首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obesity in adolescents is associated with metabolic risk factors for type 2 diabetes, particularly insulin resistance and excessive accumulation of intrahepatic triglyceride (IHTG). The purpose of this study was to evaluate the effect of moderate weight loss on IHTG content and insulin sensitivity in obese adolescents who had normal oral glucose tolerance. Insulin sensitivity, assessed by using the hyperinsulinemic–euglycemic clamp technique in conjunction with stable isotopically labeled tracer infusion, and IHTG content, assessed by using magnetic resonance spectroscopy, were evaluated in eight obese adolescents (BMI ≥95th percentile for age and sex; age 15.3 ± 0.6 years) before and after moderate diet‐induced weight loss (8.2 ± 2.0% of initial body weight). Weight loss caused a 61.6 ± 8.5% decrease in IHTG content (P = 0.01), and improved both hepatic (56 ± 18% increase in hepatic insulin sensitivity index, P = 0.01) and skeletal muscle (97 ± 45% increase in insulin‐mediated glucose disposal, P = 0.01) insulin sensitivity. Moderate diet‐induced weight loss decreases IHTG content and improves insulin sensitivity in the liver and skeletal muscle in obese adolescents who have normal glucose tolerance. These results support the benefits of weight loss therapy in obese adolescents who do not have evidence of obesity‐related metabolic complications during a standard medical evaluation.  相似文献   

2.
Objective: It has been hypothesized that excessive fatty acid availability contributes to steatosis and the metabolic abnormalities associated with nonalcoholic fatty liver disease (NAFLD). The purpose of this study was to evaluate whether adipose tissue lipolytic activity and the rate of fatty acid release into plasma are increased in obese adolescents with NAFLD. Methods: Palmitate kinetics were determined in obese adolescents with normal (n = 9; BMI = 37 ± 2 kg/m2; intrahepatic triglyceride (IHTG) ≤5.5% of liver volume) and increased (n = 9; BMI = 36 ± 2 kg/m2; IHTG ≥ 10% of liver volume) IHTG content during the basal state (postabsorptive condition) and during physiological hyperinsulinemia (postprandial condition). Both groups were matched on body weight, BMI, percent body fat, age, sex, and Tanner stage. The hyperinsulinemic‐euglycemic clamp procedure, in conjunction with a deuterated palmitate tracer infusion, was used to determine free‐fatty acid (FFA) kinetics, and magnetic resonance spectroscopy was used to determine IHTG content. Results: The rate of whole‐body palmitate release into plasma was greater in subjects with NAFLD than those with normal IHTG content during basal conditions, (87 ± 7 vs. 127 ± 13 µmol/min; P < 0.01) and during physiological hyperinsulinemia, (24 ± 2 vs. 44 ± 8 µmol/min; P < 0.01). Discussion: These results demonstrate that adipose tissue lipolytic activity is increased in obese adolescents with NAFLD and results in an increase in the rate of fatty acid release into plasma throughout the day. This continual excess in fatty acid flux supports the hypothesis that adipose insulin resistance is involved in the pathogenesis of steatosis and contributes to the metabolic complications associated with NAFLD.  相似文献   

3.
Pericardial adipose tissue (PAT) is positively associated with fatty liver and obesity‐related insulin resistance. Because PAT is a well‐known marker of visceral adiposity, we investigated the impact of weight loss on PAT and its relationship with liver fat and insulin sensitivity independently of body fat distribution. Thirty overweight nondiabetic women (BMI 28.2–46.8 kg/m2, 22–41 years) followed a 14.2 ± 4‐weeks low‐calorie diet. PAT, abdominal subcutaneous (SAT), and visceral fat volumes (VAT) were measured by magnetic resonance imaging (MRI), total fat mass, trunk, and leg fat by dual‐energy X‐ray absorptiometry and intrahepatocellular lipids (IHCL) by (1)H‐magnetic resonance spectroscopy. Euglycemic hyperinsulinemic clamp (M) and homeostasis model assessment of insulin resistance (HOMAIR) were used to assess insulin sensitivity or insulin resistance. At baseline, PAT correlated with VAT (r = 0.82; P < 0.001), IHCL (r = 0.46), HOMAIR (r = 0.46), and M value (r = ?0.40; all P < 0.05). During intervention, body weight decreased by ?8.5%, accompanied by decreases of ?12% PAT, ?13% VAT, ?44% IHCL, ?10% HOMA2‐%B, and +24% as well as +15% increases in HOMA2‐%S and M, respectively. Decreases in PAT were only correlated with baseline PAT and the loss in VAT (r = ?0.56; P < 0.01; r = 0.42; P < 0.05) but no associations with liver fat or indexes of insulin sensitivity were observed. Improvements in HOMAIR and HOMA2‐%B were only related to the decrease in IHCL (r = 0.62, P < 0.01; r = 0.65, P = 0.002) and decreases in IHCL only correlated with the decrease in VAT (r = 0.61, P = 0.004). In conclusion, cross‐sectionally PAT is correlated with VAT, liver fat, and insulin resistance. Longitudinally, the association between PAT and insulin resistance was lost suggesting no causal relationship between the two.  相似文献   

