首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Bean dwarf mosaic virus (BDMV) is a single-stranded DNA virus (genus: Begomovirus, family: Geminiviridae) that infects common bean (Phaseolus vulgaris L.) and causes stunted plant growth, and mosaic and mottle symptoms in leaves. BDMV shows differential pathogenicity in common bean, infecting germplasm of the Andean gene pool (e.g., the snap bean cultivar Topcrop), but not that of the Middle American gene pool (e.g., the pinto bean cultivar Othello). Resistance to BDMV in Othello is associated with development of a hypersensitive response (HR) in vascular (phloem) tissues. In this study, Middle American germplasm representing the four recognized races (i.e., Durango, Guatemala, Jalisco, and Mesoamerica) and the parents of Othello were inoculated with BDMV and a BDMV-green fluorescent protein (GFP) reporter. All genotypes showed partial or complete resistance to BDMV and BDMV-GFP, indicating the widespread distribution of resistance in the Middle American gene pool. A number of BDMV-resistant germplasm did not show the HR, indicating it is not correlated with resistance. In the F1, F2, and F3 of reciprocal crosses between Othello and Topcrop, a single dominant allele, Bdm, conferred BDMV resistance.Communicated by J. Dvorak  相似文献   

2.
Common bean ( Phaseolus vulgaris L.) cultivar (cv.) Othello develops a hypersensitive response-associated vascular resistance to infection by Bean dwarf mosaic virus (BDMV), a single-stranded DNA virus (genus Begomovirus , family Geminiviridae ). A PCR-based cDNA subtraction approach was used to identify genes involved in this resistance response. Eighteen clones, potentially involved with BDMV resistance, were identified based upon being up-regulated in BDMV-infected tissues and/or having sequence similarity with known resistance-associated genes. Analysis of these clones revealed potential genes involved in pathogen defence, including pathogenesis-related protein genes and resistance gene analogues (RGAs). Further characterization of one RGA, F1-10 , revealed that it encodes a predicted protein with a double Toll/interleukin-1 receptor (TIR) motif. Full-length ( F1-10 ) and spliced ( F1-10sp ) forms of the RGA were strongly up-regulated in BDMV-infected cv. Othello hypocotyl tissues by 4 days post-inoculation, but not in equivalent mock-inoculated tissues. In agroinfiltration experiments, F1-10 , but not F1-10sp , mediated resistance to BDMV in the susceptible common bean cv. Topcrop. By contrast, transgenic Nicotiana benthamiana lines expressing F1-10 or F1-10sp were not resistant to BDMV. Interestingly, when these transgenic lines were inoculated with the potyvirus Bean yellow mosaic virus, some F1-10 lines showed a more severe symptom phenotype compared with non-transgenic control plants. Based on these findings, F1-10 was named: Phaseolus vulgaris VIRUS response TIR-TIR GENE 1 ( PvVTT1 ).  相似文献   

3.
The capacities of the begomoviruses Bean dwarf mosaic virus (BDMV) and Bean golden yellow mosaic virus (BGYMV) to differeBean dwarf mosaic viru certain common bean (Phaseolus vulgaris) cultivars were used to identify viral determinants of the hypersensitive response (HR) and avirulence (avr) in BDMV. A series of hybrid DNA-B components, containing BDMV and BGYMV sequences, was constructed and coinoculated with BDMV DNA-A (BDMV-A) or BDMVA-green florescent protein into seedlings of cv. Topcrop (susceptible to BDMV and BGYMV) and the BDMV-resistant cvs. Othello and Black Turtle Soup T-39 (BTS). The BDMV avr determinant, in bean hypocotyl tissue, was mapped to the BDMV BV1 open reading frame and, most likely, to the BV1 protein. The BV1 also was identified as the determinant of the HR in Othello. However, the HR was not required for resistance in Othello nor was it associated with BDMV resistance in BTS. BDMV BV1, a nuclear shuttle protein that mediates viral DNA export from the nucleus, represents a new class of viral avr determinant. These results are discussed in terms of the relationship between the HR and resistance.  相似文献   

4.
Velvet bean severe mosaic virus (VbSMV) is a bipartite DNA virus infecting Mucuna pruriens (Velvet bean), belongs to the genus Begomovirus in the family Geminiviridae. Velvet bean is a medicinal plant of enormous medicinal value. In the present study, it was delineated that proteins encoded by VbSMV viz. AV2 (pre-coat protein), AC2 (TrAP), AV1 (coat protein) are suppressors of RNA silencing as identified through Agrobacterium co-infiltration assays using Nicotiana benthamiana as a host plant. AV2 showed strong suppressor activity whereas AC1 and AV1 were found to be weak suppressors. To the best of our knowledge, this is the first report on identification of suppressor of RNA silencing encoded by VbSMV infecting a medicinal plant.  相似文献   

5.
Begomovirus is widely spread on cultivated crops in India. In a survey, infected plants of Trichosanthes dioica (Pointed gourd) with the symptoms of mosaic and leaf curling were collected and checked for Begomovirus infection through PCR analysis. Application of meristem culture technique for regeneration of virus free plants of T. dioica was assessed. Plantlets were regenerated from infected plants of T. dioica through meristem culture. Regenerated plants were found Begomovirus free as evident by PCR analysis suggesting the suitability of meristem culture technique for elimination of Begomovirus from infected plants of T. dioica. This is the first report on elimination of Begomovirus in T. dioica in India.  相似文献   

