首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the effects of chitosan on the redifferentiation of dedifferentiated chondrocytes, we used chondrocytes obtained from a micromass culture system. Micromass cultures of chick wing bud mesenchymal cells yielded differentiated chondrocytes, but these dedifferentiated during serial monolayer subculture. When the dedifferentiated chondrocytes were cultured on chitosan membranes they regained the phenotype of differentiated chondrocytes. Expression of protein kinase C (PKC) increased during chondrogenesis, decreased during dedifferentiation, and increased again during redifferentiation. Treatment of the cultures with phorbol 12-myristate 13-acetate (PMA) inhibited redifferentiation and down-regulated PKC. In addition, the expression of p38 mitogen-activated protein (MAP) kinase increased during redifferentiation, and its inhibition suppressed redifferentiation. These findings establish a culture system for producing chondrocytes, point to a new role of chitosan in the redifferentiation of dedifferentiated chondrocytes, and show that PKC and p38 MAP kinase activities are required for chondrocyte redifferentiation in this model system.  相似文献   

2.
Nitric oxide (NO) in articular chondrocytes regulates differentiation, survival, and inflammatory responses by modulating ERK-1 and -2, p38 kinase, and protein kinase C (PKC) alpha and zeta. In this study, we investigated the effects of the actin cytoskeletal architecture on NO-induced dedifferentiation, apoptosis, cyclooxygenase (COX)-2 expression, and prostaglandin E2 production in articular chondrocytes, with a focus on ERK-1/-2, p38 kinase, and PKC signaling. Disruption of the actin cytoskeleton by cytochalasin D (CD) inhibited NO-induced apoptosis, dedifferentiation, COX-2 expression, and prostaglandin E2 production in chondrocytes cultured on plastic or during cartilage explants culture. CD treatment did not affect ERK-1/-2 activation but blocked the signaling events necessary for NO-induced dedifferentiation, apoptosis, and COX-2 expression such as activation of p38 kinase and inhibition of PKCalpha and -zeta. CD also suppressed activation of downstream signaling of p38 kinase and PKC, such as NF-kappaB activation, p53 accumulation, and caspase-3 activation, which are necessary for NO-induced apoptosis. NO production in articular chondrocytes caused down-regulation of phosphatidylinositol (PI) 3-kinase and Akt activities. The down-regulation of PI 3-kinase and Akt was blocked by CD treatment, and the CD effects on apoptosis, p38 kinase, and PKCalpha and -zeta were abolished by the inhibition of PI 3-kinase with LY294002. Our results collectively indicate that the actin cytoskeleton mediates NO-induced regulatory effects in chondrocytes by modulating down-regulation of PI 3-kinase and Akt, activation of p38 kinase, and inhibition of PKCalpha and -zeta  相似文献   

3.
4.
Abstract: In SH-SY5Y human neuroblastoma cells, insulin-like growth factor (IGF)-I mediates membrane ruffling and growth cone extension. We have previously shown that IGF-I activates the tyrosine phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated protein kinase (ERK) 2. In the current study, we examined which signaling pathway underlies IGF-I-mediated FAK phosphorylation and cytoskeletal changes and determined if an intact cytoskeleton was required for IGF-I signaling. Treatment of SH-SY5Y cells with cytochalasin D disrupted the actin cytoskeleton and prevented any morphological changes induced by IGF-I. Inhibitors of phosphatidylinositol 3-kinase (PI 3-K) blocked IGF-I-mediated changes in the actin cytoskeleton as measured by membrane ruffling. In contrast, PD98059, a selective inhibitor of ERK kinase, had no effect on IGF-I-induced membrane ruffling. In parallel with effects on the actin cytoskeleton, cytochalasin D and PI 3-K inhibitors blocked IGF-I-induced FAK tyrosine phosphorylation, whereas PD98059 had no effect. It is interesting that cytochalasin D did not block IGF-I-induced ERK2 tyrosine phosphorylation. Therefore, it is likely that FAK and ERK2 tyrosine phosphorylations are regulated by separate pathways during IGF-I signaling. Our study suggests that integrity as well as dynamic motility of the actin cytoskeleton mediated by PI 3-K is required for IGF-I-induced FAK tyrosine phosphorylation, but not for ERK2 activation.  相似文献   