4.
Black South African women are more insulin resistant than BMI‐matched white women. The objective of the study was to characterize the determinants of insulin sensitivity in black and white South African women matched for BMI. A total of 57 normal‐weight (BMI 18–25 kg/m2) and obese (BMI > 30 kg/m2) black and white premenopausal South African women underwent the following measurements: body composition (dual‐energy X‐ray absorptiometry), body fat distribution (computerized tomography (CT)), insulin sensitivity (SI, frequently sampled intravenous glucose tolerance test), dietary intake (food frequency questionnaire), physical activity (Global Physical Activity Questionnaire), and socioeconomic status (SES, demographic questionnaire). Black women were less insulin sensitive (4.4 ± 0.8 vs. 9.5 ± 0.8 and 3.0 ± 0.8 vs. 6.0 ± 0.8 × 10?5/min/(pmol/l), for normal‐weight and obese women, respectively, P < 0.001), but had less visceral adipose tissue (VAT) (P = 0.051), more abdominal superficial subcutaneous adipose tissue (SAT) (P = 0.003), lower SES (P < 0.001), and higher dietary fat intake (P = 0.001) than white women matched for BMI. SI correlated with deep and superficial SAT in both black (R = ?0.594, P = 0.002 and R = 0.495, P = 0.012) and white women (R = ?0.554, P = 0.005 and R = ?0.546, P = 0.004), but with VAT in white women only (R = ?0.534, P = 0.005). In conclusion, body fat distribution is differentially associated with insulin sensitivity in black and white women. Therefore, the different abdominal fat depots may have varying metabolic consequences in women of different ethnic origins.  相似文献   

5.
Objective: African Americans (AAs) have less visceral and more subcutaneous fat than whites, thus the relationship of adiponectin and leptin to body fat and insulin sensitivity in AA may be different from that in whites. Methods and Procedures: Sixty‐nine non‐diabetic AA (37 men and 32 women), aged 33 ± 1 year participated. The percent fat was determined by dual‐energy X‐ray absorptiometry, abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) volume by computerized tomography (CT), and insulin sensitivity by homeostasis model assessment (HOMA). Results: VAT was greater in men (1,619 ± 177 cm3 vs. 1,022 ± 149 cm3; P = 0.01); women had a higher percentage of body fat (34.1 ± 1.4 vs. 24.0 ± 1.2; P < 0.0001), adiponectin (15.8 ± 1.2 μg/ml vs. 10.4 ± 0.8 μg/ml; P = 0.0004) and leptin (23.2 ± 15.8 ng/ml vs. 9.2 ± 7.2 ng/ml; P < 0.0001). SAT and HOMA did not differ because of the sex. Adiponectin negatively correlated with VAT (r = ?0.41, P < 0.05) in men, and with VAT (r = ?0.55, P < 0.01), and SAT (r = ?0.35, P < 0.05) in women. Adiponectin negatively correlated with HOMA in men (r = ?0.38, P < 0.05) and women (r = ?0.44, P < 0.05). In multiple regression, sex (P = 0.02), HOMA (P = 0.03) and VAT (P = 0.003) were significant predictors of adiponectin (adj R 2 = 0.38, P < 0.0001). Leptin positively correlated with VAT, SAT, percent fat and HOMA in men (r = 0.79, r = 0.86, r = 0.89, and r = 0.53; P < 0.001) and women (r = 0.62, r = 0.75, r = 0.83, and r = 0.55; P < 0.01). In multiple regression VAT (P = 0.04), percent body fat (P < 0.0001) and sex (P = 0.01), but not HOMA were significant predictors of serum leptin (adj R 2= 0.82, P < 0.0001). Discussion: The relationship of adiponectin and leptin to body fat content and distribution in AA is dependent on sex. Although VAT and insulin sensitivity are significant determinants of adiponectin, VAT and percent body fat determine leptin.  相似文献   

