首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Cell shape alterations and accompanying cytoskeletal changes have diverse effects on cell function. We have already shown that dedifferentiated chondrocytes have a round cell morphology and undergo redifferentiation when cultured on chitosan membrane. In the present study, we investigate the role of the cytoskeleton in chondrocyte redifferentiation. Chondrocytes obtained from a micromass culture of chick limb bud mesenchymal cells were subcultured four times. Immunofluorescence analysis of F-actin showed cortical distribution of the actin cytoskeleton upon subculture of dedifferentiated chondrocytes on chitosan membrane. Treatment with cytochalasin D disrupted the cortical actin ring formed during cultivation of chondrocytes on the chitosan membrane, and inhibited chondrocyte redifferentiation. Moreover, cytochalasin D inhibited the phosphorylation of Akt and p38 mitogen activated protein kinase (MAPK), induced during redifferentiation on chitosan membrane. LY294002, an inhibitor of phosphatidylinositol-3-OH-kinase (PI3K), suppressed chondrocyte redifferentiation. These findings suggest that integrity of the actin cytoskeleton is a crucial requirement for PI3K/Akt and p38 MAPK in chondrocyte redifferentiation.  相似文献   

2.
To investigate the effects of chitosan on the redifferentiation of dedifferentiated chondrocytes, we used chondrocytes obtained from a micromass culture system. Micromass cultures of chick wing bud mesenchymal cells yielded differentiated chondrocytes, but these dedifferentiated during serial monolayer subculture. When the dedifferentiated chondrocytes were cultured on chitosan membranes they regained the phenotype of differentiated chondrocytes. Expression of protein kinase C (PKC) increased during chondrogenesis, decreased during dedifferentiation, and increased again during redifferentiation. Treatment of the cultures with phorbol 12-myristate 13-acetate (PMA) inhibited redifferentiation and down-regulated PKC. In addition, the expression of p38 mitogen-activated protein (MAP) kinase increased during redifferentiation, and its inhibition suppressed redifferentiation. These findings establish a culture system for producing chondrocytes, point to a new role of chitosan in the redifferentiation of dedifferentiated chondrocytes, and show that PKC and p38 MAP kinase activities are required for chondrocyte redifferentiation in this model system.  相似文献   

3.
Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte-based regeneration therapy.  相似文献   

4.
Changes in the content of aggrecan, an essential proteoglycan of articular cartilage, have been implicated in the pathophysiology of osteoarthritis (OA), a prevalent age‐related, degenerative joint disease. Here, we examined the effect of SOX9 acetylation on ACAN transactivation in the context of osteoarthritis. Primary chondrocytes freshly isolated from degenerated OA cartilage displayed lower levels of ACAN mRNA and higher levels of acetylated SOX9 compared with cells from intact regions of OA cartilage. Degenerated OA cartilage presented chondrocyte clusters bearing diffused immunostaining for SOX9 compared with intact cartilage regions. Primary human chondrocytes freshly isolated from OA knee joints were cultured in monolayer or in three‐dimensional alginate microbeads (3D). SOX9 was hypo‐acetylated in 3D cultures and displayed enhanced binding to a ?10 kb ACAN enhancer, a result consistent with higher ACAN mRNA levels than in monolayer cultures. It also co‐immunoprecipitated with SIRT1, a major deacetylase responsible for SOX9 deacetylation. Finally, immunofluorescence assays revealed increased nuclear localization of SOX9 in primary chondrocytes treated with the NAD SIRT1 cofactor, than in cells treated with a SIRT1 inhibitor. Inhibition of importin β by importazole maintained SOX9 in the cytoplasm, even in the presence of NAD. Based on these data, we conclude that deacetylation promotes SOX9 nuclear translocation and hence its ability to activate ACAN.  相似文献   