5.
Adenovirus (Ad) endocytosis via αv integrins requires activation of the lipid kinase phosphatidylinositol-3-OH kinase (PI3K). Previous studies have linked PI3K activity to both the Ras and Rho signaling cascades, each of which has the capacity to alter the host cell actin cytoskeleton. Ad interaction with cells also stimulates reorganization of cortical actin filaments and the formation of membrane ruffles (lamellipodia). We demonstrate here that members of the Rho family of small GTP binding proteins, Rac and CDC42, act downstream of PI3K to promote Ad endocytosis. Ad internalization was significantly reduced in cells treated with Clostridium difficile toxin B and in cells expressing a dominant-negative Rac or CDC42 but not a H-Ras protein. Viral endocytosis was also inhibited by cytochalasin D as well as by expression of effector domain mutants of Rac or CDC42 that impair cytoskeletal function but not JNK/MAP kinase pathway activation. Thus, Ad endocytosis requires assembly of the actin cytoskeleton, an event initiated by activation of PI3K and, subsequently, Rac and CDC42.  相似文献   

6.
The conversion of a host‐encoded PrPsen (protease‐sensitive cellular prion protein) into a PrPres (protease‐resistant pathogenic form) is a key process in the pathogenesis of prion diseases, but the intracellular mechanisms underlying PrPres amplification in prion‐infected cells remain elusive. To assess the role of cytoskeletal proteins in the regulation of PrPres amplification, the effects of cytoskeletal disruptors on PrPres accumulation in ScN2a cells that were persistently infected with the scrapie Chandler strain have been examined. Actin microfilament disruption with cytochalasin D enhanced PrPres accumulation in ScN2a cells. In contrast, the microtubule‐disrupting agents, colchicine, nocodazole and paclitaxel, had no effect on PrPres accumulation. In addition, a PI3K (phosphoinositide 3‐kinase) inhibitor, wortmannin and an Akt kinase inhibitor prevented the cytochalasin D‐induced enhancement of PrPres accumulation. Cytochalasin D‐induced extension of neurite‐like processes might correlate with enhanced accumulation of PrPres. The results suggest that the actin cytoskeleton and PI3K/Akt pathway are involved in the regulation of PrPres accumulation in prion‐infected cells.  相似文献   

7.
8.
Extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN) is a cell surface glycoprotein overexpressed in many solid tumors. In addition to its ability to stimulate stromal MMP expression, tumor-associated EMMPRIN also induces vascular endothelial growth factor (VEGF) expression. To explore the underlying signaling pathways used by EMMPRIN, we studied the involvement of phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated protein kinase (MAPK), JUN, and p38 kinases in EMMPRIN-mediated VEGF regulation. Overexpression of EMMPRIN in MDA-MB-231 breast cancer cells stimulated the phosphorylation of only Akt and MAPKs but not that of JUN and p38 kinases. Conversely, inhibition of EMMPRIN expression resulted in suppressed Akt and MAPK phosphorylation. Furthermore, the PI3K-specific inhibitor LY294002 inhibited VEGF production by EMMPRIN-overexpressing cells in a dose- and time-dependent manner. On the other hand, the MAPK inhibitor U0126 did not affect VEGF production. In vivo, EMMPRIN-overexpressing tumors with elevated VEGF expression had a high level of phosphorylation of Akt and MAPK. Finally, when fibroblast cells were treated with recombinant EMMPRIN, Akt kinase but not MAPK was phosphorylated concomitant with an increase in VEGF production. Both the activation of Akt kinase and the induction of VEGF were specifically inhibited with a neutralizing antibody to EMMPRIN. Our results show that in both tumor and fibroblast cells EMMPRIN regulates VEGF production via the PI3K-Akt pathway but not via the MAPK, JUN, or p38 kinase pathways.  相似文献   