6.
Earlier cross‐sectional studies found that a single magnetic resonance imaging (MRI) slice predicts total visceral and subcutaneous adipose tissue (VAT and SAT) volumes well. We sought to investigate the accuracy of trunk single slice imaging in estimating changes of total VAT and SAT volume in 123 overweight and obese subjects who were enrolled in a 24‐week CB‐1R inverse agonist clinical trial (weight change, ?7.7 ± 5.3 kg; SAT change, ?5.4 ± 4.9 l, VAT change, ?0.8 ± 1.0 l). VAT and SAT volumes at baseline and 24 weeks were derived from whole‐body MRI images. The VAT area 5–10 cm above L4—L5 (A+5–10) (R2 = 0.59–0.70, P < 0.001) best predicted changes in VAT volume but the strength of these correlations was significantly lower than those at baseline (R2 = 0.85–0.90, P < 0.001). Furthermore, the L4—L5 slice poorly predicted VAT volume changes (R2 = 0.24–0.29, P < 0.001). Studies will require 44–69% more subjects if (A+5–10) is used and 243–320% more subjects if the L4—L5 slice is used for equivalent power of multislice total volume measurements of VAT changes. Similarly, single slice imaging predicts SAT loss less well than cross‐sectional SAT (R2 = 0.31–0.49 vs. R2 = 0.52–0.68, P < 0.05). Results were the same when examined in men and women separately. A single MRI slice 5–10 cm above L4—L5 is more powerful than the traditionally used L4—L5 slice in detecting VAT changes, but in general single slice imaging poorly predicts VAT and SAT changes during weight loss. For certain study designs, multislice imaging may be more cost‐effective than single slice imaging in detecting changes for VAT and SAT.  相似文献   

7.
Visceral adipose tissue (VAT) is associated with increased risk for cardiovascular disease, and therefore, accurate methods to estimate VAT have been investigated. Computerized tomography (CT) is the gold standard measure of VAT, but its use is limited. We therefore compared waist measures and two dual‐energy X‐ray absorptiometry (DXA) methods (Ley and Lunar) that quantify abdominal regions of interest (ROIs) to CT‐derived VAT in 166 black and 143 white South African women. Anthropometry, DXA ROI, and VAT (CT at L4–L5) were measured. Black women were younger (P < 0.001), shorter (P < 0.001), and had higher body fat (P < 0.05) than white women. There were no ethnic differences in waist (89.7 ± 18.2 cm vs. 90.1 ± 15.6 cm), waist:height ratio (WHtR, 0.56 ± 0.12 vs. 0.54 ± 0.09), or DXA ROI (Ley: 2.2 ± 1.5 vs. 2.1 ± 1.4; Lunar: 2.3 ± 1.4 vs. 2.3 ± 1.5), but black women had less VAT, after adjusting for age, height, weight, and fat mass (76 ± 34 cm2 vs. 98 ± 35 cm2; P < 0.001). Ley ROI and Lunar ROI were correlated in black (r = 0.983) and white (r = 0.988) women. VAT correlated with DXA ROI (Ley: r = 0.729 and r = 0.838, P < 0.01; Lunar: r = 0.739 and r = 0.847, P < 0.01) in black and white women, but with increasing ROI android fatness, black women had less VAT. Similarly, VAT was associated with waist (r = 0.732 and r = 0.836, P < 0.01) and WHtR (r = 0.721 and r = 0.824, P < 0.01) in black and white women. In conclusion, although DXA‐derived ROIs correlate well with VAT as measured by CT, they are no better than waist or WHtR. Neither DXA nor anthropometric measures are able to accurately distinguish between high and low levels of VAT between population groups.  相似文献   

