首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
3.
4.
The mammalian INO80 remodelling complex facilitates homologous recombination (HR), but the mechanism by which it does this is unclear. Budding yeast INO80 can remove H2A.Z/H2B dimers from chromatin and replace them with H2A/H2B dimers. H2A.Z is actively incorporated at sites of damage in mammalian cells, raising the possibility that H2A.Z may need to be subsequently removed for resolution of repair. Here, we show that H2A.Z in human cells is indeed rapidly removed from chromatin flanking DNA damage by INO80. We also report that the histone chaperone ANP32E, which is implicated in removing H2AZ from chromatin, similarly promotes HR and appears to work on the same pathway as INO80 in these assays. Importantly, we demonstrate that the HR defect in cells depleted of INO80 or ANP32E can be rescued by H2A.Z co‐depletion, suggesting that H2A.Z removal from chromatin is the primary function of INO80 and ANP32E in promoting homologous recombination.  相似文献   

5.
6.
7.
8.
The mitogen-activated protein kinase (MAPK) signalling pathways play pivotal roles in cellular processes such as proliferation, apoptosis, gene regulation, differentiation, and cell motility. The typical mammalian MAPK pathways ERK1/2, JNK, p38MAPK, and ERK5 operate through a concatenation of three successive phosphorylation events mediated by a MAPK kinase kinase, a MAPK kinase, and a MAPK. MAPKs phosphorylate substrates with distinct functions, including other protein kinases referred to as MAPK-activated protein kinases. One family of related MAPK-activated protein kinases includes MK2, MK3, and MK5. While it is generally accepted that MK2 and MK3 are bona fide substrates for p38MAPK, the genuineness of MK5 as a p38MAPK substrate is disputed. This review summarizes the findings pro and contra an authentic p38MAPK-MK5 relationship, discusses possible explanations for these discrepancies, and proposes experiments that may help to unequivocally clarify whether MK5 is indeed a substrate for p38MAPK.  相似文献   

9.
10.
11.
12.
13.
H2A.Z is a highly conserved histone variant in all species. The chromatin deposition of H2A.Z is specifically catalyzed by the yeast chromatin remodeling complex SWR1 and its mammalian counterpart SRCAP. However, the mechanism by which H2A.Z is preferentially recognized by non-histone proteins remains elusive. Here we identified Anp32e, a novel higher eukaryote-specific histone chaperone for H2A.Z. Anp32e preferentially associates with H2A.Z-H2B dimers rather than H2A-H2B dimers in vitro and in vivo and dissociates non-nucleosomal aggregates formed by DNA and H2A-H2B. We determined the crystal structure of the Anp32e chaperone domain (186-232) in complex with the H2A.Z-H2B dimer. In this structure, the region containing Anp32e residues 214-224, which is absent in other Anp32 family proteins, specifically interacts with the extended H2A.Z αC helix, which exhibits an unexpected conformational change. Genome-wide profiling of Anp32e revealed a remarkable co-occupancy between Anp32e and H2A.Z. Cells overexpressing Anp32e displayed a strong global H2A.Z loss at the +1 nucleosomes, whereas cells depleted of Anp32e displayed a moderate global H2A.Z increase at the +1 nucleosomes. This suggests that Anp32e may help to resolve the non-nucleosomal H2A.Z aggregates and also facilitate the removal of H2A.Z at the +1 nucleosomes, and the latter may help RNA polymerase II to pass the first nucleosomal barrier.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Notechis scutatus scutatus notexin induced apoptotic death of SK‐N‐SH cells accompanied with downregulation of Bcl‐xL, upregulation of Bak, mitochondrial depolarization, and ROS generation. Upon exposure to notexin, Ca2+‐mediated JNK and p38 MAPK activation were observed in SK‐N‐SH cells. Production of ROS was a downstream event followed by Ca2+‐mediated mitochondrial alteration. Notexin‐induced cell death, mitochondrial depolarization, and ROS generation were suppressed by SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor). Moreover, phospho‐p38 MAPK and phospho‐JNK were proved to be involved in Bcl‐xL degradation, and overexpression of Bcl‐xL attenuated the cytotoxic effect of notexin. Bak upregulation was elicited by p38 MAPK‐mediated ATF‐2 activation and JNK‐mediated c‐Jun activation. Suppression of Bak upregulation by ATF‐2 siRNA or c‐Jun siRNA attenuated notexin‐evoked mitochondrial depolarization and rescued viability of notexin‐treated cells. Taken together, our data indicate that notexin‐induced apoptotic death of SK‐N‐SH cells is mediated through mitochondrial alteration triggering by Ca2+‐evoked p38 MAPK/ATF‐2 and JNK/c‐Jun signaling pathways. J. Cell. Physiol. 222:177–186, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号