9.
We have examined the role of endogenous 70-kDa S6 kinase (p70(S6K)) in actin cytoskeletal organization and cell migration in Swiss 3T3 fibroblasts. Association of p70(S6K) with the actin cytoskeleton was demonstrated by cosedimentation of p70(S6K) with F-actin and by subcellular fractionation in which p70(S6K) activity was measured in the F-actin cytoskeletal fraction. Immunocytochemical studies showed that p70(S6K), Akt1, PDK1, and p85 phosphoinositide 3-kinase (PI 3-kinase) were localized to the actin arc, a caveolin-enriched cytoskeletal structure located at the leading edge of migrating cells. Using a phospho-specific antibody to mammalian target of rapamycin (mTOR), we find that activated mTOR is enriched at the actin arc, suggesting that activation of the p70(S6K) signaling pathway is important to cell migration. Using the actin arc to assess migration, epidermal growth factor (EGF) stimulation was found to induce actin arc formation, an effect that was blocked by rapamycin treatment. We show further that actin stress fibers may function to down-regulate p70(S6K). Fibronectin stimulated stress fiber formation in the absence of growth factors and caused an inactivation of p70(S6K). Conversely, cytochalasin D and the Rho kinase inhibitor Y-27632, both of which cause stress fiber disruption, increased p70(S6K) activity. These studies provide evidence that the p70(S6K) pathway is important for signaling at two F-actin microdomains in cells and regulates cell migration.  相似文献   

10.
We have examined the role of endogenous 70-kDa S6 kinase (p70(S6K)) in actin cytoskeletal organization and cell migration in Swiss 3T3 fibroblasts. Association of p70(S6K) with the actin cytoskeleton was demonstrated by cosedimentation of p70(S6K) with F-actin and by subcellular fractionation in which p70(S6K) activity was measured in the F-actin cytoskeletal fraction. Immunocytochemical studies showed that p70(S6K), Akt1, PDK1, and p85 phosphoinositide 3-kinase (PI 3-kinase) were localized to the actin arc, a caveolin-enriched cytoskeletal structure located at the leading edge of migrating cells. Using a phospho-specific antibody to mammalian target of rapamycin (mTOR), we find that activated mTOR is enriched at the actin arc, suggesting that activation of the p70(S6K) signaling pathway is important to cell migration. Using the actin arc to assess migration, epidermal growth factor (EGF) stimulation was found to induce actin arc formation, an effect that was blocked by rapamycin treatment. We show further that actin stress fibers may function to down-regulate p70(S6K). Fibronectin stimulated stress fiber formation in the absence of growth factors and caused an inactivation of p70(S6K). Conversely, cytochalasin D and the Rho kinase inhibitor Y-27632, both of which cause stress fiber disruption, increased p70(S6K) activity. These studies provide evidence that the p70(S6K) pathway is important for signaling at two F-actin microdomains in cells and regulates cell migration.  相似文献   

11.
12.
Chondrocyte apoptosis is mainly responsible for the progressive degeneration of cartilage in osteoarthritis (OA). Interleukin-1beta (IL-1β) was widely used as a modulating and chondrocyte apoptosis-inducing agent. Nicotine is able to confer resistance to apoptosis and promote cell survival in some cell lines, but its regulatory mechanism is ambiguous. We aimed to investigate the effect of nicotine on IL-1β-induced chondrocyte apoptosis and the mechanism underlying how nicotine antagonizes IL-1β-induced apoptosis of rat chondrocytes. Chondrocytes isolated from newborn rat joints were exposed to IL-1β. The cell viability was analyzed by the MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, and the apoptotic cells were counted with DAPI staining. The levels of Akt, phosphorylated-Akt (p-Akt) and downstream protein targets of Akt were detected by western blotting. The results showed that nicotine neutralized the effect of IL-1β on chondrocytes by activating PI3K/Akt signaling pathways, including the PI3K/Akt/Bcl-2 pathway, to block IL-1β-induced cell apoptosis and the PI3K/Akt/p70S6K (p70S6 kinase)/S6 pathway for promoting protein synthesis, modulating its downstream effectors such as TIMP-1 and MMP-13. Activation of the PI3K/Akt pathway is, in part, required for the effect of nicotine on IL-1β-induced chondrocyte apoptosis in a rat model of osteoarthritis.  相似文献   