8.
Although waist circumference (WC) is a marker of visceral adipose tissue (VAT), WC cut‐points are based on BMI category. We compared WC‐BMI and WC‐VAT relationships in blacks and whites. Combining data from five studies, BMI and WC were measured in 1,409 premenopausal women (148 white South Africans, 607 African‐Americans, 186 black South Africans, 445 West Africans, 23 black Africans living in United States). In three of five studies, participants had VAT measured by computerized tomography (n = 456). Compared to whites, blacks had higher BMI (29.6 ± 7.6 (mean ± s.d.) vs. 27.6 ± 6.6 kg/m2, P = 0.001), similar WC (92 ± 16 vs. 90 ± 15 cm, P = 0.27) and lower VAT (64 ± 42 vs. 101 ± 59 cm2, P < 0.001). The WC‐BMI relationship did not differ by race (blacks: β (s.e.) WC = 0.42 (.01), whites: β (s.e.) WC = 0.40 (0.01), P = 0.73). The WC‐VAT relationship was different in blacks and whites (blacks: β (s.e.) WC = 1.38 (0.11), whites: β (s.e.) WC = 3.18 (0.21), P < 0.001). Whites had a greater increase in VAT per unit increase in WC. WC‐BMI and WC‐VAT relationships did not differ among black populations. As WC‐BMI relationship did not differ by race, the same BMI‐based WC guidelines may be appropriate for black and white women. However, if WC is defined by VAT, race‐specific WC thresholds are required.  相似文献   

9.
It is suggested that a large breast size among women may predict type 2 diabetes risk independent of BMI and waist circumference (WC). The purpose of this study was to determine the independent associations of breast volume with cardiometabolic risk factors and regional fat distribution. A total of 92 overweight or obese premenopausal women (age = 39.9 ± 6.8 years) underwent full‐body magnetic resonance imaging (MRI) for the assessment of breast volume, visceral adipose tissue (VAT), abdominal and lower‐body subcutaneous AT (SAT), and intermuscular AT (IMAT), a 2‐h oral glucose tolerance test (OGTT), and fasting phlebotomy for assessment of triglyceride, total, high‐density lipoprotein–, and low‐density lipoprotein–cholesterol levels. Breast volume was not associated with any of the cardiometabolic risk factors assessed (P > 0.05). However, VAT was consistently associated with a number of cardiometabolic risk factors (OGTT glucose, OGTT insulin, and triglyceride levels) after controlling for age, BMI, WC, breast volume, and the other AT depots. In univariate models, breast volume was positively associated with VAT, IMAT, and abdominal and lower‐body SAT (P < 0.05). After controlling for age, BMI, and WC level, breast volume remained positively associated with VAT and IMAT (P < 0.05), such that women with the highest breast volume had ~1.1 and 1.3 kg more VAT and IMAT, respectively, but no more abdominal or lower‐body SAT, by comparison to women with the smallest breast volume. Thus, the previously documented association between breast size and type 2 diabetes risk may be in part explained by excess VAT and/or IMAT deposition.  相似文献   

10.

Objective:

Clinical evidences reported subclinical alterations of thyroid function in obesity, although the relationship between thyroid status and obesity remains unclear. We cross‐sectionally investigated the influence of metabolic features on hypothalamic–pituitary–thyroid axis in obesity.

Design and Methods:

We enrolled 60 euthyroid subjects with no history of type 2 diabetes mellitus and assessed the relationship of thyroid function with insulin resistance, measured using euglycemic clamp, and abdominal fat volume, quantified by computed tomography scan (CT scan). Thyroid stimulating hormone (TSH) correlated with BMI (r = 0.46; P = 0.02), both visceral (r = 0.58; P = 0.02) and subcutaneous adipose tissue volumes (r = 0.43; P = 0.03) and insulin resistance (inverse relationship with insulin sensitivity–glucose uptake: r = ?0.40; P = 0.04).

Results:

After performing multivariate regression, visceral adipose tissue volume was found to be the most powerful predictor of TSH (β = 3.05; P = 0.01), whereas glucose uptake, high‐density lipoprotein (HDL) cholesterol, low‐density lipoprotein (LDL) cholesterol, subcutaneous adipose tissue volume, and triglycerides were not. To further confirm the hypothesis that high‐normal TSH values could be dependent on adipose tissue, and not on insulin resistance, we restricted our analyses to moderately obese subjects' BMI ranging 30‐35 kg/m2. This subgroup was then divided as insulin resistant and insulin sensitive according to the glucose uptake (≤ or >5 mg·kg?1·min?1, respectively). We did not find any statistical difference in TSH (insulin resistant: 1.62 ± 0.65 µU/ml vs. insulin sensitive: 1.46 ± 0.48; P = not significant) and BMI (insulin resistant: 32.2 ± 1.6 kg/m2 vs. insulin sensitive: 32.4 ± 1.4; P = not significant), thus confirming absence of correlation between thyroid function and insulin sensitivity per se.