5.
6.
Based on the critical role of actin in the maintenance of synaptic function, we examined whether expression of familial beta-amyloid precursor protein APP-V642I (IAPP) or mutant presenilin-1 L286V (mPS1) affects actin polymerization in rat septal neuronal cells. Expression of either IAPP or mPS1 but not wild-type amyloid precursor protein or presenilin-1induced formation of actin stress fibers in SN1 cells, a septal neuronal cell line. Treatment with beta-amyloid (Abeta) peptide also caused formation of actin stress fibers in SN1 cells and primary cultured hippocampal neurons. Treatment with a gamma-secretase inhibitor completely blocked formation of actin stress fibers, indicating that overproduction of Abeta peptide induces actin stress fibers. Because activation of the p38 mitogen-activated protein kinase (p38MAPK)-mitogen-associated protein kinase-associated protein kinase (MAPKAPK)-2-heat-shock protein 27 signaling pathway mediates actin polymerization, we explored whether Abeta peptide activates p38MAPK and MAPKAPK-2. Expression of IAPP or mPS1 induced activation of p38MAPK and MAPKAPK-2. Treatment with a p38MAPK inhibitor completely inhibited formation of actin stress fibers mediated by Abeta peptide, IAPP or mPS1. Moreover, treatment with a gamma-secretase inhibitor completely blocked activation of p38MAPK and MAPKAPK-2. In summary, our data suggest that overproduction of Abeta peptide induces formation of actin stress fibers through activation of the p38MAPK signaling pathway in septal neuronal cells.  相似文献   

7.
8.
9.
Nitric oxide (NO), reported as an important inducer of apoptosis, plays a considerable role in the pathogenetic mechanisms of articular diseases. This research aimed at investigating the role of p38 MAPK signal transduction pathway on apoptosis induced by NO in rabbit articular chondrocytes. In the present study, NO was produced by a novel NO donor NOC-18. Rabbit articular chondrocytes were cultured as monolayer, and the first passage cells were used for the experiments. We detected apoptosis induced by NO using Annexin V-FITC/PI flow cytometry and TUNEL assay. Measurement of caspase-3 has reflected its activity level. Western blotting was performed to show the protein expressions of p38, NF-kappaB, p53 and caspase-3. Furthermore, we examined the inhibitory effects in the NO pathway with p38-specific inhibitor SB203580. Treatment with NOC-18 caused accelerated apoptosis in a concentration dependent manner. This acceleration was able to be reduced when added to SB203580. Besides, the inhibitor could significantly decrease NO-induced p38, NF-kappaB, p53 and caspase-3 protein expressions, as well as caspase-3 intracellular activity (P<0.05). These results suggest that p38 MAPK signal transduction pathway is critical to NO-induced chondrocyte apoptosis, and p38 plays a role by way of stimulating NF-kappaB, p53 and caspase-3 activation.  相似文献   

10.
11.
12.
13.
Articular cartilage is an avascular tissue with poor regenerative capacity following injury, a contributing factor to joint degenerative disease. Cell‐based therapies for cartilage tissue regeneration have rapidly advanced; however, expansion of autologous chondrocytes in vitro using standard methods causes ‘dedifferentiation’ into fibroblastic cells. Mitogen‐activated protein kinase (MAPK) signalling is crucial for chondrocyte metabolism and matrix production, and changes in MAPK signals can affect the phenotype of cultured cells. We investigated the effects of inhibition of MAPK signalling on chondrocyte dedifferentiation during monolayer culture. Blockade of extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK) signalling caused a significant increase in cartilage gene expression, however, also caused up‐regulation of fibrotic gene expression. Inhibition of p38 MAPK (p38) caused a significant up‐regulation of collagen type II while suppressing collagen type I expression. P38 inhibition also resulted in consistently more organized secretion of collagen type II protein deposits on cell culture surfaces. Follow‐on pellet culture of treated cells revealed that MAPK inhibition reduced cell migration from the pellet. ERK and JNK inhibition caused more collagen type I accumulation in pellets versus controls while p38 inhibition strongly promoted collagen type II accumulation with no effect on collagen type I. Blockade of all three MAPKs caused increased GAG content in pellets. These results indicate a role for MAPK signalling in chondrocyte phenotype loss during monolayer culture, with a strong contribution from p38 signalling. Thus, blockade of p38 enhances chondrocyte phenotype in monolayer culture and may promote more efficient cartilage tissue regeneration for cell‐based therapies.  相似文献   

