中性粒细胞胞外诱捕网(NETs)在HCC转移中的作用及相关机制。ELISA和免疫组化方法检测HCC患者血清和肿瘤组织中的NETs水平以检测NETs与肝癌转移的相关性。在体外实验中,建立NETs与肝癌细胞系Hep3B和CSQT-2体外共培养模型,通过划痕实验和Transwell等实验,研究NETs对肝癌细胞迁移的影响。在体内实验中,建立尾静脉注射转移瘤模型并使用脂多糖诱导小鼠体内NETs形成,通过检测肝脏病理变化和肝脏Ki67蛋白水平等指标,研究NETs对肿瘤转移的作用。最后,为了探讨NETs影响HCC转移的机制,通过质谱的方法检测了NETs对细胞外基质的修饰,并检测了修饰的细胞外基质蛋白对整合素/FAK信号通路的影响。结果发现:高转移HCC患者肿瘤组织中髓过氧化物酶蛋白水平较高,且与早期HCC患者相比,晚期HCC患者血清中的MPO和中性粒细胞弹性蛋白酶水平升高。体外实验中, NETs与Hep3B和CSQT-2细胞共培养,可以促进Hep3B和CSQT-2细胞的迁移能力。体内实验中, NETs...  相似文献   

11.
The central role of Fas-ligand cell signaling in inflammatory lung diseases   总被引:6,自引:0,他引:6  
Following inflammation and injury in the lung, loss of epithelial cell precursors could determine the balance between tissue regeneration and fibrosis. This review discusses evidence that proapoptotic Fas-Fas ligand (FasL) signaling plays a central role in pulmonary inflammation, injury and fibrosis. FasL signaling induces inflammatory apoptosis in epithelial cells and alveolar macrophages, with concomitant IL-1 beta and chemokine release, leading to neutrophil infiltration. FasL signaling plays a critical role in models of acute lung injury, idiopathic pulmonary fibrosis and silicosis; blockade of Fas-FasL interactions either prevents or attenuates pulmonary inflammation and fibrosis. Serologic and immunohistochemical studies in patients support a major pathogenic role of Fas and FasL molecules in inflammatory lung diseases. Identification of the pathogenic role of FasL could facilitate the discovery of more effective treatments for currently untreatable inflammatory lung diseases.  相似文献   

12.
Spectacular images of neutrophils ejecting nuclear chromatin and bactericidal proteins, in response to microbes, were first reported in 2004. As externalized chromatin could entangle bacteria, these structures were named neutrophil extracellular traps (NETs). Subsequent studies identified microorganisms and sterile conditions that stimulate NETs, as well as additional cell types that release extracellular chromatin. The release of NETs is the most dramatic stage in a cell death process called NETosis. Experimental evidence suggests that NETs participate in pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. Exaggerated NETosis or diminished NET clearance likely increases risk of autoreactivity to NET components. The biological significance of NETs is just beginning to be explored. A more complete integration of NETosis within immunology and pathophysiology will require better understanding of NET properties associated with specific disease states and microbial infections. This may lead to the identification of important therapeutic targets.  相似文献   

13.
MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs with immense significance in numerous biological processes. When aberrantly expressed miRNAs have been shown to play a role in the pathogenesis of several disease states. Extensive research has explored miRNA involvement in the development and fate of immune cells and in both the innate and adaptive immune responses whereby strong evidence links miRNA expression to signalling pathways and receptors with critical roles in the inflammatory response such as NF-κB and the toll-like receptors, respectively. Recent studies have revealed that unique miRNA expression profiles exist in inflammatory lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and lung cancer. Evaluation of the global expression of miRNAs provides a unique opportunity to identify important target gene sets regulating susceptibility and response to infection and treatment, and control of inflammation in chronic airway disorders. Over 800 human miRNAs have been discovered to date, however the biological function of the majority remains to be uncovered. Understanding the role that miRNAs play in the modulation of gene expression leading to sustained chronic pulmonary inflammation is important for the development of new therapies which focus on prevention of disease progression rather than symptom relief. Here we discuss the current understanding of miRNA involvement in innate immunity, specifically in LPS/TLR4 signalling and in the progression of the chronic inflammatory lung diseases cystic fibrosis, COPD and asthma. miRNA in lung cancer and IPF are also reviewed.  相似文献   

14.
自噬与肺部疾病研究进展   总被引:1,自引:1,他引:0  
自噬(autophagy)是广泛存在于真核细胞中的基本生命现象,是细胞适应环境变化、防御病原微生物侵袭、维持内环境稳定的重要机制.多种肺部疾病中存在自噬活性的变化,自噬与肺部疾病的发生、发展密切相关.自噬在慢性阻塞性肺病、肺气肿、肺癌、肺结核等许多肺部疾病中发生,且发挥重要作用.现从自噬与多种肺部疾病的关系角度进行综述,有助于了解自噬在肺部疾病中发挥的作用,以便进一步研究自噬的调节,为肺部疾病的治疗提供新思路.  相似文献   