Conclusion:

Our study suggests that the increase in visceral adipose tissue is the best predictor of TSH concentration in obesity, independently from the eventual concurrent presence of insulin resistance.
  相似文献   

11.
Objective: High visceral adipose tissue (VAT) and high liver fat (LF) are associated with the metabolic syndrome and diabetes. We studied changes in these two fat depots during weight loss and analyzed whether VAT and LF at baseline predict the response to lifestyle intervention. Research Methods and Procedures: One hundred twelve subjects (48 men and 64 women; age, 46 ± 11 years; BMI, 29.2 ± 4.4 kg/m2) were studied after a follow up‐time of 264 ± 60 (SD) days. Insulin sensitivity was estimated from the oral glucose tolerance test. Body fat depots were quantified using magnetic resonance imaging and spectroscopy. Results: Cross‐sectionally high VAT (r = ?0.22, p = 0.02) and high LF (r = ?0.36, p < 0.0001) were independently associated with low insulin sensitivity. With intervention, BMI (?3.0%), VAT (?12.0%), and LF (?33.0%) were reduced (all p < 0.001). Insulin sensitivity was improved (+17%, p < 0.01). The changes in BMI (r = ?0.41), VAT (r = ?0.28), and LF (r = ?0.39) were associated with the increase in insulin sensitivity (all p < 0.01). High VAT (r = ?0.28, p = 0.01) and high LF (r = ?0.38, p < 0.01) at baseline were associated with a lesser increase in insulin sensitivity. Discussion: Baseline values and changes in BMI, VAT, and LF are related to changes in insulin sensitivity during lifestyle intervention. Subjects with high VAT and LF have a lower chance of profiting from lifestyle intervention and may require intensified lifestyle prevention strategies or even pharmacological approaches to improve insulin sensitivity.  相似文献   

12.
Osteocalcin (OCN), a marker of osteoblast activity, has been implicated in the regulation of energy metabolism by the skeleton and thus may affect body fat measures.

Objective:

To examine the relationships of OCN to body fat measures and whether they vary according to markers of energy and vitamin D metabolism.

Design and Methods:

Data were obtained from 58 obese adolescents aged 13‐17.9 years (38 females, 8 black or African‐American). Total fat mass (FM) [dual X‐ray absorptiometry (DXA)] and visceral adipose tissue (VAT) [computerized axial tomography (CT)] were calculated. Blood tests included leptin, OCN, 25‐hydroxyvitamin D [25(OH)D], parathyroid hormone (PTH), thyroid function tests, and triglycerides. Markers of glucose metabolism were obtained from fasting and OGTT samples.

Results and Conclusions:

Adolescents with 25(OH)D <20 ng mL?1 were considered deficient (n = 17/58); none had high PTH (PTH ≥ 65 pg mL?1). OCN was associated with lower VAT (?84.27 ± 33.89 mm2) and BMI (?0.10 ± 0.05 kg m?2), not FM (P = 0.597) in a core model including age, sex, race, geographic latitude, summer, height z‐score, and tanner stage. Adding 25(OH)D deficiency and PTH attenuated the inverse association of OCN to VAT. There was a significant interaction of OCN and 25(OH)D deficiency on FM (0.37 ± 0.18 kg, P = 0.041) and BMI (0.28 ± 0.10 kg m?2, P = 0.007) in this adjusted model, which was further explained by leptin. Adding A1C to the core model modified the relationship of OCN to VAT (?93.08 ± 35.05 mm2, P = 0.011), which was further explained by HOMA‐IR. In summary, these findings provide initial evidence for a relationship between OCN and body fat measures that is dependent on energy metabolism and vitamin D status among obese adolescents.
  相似文献   