13.
Cartilage development is initiated by the differentiation of mesenchymal cells into chondrocytes. Differentiated chondrocytes in articular cartilage undergo dedifferentiation and apoptosis during arthritis, in which NO production plays a critical role. Here, we investigated the roles and mechanisms of action of insulin-like growth factor-1 (IGF-1) in the chondrogenesis of mesenchymal cells and the maintenance and survival of differentiated articular chondrocytes. IGF-1 induced chondrogenesis of limb bud mesenchymal cells during micromass culture through the activation of phosphatidylinositol 3-kinase (PI3K) and Akt. PI3K activation is required for the activation of protein kinase C (PKC)-alpha and p38 kinase and inhibition of ERK1/2. These events are necessary for chondrogenesis. The growth factor additionally blocked NO-induced dedifferentiation and apoptosis of primary culture articular chondrocytes. NO production in chondrocytes induced down-regulation of PI3K and Akt activities, which was blocked by IGF-1 treatment. Stimulation of PI3K by IGF-1 resulted in blockage of NO-induced activation of p38 kinase and ERK1/2 and inhibition of PKCalpha and PKCzeta, which in turn suppressed dedifferentiation and apoptosis. Our results collectively indicate that IGF-1 regulates differentiation, maintenance of the differentiated phenotype, and apoptosis of articular chondrocytes via a PI3K pathway that modulates ERK, p38 kinase, and PKC signaling.  相似文献   

14.
Disruption of the actin cytoskeleton in subconfluent mesenchymal cells induces chondrogenic differentiation via protein kinase C (PKC) alpha signaling. In this study, we investigated the role of p38 mitogen-activated protein (MAP) kinase in the chondrogenic differentiation of mesenchymal cells that is induced by depolymerization of the actin cytoskeleton. Treatment of mesenchymal cells derived from chick embryonic limb buds with cytochalasin D (CD) disrupted the actin cytoskeleton with concomitant chondrogenic differentiation. The chondrogenesis was accompanied by an increase in p38 MAP kinase activity and inhibition of p38 MAP kinase with SB203580 blocked chondrogenesis. Together these results suggest an essential role for p38 MAP kinase in chondrogenesis. In addition, inhibition of p38 MAP kinase did not alter CD-induced increased expression and activity of PKC alpha, whereas down-regulation of PKC by prolonged exposure of cells to phorbol ester inhibited CD-induced p38 MAP kinase activation. Our results therefore suggest that PKC is involved in the regulation of chondrogenesis induced by disruption of the actin cytoskeleton via a p38 MAP kinase signaling pathway.  相似文献   