15.
Excessive neutrophil extracellular trap (NET) formation may contribute to polymyositis (PM)‐associated interstitial lung diseases (ILD), but the underlying mechanism is not fully revealed. In this study, we found that NET accelerated the progression of ILD and promoted pulmonary fibrosis (PF) in vivo. miR‐7 expression was down‐regulated in lung tissue of PM group than control group, and NETs further decreased miR‐7 expression. TLR9 and Smad2 were up‐regulated in lung tissue of PM group than control group, and NETs further increased TLR9 and Smad2 expressions. In vitro experiments showed that PMA‐treated NETs accelerated the proliferation of LF and their differentiation into myofibroblast (MF), whereas DNase I decreased the promotion effect of NETs. Neutrophil extracellular trap components myeloperoxidase (MPO) and histone 3 also promoted the proliferation and differentiation of LF. In addition, we demonstrated that TLR9 involved in the regulation of NETs on LF proliferation and differentiation, and confirmed the interaction between miR‐7 and Smad2 in LF. Finally, miR‐7‐Smad2 pathway was confirmed to be involved in the regulation of TLR9 on LF proliferation and differentiation. Therefore, NETs promote PM‐related ILD, and TLR9‐miR‐7‐Smad2 signalling pathway is involved in the proliferation of LFs and their differentiation into MFs.  相似文献   

16.
The role of vitamin D (VitD) in calcium and bone homeostasis is well described. In the last years, it has been recognized that in addition to this classical function, VitD modulates a variety of processes and regulatory systems including host defense, inflammation, immunity, and repair. VitD deficiency appears to be frequent in industrialized countries. Especially patients with lung diseases have often low VitD serum levels. Epidemiological data indicate that low levels of serum VitD is associated with impaired pulmonary function, increased incidence of inflammatory, infectious or neoplastic diseases. Several lung diseases, all inflammatory in nature, may be related to activities of VitD including asthma, COPD and cancer. The exact mechanisms underlying these data are unknown, however, VitD appears to impact on the function of inflammatory and structural cells, including dendritic cells, lymphocytes, monocytes, and epithelial cells. This review summarizes the knowledge on the classical and newly discovered functions of VitD, the molecular and cellular mechanism of action and the available data on the relationship between lung disease and VitD status.  相似文献   

17.
During an inflammatory response, neutrophils migrate to the site of infection where they can kill invading pathogens by phagocytosis, secretion of anti-microbicidal mediators or the release of neutrophil extracellular traps (NETs). NETs are specialized anti-microbial structures comprised of decondensed chromatin decorated with microbicidal agents. Increased amount of NETs have been found in patients suffering from the chronic lung inflammatory disease cystic fibrosis, correlating with increased severity of pulmonary obstruction. Furthermore, acute lung inflammation during influenza A infection is characterized by a massive influx of neutrophils into the lung. The role of NETs during virus-mediated lung inflammation is unknown. Peptidylarginine deiminase 4 (PAD4)-mediated deimination of histone H3 and H4 is required for NET formation. Therefore, we generated a PAD4-deficient mouse strain that has a striking inability to form NETs. These mice were infected with influenza A/WSN, and the disease was monitored at the level of leukocytic lung infiltration, lung pathology, viral replication, weight loss and mortality. PAD4 KO fared comparable to WT mice in all the parameters tested, but they displayed slight but statistically different weight loss kinetics during infection that was not reflected in enhanced survival. Overall, we conclude that PAD4-mediated NET formation is dispensable in a mouse model of influenza A infection.  相似文献   

18.
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with progressive airflow obstruction. Tobacco smoking is the main risk factor worldwide. In contrast to asthma, antiinflammatory therapies are rather ineffective in improving chronic symptoms and reducing inflammation, lung function decline, and airway remodeling. Specific drugs that are directed against the remodeling and chronic inflammation, thereby preventing lung tissue damage and progressive lung function decline, must be developed. Experimental models and expression studies suggest that anti-vascular endothelial growth factor (VEGF) receptor strategies may be of use in patients with emphysema, whereas anti-HER1-directed strategies may be more useful in patients with pulmonary mucus hypersecretion, as seen in chronic bronchitis and asthma. Growth factors and cytokines including VEGF, fibroblast growth factors, transforming growth factor-beta, tumor necrosis factor-alpha, CXCL1, CXCL8, and CCL2, and signal transduction proteins such as mitogen-activated protein kinase p38 and nuclear factor-kappaB, seem to be important pathogenetic molecules in COPD. Specific antagonists for these proteins may be effective for different inflammatory diseases. However, their efficacy for COPD therapy has not yet been demonstrated. Finally, other drugs such as retinoic acids may provide restoration of lung tissue structure. Such approaches, however, must await the first results of growth factor or cytokine antagonist therapy in chronic lung diseases.  相似文献   

19.
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with progressive airflow obstruction. Tobacco smoking is the main risk factor worldwide. In contrast to asthma, anti-inflammatory therapies are rather ineffective in improving chronic symptoms and reducing inflammation, lung function decline, and airway remodeling. Specific drugs that are directed against the remodeling and chronic inflammation, thereby preventing lung tissue damage and progressive lung function decline, must be developed. Experimental models and expression studies suggest that anti-vascular endothelial growth factor (VEGF) receptor strategies may be of use in patients with emphysema, whereas anti-HER1-directed strategies may be more useful in patients with pulmonary mucus hypersecretion, as seen in chronic bronchitis and asthma. Growth factors and cytokines including VEGF, fibroblast growth factors, transforming growth factor-β, tumor necrosis factor-α, CXCL1, CXCL8, and CCL2, and signal transduction proteins such as mitogen-activated protein kinase p38 and nuclear factor-⦊B, seem to be important pathogenetic molecules in COPD. Specific antagonists for these proteins may be effective for different inflammatory diseases. However, their efficacy for COPD therapy has not yet been demonstrated. Finally, other drugs such as retinoic acids may provide restoration of lung tissue structure. Such approaches, however, must await the first results of growth factor or cytokine antagonist therapy in chronic lung diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号