13.
The β2‐adrenergic receptor (ADRB2) mediates obesity, cardiorespiratory fitness, and insulin resistance. We examined the hypothesis that ADRB2 Arg16Gly‐Gln27Glu haplotype is associated with body composition, glucose tolerance, and insulin sensitivity in obese, postmenopausal women. Obese (>35% body fat), postmenopausal (age 45–75 years) women (n = 123) underwent genotyping, dual‐energy X‐ray absorptiometry, and computed tomography scans, exercise testing (VO2max), 2‐h oral glucose tolerance tests (OGTTs), and hyperinsulinemic‐euglycemic clamps (80 mU/m2/min). Analysis of covariance (ANCOVA) tested for differences among haplotypes, with race, % body fat, and VO2max as covariates. We found that ADRB2 haplotype was independently associated with % body fat, abdominal fat distribution, VO2max, insulin sensitivity (M/ΔInsulin), and glucose tolerance (ANOVA, P < 0.05 for all). Women homozygous for Gly16–Gln27 haplotype had the highest % body fat (52.7 ± 1.9%), high abdominal fat, low M/ΔInsulin (0.49 ± 0.08 mg/kg/min/pmol/l/102), and impaired glucose tolerance (IGT) during an OGTT (G120 = 10.2 ± 0.9 mmol/l). Women homozygous for Gly16–Glu27 haplotype also had low M/ΔInsulin (0.51 ± 0.05 mg/kg/min/pmol/l/102) and IGT (G120 = 8.2 ± 0.7 mmol/l). Subjects with Arg16–Gln27/Gly16–Gln27 haplotype combination had the highest VO2max (1.84 ± 0.07 l/min) and M/ΔInsulin (0.7 ± 0.04 mg/kg/min/pmol/l/102), and normal glucose tolerance (G120 = 6.4 ± 0.4 mmol/l), despite being obese. These data show associations of the ADRB2 Arg16Gly‐Gln27Glu haplotype with VO2max and body composition, and an independent association with glucose metabolism, which persists after controlling for body composition and fitness. This suggests that ADRB2 haplotypes may mediate insulin action, glucose tolerance, and potentially risk for type 2 diabetes mellitus (T2DM) in obese, postmenopausal women.  相似文献   

14.
Both obesity and aging increase intrahepatic fat (IHF) content, which leads to nonalcoholic fatty liver disease (NAFLD) and metabolic abnormalities such as insulin resistance. We evaluated the effects of diet and diet in conjunction with exercise on IHF content and associated metabolic abnormalities in obese older adults. Eighteen obese (BMI ≥30 kg/m2) older (≥65 years old) adults completed a 6‐month clinical trial. Participants were randomized to diet (D group; n = 9) or diet + exercise (D+E group; n = 9). Primary outcome was IHF quantified by magnetic resonance spectroscopy (MRS). Secondary outcomes included insulin sensitivity (assessed by oral glucose tolerance), body composition (assessed by dual‐energy X‐ray absorptiometry), physical function (VO2peak and strength), glucose, lipids, and blood pressure (BP). Body weight (D: ?9 ± 1%, D+E: ?10 ± 2%, both P < 0.05) and fat mass (D: ?13 ± 3%, D+E ?16 ± 3%, both P < 0.05) decreased in both groups but there was no difference between groups. IHF decreased to a similar extent in both groups (D: ?46 ± 11%, D+E: ?45 ± 8%, both P < 0.05), which was accompanied by comparable improvements in insulin sensitivity (D: 66 ± 25%, D+E: 68 ± 28%, both P < 0.05). The relative decreases in IHF correlated directly with relative increases in insulin sensitivity index (ISI) (r = ?0.52; P < 0.05). Improvements in VO2peak, strength, plasma triglyceride (TG), and low‐density lipoprotein–cholesterol concentration, and diastolic BP occurred in the D+E group (all P < 0.05) but not in the D group. Diet with or without exercise results in significant decreases in IHF content accompanied by considerable improvements in insulin sensitivity in obese older adults. The addition of exercise to diet therapy improves physical function and other obesity‐ and aging‐related metabolic abnormalities.  相似文献   

15.
Insulin resistance is associated with central obesity and an increased risk of cardiovascular disease. Our objective is to examine the association between abdominal subcutaneous (SAT) and visceral adipose tissue (VAT) and insulin resistance, to determine which fat depot is a stronger correlate of insulin resistance, and to assess whether there was an interaction between SAT, VAT, and age, sex, or BMI. Participants without diabetes from the Framingham Heart Study (FHS), who underwent multidetector computed tomography to assess SAT and VAT (n = 3,093; 48% women; mean age 50.4 years; mean BMI 27.6 kg/m2), were evaluated. Insulin resistance was measured using the homeostasis model and defined as HOMAIR ≥75th percentile. Logistic regression models, adjusted for age, sex, smoking, alcohol, menopausal status, and hormone replacement therapy use, were used to assess the association between fat measures and insulin resistance. The odds ratio (OR) for insulin resistance per standard deviation increase in SAT was 2.5 (95% confidence interval (CI): 2.2–2.7; P < 0.0001), whereas the OR for insulin resistance per standard deviation increase in VAT was 3.5 (95% CI: 3.1–3.9; P < 0.0001). Overall, VAT was a stronger correlate of insulin resistance than SAT (P < 0.0001 for SAT vs. VAT comparison). After adjustment for BMI, the OR of insulin resistance for VAT was 2.2 (95% CI: 1.9–2.5; P < 0.0001). We observed an interaction between VAT and BMI for insulin (P interaction = 0.0004), proinsulin (P interaction = 0.003), and HOMAIR (P interaction = 0.003), where VAT had a stronger association in obese individuals. In conclusion, SAT and VAT are both correlates of insulin resistance; however, VAT is a stronger correlate of insulin resistance than SAT.  相似文献   