14.
The 29-kDa amino-terminal fibronectin fragment (FN-f) has a potent chondrolytic effect and is thought to be involved in cartilage degradation in arthritis. However, little is known about signal transduction pathways that are activated by FN-f. Here we demonstrated that FN-f induced nitric oxide (NO) production from human articular chondrocytes. Expression of inducible nitric-oxide synthase (iNOS) mRNA and NO production were observed at 6 and 48 h after FN-f treatment, respectively. Interleukin-1beta (IL-1beta) mRNA up-regulation was stimulated by FN-f in human chondrocytes. To address the possibility that FN-f-induced NO release is mediated by IL-1beta production, the effect of IL-1 receptor antagonist (IL-1ra) was determined. IL-1ra partially inhibited FN-f-induced NO release although it almost completely inhibited IL-1beta-induced NO release. Tyrosine phosphorylation of focal adhesion kinase was induced transiently by FN-f treatment. Blocking antibodies to alpha(5) or beta(1) integrin and Arg-Gly-Asp-containing peptides did not inhibit FN-f-induced NO production. PP2, a Src family kinase inhibitor, or cytochalasin D, which selectively disrupts the network of actin filaments, inhibited both FAK phosphorylation and NO production induced by FN-f, but the phosphatidylinositol 3-kinase inhibitor wortmannin had no effect. Analysis of mitogen-activated protein kinases (MAPK) showed activation of extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase, and p38 MAPK. High concentrations of SB203580, which inhibit both JNK and p38 MAPK, and PD98059 a selective inhibitor of MEK1/2 that blocks ERK activation, inhibited FN-f induced NO production. These data suggest that focal adhesion kinase and MAPK mediate FN-f induced activation of human articular chondrocytes.  相似文献   

15.
The chondrocyte is solely responsible for synthesis and maintenance of the resilient articular cartilage matrix that gives this load-bearing tissue its mechanical integrity. When the differentiated cell phenotype is lost, the matrix becomes compromised and cartilage function begins to fail. We have recently shown that hypoxia promotes the differentiated phenotype through hypoxia-inducible factor 2alpha (HIF-2alpha)-mediated SOX9 induction of the main matrix genes. However, to date, only a few genes have been shown to be SOX9 targets, while little is known about SOX9-independent regulators. We therefore performed a detailed microarray study to address these issues. Analysis involved 35 arrays on chondrocytes obtained from seven healthy, non-elderly human cartilage samples. Genes were selected that were down-regulated with serial passage in culture (as this causes loss of the differentiated phenotype) and subsequently up-regulated in hypoxia. The importance of key findings was further probed using the technique of RNA interference on these human articular chondrocytes. Our results show that hypoxia has a broader beneficial effect on the chondrocyte phenotype than has been previously described. Of special note, we report new hypoxia-inducible and SOX9-regulated genes, Gdf10 and Chm-I. In addition, Mig6 and InhbA were induced by hypoxia, predominantly via HIF-2alpha, but were not regulated by SOX9. Therefore, hypoxia, and more specifically HIF-2alpha, promotes both SOX9-dependent and -independent factors important for cartilage homeostasis. HIF-2alpha may therefore represent a new and promising therapeutic target for cartilage repair.  相似文献   

16.
Indian hedgehog (Ihh) is produced by growth plate pre-hypertrophic chondrocytes, and is an important regulator of endochondral ossification. However, little is known about the regulation of Ihh in chondrocytes. We have examined the role of integrins and mitogen-activated protein (MAP) kinases in Ihh mRNA regulation in CFK-2 chondrocytic cells. Cells incubated with the beta1-integrin blocking antibody had decreased Ihh mRNA levels, which was accompanied by decreases of activated extracellular signal-regulated kinases (ERK1/2) and activated p38 MAPK. Ihh mRNA levels were also inhibited by U0126, a specific MEK1/2 inhibitor, or SB203580, a specific p38 MAPK inhibitor. Cells transfected with constitutively active MEK1 or MKK3 had increased Ihh mRNA levels, which were diminished by dominant-negative MEK1, p38alpha or p38beta. Stimulation of the PTH1R with 10(-8) M rPTH (1-34) resulted in dephosphorylation of ERK1/2 that was evident within 15 min and sustained for 1 h, as well as transient dephosphorylation of p38 MAPK that was maximal after 25 min. PTH stimulation decreased Ihh mRNA levels, and this effect was blocked by transfecting the cells with constitutively active MEK1 but not by MKK3. These studies demonstrated that activation of ERK1/2 or p38 MAPK increased Ihh mRNA levels. Stimulation of the PTH1R or blocking of beta1-integrin resulted in inhibition of ERK1/2 and p38 MAPK and decreased levels of Ihh mRNA. Our data demonstrate the central role of MAPK in the regulation of Ihh in CFK-2 cells.  相似文献   