15.
Activation of either the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt or the p38 mitogen-activated protein kinase (MAPK) signaling pathways accelerates myogenesis but only when the reciprocal pathway is functional. We therefore examined the hypothesis that cross-activation between these signaling cascades occurs to orchestrate myogenesis. We reveal a novel and reciprocal cross-talk and activation between the PI 3-kinase/Akt and p38 MAPK pathways that is essential for efficient myoblast differentiation. During myoblast differentiation, Akt kinase activity correlated with S473 but not T308 phosphorylation and occurred 24 h after p38 activation. Inhibition or activation of p38 with SB203580, dominant-negative p38, or MKK6EE regulated Akt kinase activity. Analysis of Akt isoforms revealed a specific increase in Akt2 protein levels that coincided with AktS473 phosphorylation during myogenesis and an enrichment of S473-phosphorylated Akt2. Akt2 promoter activity and protein levels were regulated by p38 activation, thus providing a mechanism for communication. Subsequent Akt activation by S473 phosphorylation was PI 3-kinase dependent and specific for Akt2 rather than Akt1. Complementary to p38-mediated transactivation of Akt, activation or inhibition of PI 3-kinase regulated p38 activity upstream of MKK6, demonstrating reciprocal communication and positive feedback characteristic of myogenic regulation. Our findings have identified novel communication between p38 MAPK and PI 3-kinase/Akt via Akt2.  相似文献   

16.
Lewis Y (LeY) is a carbohydrate tumor‐asssociated antigen. The majority of cancer cells derived from epithelial tissue express LeY type difucosylated oligosaccharide. Fucosyltransferase IV (FUT4) is an essential enzyme that catalyzes the synthesis of LeY oligosaccharide. Our previous studies have shown that FUT4 overexpression promotes A431 cell proliferation, but the mechanism is still largely unknown. Herein, we investigated the role of the mitogen‐activated protein kinases (MAPKs) and phosphoinositide‐3 kinase (PI3K)/Akt signaling pathways on FUT4‐induced cell proliferation. Results show that overexpression of FUT4 increases the phosphorylation of ERK1/2, p38 MAPK, and PI3K/Akt. Inhibitors of PI3K (LY294002 and Wortmannin) prevented the phosphorylation of ERK1/2, p38 MAPK, and Akt PI3K). Moreover, phosphorylation of Akt is abolished by inhibitors of ERK1/2 (PD98059) and p38 MAPK (SB203580). These data suggested that FUT4 not only activates MAPK and PI3K/Akt signals, but also promotes the crosstalk among these signaling pathways. In addition, FUT4‐induced stimulation of cell proliferation correlates with increased cell cycle progression by promoting cells into S‐phase. The mechanism involves in increased expression of cyclin D1, cyclin E, CDK 2, CDK 4, and pRb, and decreased level of cyclin‐dependent kinases inhibitors p21 and p27, which are blocked by the inhibitors of upstream signal molecules, MAPK and PI3K/Akt. In conclusion, these studies suggest that FUT4 regulates A431 cell growth through controlling cell cycle progression via MAPK and PI3K/Akt signaling pathways. J. Cell. Physiol. 225: 612–619, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
Chondrocytes rapidly lose their phenotypic expression of collagen II and aggrecan when grown on 2D substrates. It has generally been observed that a fibroblastic morphology with strong actin–myosin contractility inhibits chondrogenesis, whereas chondrogenesis may be promoted by depolymerization of the stress fibers and/or disruption of the physical link between the actin stress fibers and the ECM, as is the case in 3D hydrogels. Here we studied the relationship between the actin–myosin cytoskeleton and expression of chondrogenic markers by culturing fibroblastic chondrocytes in the presence of cytochalasin D and staurosporine. Both drugs induced collagen II re-expression; however, renewed glycosaminoglycan synthesis could only be observed upon treatment with staurosporine. The chondrogenic effect of staurosporine was augmented when blebbistatin, an inhibitor of myosin/actin contractility, was added to the staurosporine-stimulated cultures. Furthermore, in 3D alginate cultures, the amount of staurosporine required to induce chondrogenesis was much lower compared to 2D cultures (0.625 nM vs. 2.5 nM). Using a selection of specific signaling pathway inhibitors, it was found that PI3K-, PKC- and p38-MAPK pathways positively regulated chondrogenesis while the ERK-pathway was found to be a negative regulator in staurosporine-induced re-differentiation, whereas down-regulation of ILK by siRNA indicated that ILK is not determining for chondrocyte re-differentiation. Furthermore, staurosporine analog midostaurin displayed only a limited chondrogenic effect, suggesting that activation/deactivation of a specific set of key signaling molecules can control the expression of the chondrogenic phenotype. This study demonstrates the critical importance of mechanobiological factors in chondrogenesis suggesting that the architecture of the actin cytoskeleton and its contractility control key signaling molecules that determine whether the chondrocyte phenotype will be directed along a fibroblastic or chondrogenic path.  相似文献   