16.
Whether sex differences in intramuscular triglyceride (IMTG) metabolism underlie sex differences in the progression to diabetes are unknown. Therefore, the current study examined IMTG concentration and fractional synthesis rate (FSR) in obese men and women with normal glucose tolerance (NGT) vs. those with prediabetes (PD). PD (n = 13 men and 7 women) and NGT (n = 7 men and 12 women) groups were matched for age and anthropometry. Insulin action was quantified using a hyperinsulinemic‐euglycemic clamp with infusion of [6,6?2H2]‐glucose. IMTG concentration was measured by gas chromatography/mass spectrometry (GC/MS) and FSR by GC/combustion isotope ratio MS (C‐IRMS), from muscle biopsies taken after infusion of [U?13C]palmitate during 4 h of rest. In PD men, the metabolic clearance rate (MCR) of glucose was lower during the clamp (4.71 ± 0.77 vs. 8.62 ± 1.26 ml/kg fat‐free mass (FFM)/min, P = 0.04; with a trend for lower glucose rate of disappearance (Rd), P = 0.07), in addition to higher IMTG concentration (41.2 ± 5.0 vs. 21.2 ± 3.4 µg/mg dry weight, P ≤ 0.01), lower FSR (0.21 ± 0.03 vs. 0.42 ± 0.06 %/h, P ≤ 0.01), and lower oxidative capacity (P = 0.03) compared to NGT men. In contrast, no difference in Rd, IMTG concentration, or FSR was seen in PD vs. NGT women. Surprisingly, glucose Rd during the clamp was not different between NGT men and women (P = 0.25) despite IMTG concentration being higher (42.6 ± 6.1 vs. 21.2 ± 3.4 µg/mg dry weight, P = 0.03) and FSR being lower (0.23 ± 0.04 vs. 0.42 ± 0.06 %/h, P = 0.02) in women. Alterations in IMTG metabolism relate to diminished insulin action in men, but not women, in the progression toward diabetes.  相似文献   

17.
Objective: The contribution of visceral adipose tissue (VAT) to insulin resistance is well‐established; however, the role of subcutaneous abdominal adipose tissue (SAT) in insulin resistance remains controversial. Sex may determine which of these two components of abdominal obesity is more strongly related to insulin resistance and its consequences. The aim of this study was to determine whether both VAT and SAT contribute to insulin resistance in African Americans and to examine the effects of sex on this relationship. Research Methods and Procedures: This was a cross‐sectional study of 78 nondiabetic African‐American volunteers (44 men, 35 women; age 33.8 ± 7.3 years; BMI 30.9 ± 7.4 kg/m2). VAT and SAT volumes were measured using serial computerized tomography slices from the dome of the diaphragm to the iliac crest. The insulin sensitivity index (SI) was determined from the minimal model using data obtained from the frequently sampled intravenous glucose tolerance test. Results: In men, both VAT and SAT were negatively correlated with SI (r for both correlations = ?0.57; p < 0.01). In women, the correlation coefficient between VAT and SI was ?0.50 (p < 0.01) and between SAT and SI was ?0.67 (p < 0.01). In women, the correlation coefficient for SI with SAT was significantly greater than the correlation coefficient with VAT (p = 0.02). Discussion: Both SAT and VAT are strongly correlated with insulin resistance in African Americans. For African‐American women, SAT may have a greater effect than VAT on insulin resistance.  相似文献   