17.
The cDNA probe H-9, originally constructed to recognize a portion of the mRNA for lapine synovial collagenase, also hybridized with a RNA of the same size (approximately 2.0 kb) isolated from activated lapine articular chondrocytes. Primary, monolayer cultures of lapine articular chondrocytes did not contain detectable amounts of this RNA, nor did they secrete measurable amounts of collagenase into their culture media. Following exposure to synovial factors, the chondrocytes contained high levels of collagenase mRNA, while their conditioned media had considerable collagenolytic activity. Collagenase mRNA started to appear in chondrocytes 3-5 h after treatment with the synovial material. Maximum levels occurred after 12-24 h. Recombinant human interleukin-1 also induced the appearance of this mRNA. We conclude that chondrocyte collagenase is likely to be the same gene product as synovial collagenase, and that its regulation by lapine articular chondrocytes probably occurs at a pretranslational level.  相似文献   

18.
Parathyroid hormone (PTH) and its related peptide regulate endochondral ossification by inhibiting chondrocyte differentiation toward hypertrophy. However, the intracellular pathway for transducing PTH/PTH-related peptide signals in chondrocytes remains unclear. Here, we show that this pathway is mediated by mitogen-activated protein kinase (MAPK) p38. Incubation of hypertrophic chondrocytes with PTH (1-34) induces an inhibition of p38 kinase activity in a time- and dose-dependent manner. Inhibition of protein kinase C prevents PTH-induced p38 MAPK inhibition, whereas inhibition of protein kinase A has no effect. Thus, protein kinase C, but not protein kinase A, is required for the inhibition of p38 MAPK by PTH. Treatment of hypertrophic chondrocytes by PTH or by p38 MAPK inhibitor SB203580 up-regulates Bcl-2, suggesting that Bcl-2 lies downstream of p38 MAPK in the PTH signaling pathway. Inhibition of p38 MAPK in hypertrophic chondrocytes by either PTH, SB303580, or both together leads to a decrease of hypertrophic marker type X collagen mRNA and an increase of the expression of prehypertrophic marker cartilage matrix protein. Therefore, inhibition of p38 converts a hypertrophic cell phenotype to a prehypertrophic one, thereby preventing precocious chondrocyte hypertrophy. Taken together, these data suggest a major role for p38 MAPK in transmitting PTH signals to regulate chondrocyte differentiation.  相似文献   

19.
20.
Dilinoleoylphosphatidylcholine (DLPC), the active component of polyenylphosphatidylcholine extracted from soybeans, decreases collagen accumulation induced by TGF-beta1 in cultured hepatic stellate cells (HSCs). Because DLPC exerts antioxidant effects and TGF-beta1 generates oxidative stress, we evaluated whether the antifibrogenic effect of DLPC is linked to its antioxidant action. In passage 1 culture of rat HSCs, TGF-beta1 induced a concentration-dependent increase in procollagen-alpha(1)(I) mRNA levels and enhanced intracellular H(2)O(2) and superoxide anion formation and lipid peroxidation but decreased GSH levels. These changes were prevented by DLPC. Upregulation of collagen mRNA by TGF-beta1 was likewise inhibited by catalase and p38 MAPK inhibitor SB-203580, suggesting involvement of H(2)O(2) and p38 MAPK signaling in this process. TGF-beta1 or addition of H(2)O(2) to HSCs activated p38 MAPK with a rise in procollagen mRNA level; these changes were blocked by catalase and SB-203580 and likewise by DLPC. alpha-Smooth muscle actin abundance in HSCs was not altered by TGF-beta1 treatment (with or without DLPC), indicating that downregulation of procollagen mRNA by DLPC was not due to alteration in HSC activation. These results demonstrate that DLPC prevents TGF-beta1-induced increase in collagen mRNA by inhibiting generation of oxidative stress and associated H(2)O(2)-dependent p38 MAPK activation, which explains its antifibrogenic effect. DLPC, an innocuous phospholipid, may be considered for prevention and treatment of liver fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号