19.
PGE2 plays a critical role in colorectal carcinogenesis. We have previously shown that COX-2 expression and PGE2 synthesis are mediated by IGF-II/IGF-I receptor signaling in the Caco-2 cell line and that the pathway of phosphatidylinositol 3-kinase (PI3K)/Akt protects the cell from apoptosis. In the present study, we demonstrate that PGE2 has the ability to increase Ras and PI3K association and decrease the level of apoptosis in the same experimental system. The effect of PGE2 on PI3K/Ras association is dependent on the activation of EP4 receptor, the increase of cAMP levels, and the activation of PKA. In fact, treatment of cells with the PKA inhibitor H89 decreases the association of Ras and PI3K and Ras-associated PI3K activity. PKA inhibitor H89 is able to decrease threonine phosphorylation of Akt and to increase serine phosphorylation of Akt by p38 MAPK and counteracts the cytoprotective effect induced by PGE2. In addition, PGE2 is able to activate p38 MAPK and the inhibition of p38 MAPK, with SB203580 specific inhibitor or with dominant negative MKK6 kinase, is able to revert the apoptotic effect of H89 and serine phosphorylation of Akt. The effect of PGE2 on Caco-2 cell survival through PKA activation is mediated and regulated by the balance of threonine/serine phosphorylation of Akt by p38 kinase and PI3K. In conclusion, our data elucidate a novel mechanism for regulation of colon cancer cell survival and provide evidences for new combinatory treatments of colon cancer.  相似文献   

20.
Activation of group IV cytosolic phospholipase A(2) (gIV-PLA(2)) is the essential first step in the synthesis of inflammatory eicosanoids and in integrin-mediated adhesion of leukocytes. Prior investigations have demonstrated that phosphorylation of gIV-PLA(2) results from activation of at least two isoforms of mitogen-activated protein kinase (MAPK). We investigated the potential role of phosphoinositide 3-kinase (PI3K) in the activation of gIV-PLA(2) and the hydrolysis of membrane phosphatidylcholine in fMLP-stimulated human blood eosinophils. Transduction into eosinophils of Deltap85, a dominant negative form of class IA PI3K adaptor subunit, fused to an HIV-TAT protein transduction domain (TAT-Deltap85) concentration dependently inhibited fMLP-stimulated phosphorylation of protein kinase B, a downstream target of PI3K. FMLP caused increased arachidonic acid (AA) release and secretion of leukotriene C(4) (LTC(4)). TAT-Deltap85 and LY294002, a PI3K inhibitor, blocked the phosphorylation of gIV-PLA(2) at Ser(505) caused by fMLP, thus inhibiting gIV-PLA(2) hydrolysis and production of AA and LTC(4) in eosinophils. FMLP also caused extracellular signal-related kinases 1 and 2 and p38 MAPK phosphorylation in eosinophils; however, neither phosphorylation of extracellular signal-related kinases 1 and 2 nor p38 was inhibited by TAT-Deltap85 or LY294002. Inhibition of 1) p70 S6 kinase by rapamycin, 2) protein kinase B by Akt inhibitor, or 3) protein kinase C by Ro-31-8220, the potential downstream targets of PI3K for activation of gIV-PLA(2), had no effect on AA release or LTC(4) secretion caused by fMLP. We find that PI3K is required for gIV-PLA(2) activation and hydrolytic production of AA in activated eosinophils. Our data suggest that this essential PI3K independently activates gIV-PLA(2) through a pathway that does not involve MAPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号