18.
Objective: To investigate whether insulin resistance (IR) and the metabolic syndrome (MS) are associated with kidney dysfunction in obese non‐diabetic (OND) subjects. Methods and Procedures: Three‐hundred and eighty (113M/267F; age = 41 ± 14 years) OND subjects (BMI ≥ 30 kg/m2; range = 43 ± 8 kg/m2) were studied. Anthropometric measures, blood pressure, fasting glucose, insulin, lipid profile, and serum creatinine were evaluated. Glomerular filtration rate (GFR) was estimated (e‐GFR) with the Modification of Diet in Renal Disease equation. Chronic kidney disease (CKD) was defined as e‐GFR <60 ml/min/1.73 m2. Results: e‐GFR was associated with gender (being lower in women) (P = 0.001) and age (P < 0.0001). CKD was present in 32 subjects (8.4%), who were older (P < 0.0001) and more frequently affected by hypertension (P = 0.04) as compared to subjects without CKD. MS was present in 212 (55.8%) subjects. They were older (P< 0.001), had lower e‐GFR (P = 0.02) and were more frequently affected by CKD (odds ratio (OR), 95% confidence interval (CI) = 2.3, 1.1–5.1) than those without MS. However, differences in e‐GFR values and in the risk of CKD were no longer statistically significant after adjusting for age (P = 0.99 for e‐GFR and OR, 95% CI = 1.2, 0.5–2.8 for the risk of CKD, respectively). Homeostasis model assessment of IR (HOMAIR) index was neither higher in subject with CKD (P = 0.1) nor inversely correlated with e‐GFR (r = 0.1, P = 0.1). Discussion: In OND individuals the risk of CKD is independent of the MS and related abnormalities. This suggests that these individuals are not susceptible to a further deleterious role on kidney function on the top of that played by obesity itself.  相似文献   

19.
Objective: This study was designed to elucidate whether the plasma visfatin level reflects visceral or subcutaneous fat accumulation and metabolic derangement in obese children. Methods and Procedures: Fifty‐six obese Japanese children, including 37 boys and 19 girls were enrolled in the study. The age of the subjects ranged from 5 to 15 (10.2 ± 0.3; mean ± s.e.m.) years. The age‐matched control group for measuring visfatin consisted of 20 non‐obese children. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) areas were measured by computed tomography. The plasma concentrations for visfatin and leptin were assayed by enzyme‐linked immunosorbent assay kits. Results: The plasma visfatin level was higher in the obese (14.7 ± 0.9 ng/ml) than in the control children (8.6 ± 0.6 ng/ml). In a univariate analysis, the visfatin correlated significantly with age, height, body weight, waist circumference, VAT and SAT area, triglyceride (TG), insulin, and the homeostasis model assessment for insulin resistance (HOMA‐R). After being adjusted for age and sex, only the VAT area retained significant partial correlation with visfatin, and in contrast the body weight, BMI–s.d., and SAT area with leptin. The plasma visfatin concentration was not correlated with leptin. The plasma visfatin levels in the control, non‐metabolic syndrome (MS) (n = 49), and MS groups (n = 7) were significantly different from each other. Discussion: These results suggest that plasma visfatin level is a specific marker for visceral fat accumulation in obese children. As a good surrogate marker, plasma visfatin level can predict the VAT area in obese children.  相似文献   

20.
Objective: Excess abdominal adiposity is a known risk factor for cardiovascular diseases. Computed tomography can be used to examine the visceral (VAT) and subcutaneous (SAT) components of abdominal adiposity, but it is unresolved whether single‐slice or multi‐slice protocols are needed. Research Method and Procedures: Nine computed tomography scans were obtained in the lumbar spine region of 24 adults. The nine slices were obtained at three intervertebral positions (L2–L3, L3–L4, and L4–L5) and at 7 mm above and below these locations. Intra‐site and inter‐site differences in SAT, VAT, total adipose tissue, and the VAT/SAT ratio were examined using ANOVA and confidence intervals for pairwise differences between means. Results: Intervertebral SAT values increased from 103.1 ± 50.9 (standard deviation) cm2 at L2–L3 to 153.3 ± 68.8 cm2 at L4–L5, whereas the corresponding VAT values decreased from 164.3 ± 125.4 to 126.0 ± 82.7 cm2. The VAT/SAT ratio was not constant, decreasing from 1.8 ± 1.4 to 0.9 ± 0.7. Repeated‐measures ANOVA indicated significant inter‐ and intra‐site differences (p ≤ 0.02) for SAT, VAT, and the VAT/SAT ratio at L3?L4 and L4?L5 (p < 0.001). Discussion: These differences show the limitation of using a single‐slice assessment of abdominal fat distribution, both for a subject and between subjects. Furthermore, the sizeable differences in the intra‐site scans indicate that precise repositioning is needed for longitudinal studies. In summary, our findings suggest that a multi‐site imaging protocol may provide a more complete assessment of abdominal fat stores and distribution than use of a single site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号