6.
The outbreak of a severe mosaic disease with a significant incidence was noticed on Jatropha curcas plants growing in Lucknow, Northern India. The causal virus was successfully transmitted by whiteflies (Bemisia tabaci) and grafting from naturally infected to healthy J. curcas plants. The association of Begomovirus with the mosaic disease of J. curcas was detected by PCR using primers specific to DNA‐A of Begomoviruses. Further, full‐length DNA‐A genome of ~2.7 kb was amplified by RCA followed by digestion with Bam HI restriction enzyme. Cloning and sequencing of obtained amplicons resulted in 2740 nucleotides of complete DNA‐A consisting of six ORFs and IR region (GenBank Accession HM230683 ). The sequence analysis revealed highest 85% similarities with Jatropha curcas mosaic virus, 77–84% with Indian cassava mosaic virus and 73–76% with Sri Lankan cassava mosaic virus isolates. Phylogenetic analysis of the Begomovirus isolate also showed a clear‐cut distinct relationship with earlier reported Begomoviruses from Jatropha curcas and other Begomoviruses. On the basis of the guidelines of the International Committee on Taxonomy of Viruses (ICTV‐2008), our virus isolate was identified as a possible strain of Indian cassava mosaic virus, and its name Jatropha mosaic India virus (JMIV) is proposed.  相似文献   

7.
Turnip mosaic virus (TuMV) and cauliflower mosaic virus (CaMV) have been found infecting field crops of winter oilseed rape (Brassica napus ssp. oleifera) in South Warwickshire. Other viruses found include broccoli necrotic yellows virus (BNYV) and a member of the beet western yellows virus group. Systemic leaf symptoms caused by TuMV varied within and between cultivars; the three predominant reaction types were classified as necrotic, mosaic and immune. Some recently introduced cultivars of oilseed rape were more severely affected by TuMV infection than older cultivars. Reactions to CaMV were less varied and immunity was not found. The seed yield from TuMV and CaMV-infected plants was less than that of healthy control plants. This effect was due to infected plants producing either fewer seeds, smaller seeds or both. Germination of seeds from infected plants was unaffected if sown soon after harvest. After storage for one year the germination of seed from a virus infected plant was significantly less than that of seed from a virus-free plant. All commercial cultivars tested were experimentally susceptible to turnip yellow mosaic virus (TYMV) and some American strains of cucumber mosaic virus (CMV).  相似文献   

8.
Abutilon mosaic virus (AbMV) and bean dwarf mosaic virus (BDMV) are two phylogenetically related bipartite begomoviruses. While AbMV is restricted to phloem, BDMV spreads to non-phloem tissues. Cell-to-cell and long-distance movement of AbMV and BDMV were investigated after replacing the coat protein (CP) gene with the reporter gene encoding the green fluorescence protein (GFP). The DNA-A and DNA-B genomic components of AbMV and BDMV, and their pseudorecombinants (PR), were delivered to bean (Phaseolus vulgaris) seedlings and detached leaves with DNA-coated microprojectiles. Virus-associated fluorescence was observed with the confocal microscope. Delivery of AbMV and BDMV GFP reporters showed that the epidermal tissue was the main recipient of the viral DNA; the DNA-A of the two viruses was unable to move out of the recipient cells. AbMV DNA-A co-inoculated with AbMV DNA-B did not move from cell to cell in the epidermis and did not reach the phloem. However, co-inoculation of AbMV DNA-A with BDMV DNA-B resulted in PR cell-to-cell movement out of the epidermis and long-distance movement in the phloem. In contrast, BDMV DNA-A moved from cell to cell and over a long distance when co-inoculated with either its own DNA-B or with the DNA-B of AbMV. Thus, the DNA-B of the non-phloem-limited BDMV overcame the phloem limitation of AbMV. In the reciprocal case, the DNA-B of the phloem-limited AbMV did not confine the non-phloem limited BDMV to the phloem. Hence, we assume that the DNA-A component of BDMV includes determinants involved in the movement pattern of the virus in addition to the DNA-B-encoded BC1 and BV1 which have previously been shown to be involved in virus movement. The results also confirm that the CP is not necessary for virus movement; however, replacing the CP of AbMV and BDMV with GFP resulted in a decrease in symptom severity. DNA-B was involved in symptom severity; the B component of BDMV produced symptoms more severe than those induced by that of AbMV, whether in wild-type PRs or in PRs with CP-GFP replacement. It is interesting to note that when the GFP gene under the control of the CaMV 35S promoter (35S-GFP) was delivered to the bean tissue, with or without the DNA-B component of BDMV, GFP was expressed but did not move from cell to cell. However, when the 35S-GFP was delivered together with BDMV DNA-A and DNA-B, GFP showed cell-to-cell movement in the epidermis but was restricted to these cells. Hence, infection of cells with a functional bipartite begomovirus may facilitate cell-to-cell movement of macromolecules.  相似文献   

9.
R. Singh    S. K. Raj    V. Prasad 《Journal of Phytopathology》2008,156(4):222-228
A Begomovirus causing yellow vein mosaic disease of pumpkin (Cucurbita maxima L.) was characterized at molecular level by cloning and sequence analysis of its complete DNA‐A genome. The DNA‐A of the isolate contains 2758 nucleotides which encode six open reading frames (ORFs): AV1 and AV2 in the virion‐sense and AC1, AC2, AC3 and AC4 in the complementary‐sense. Based on the highest (96%) sequence identities and close phylogenetic relationships with Squash leaf curl China virus species, the Begomovirus was identified as strain of Squash leaf curl China virus. The presence of DNA‐B genome of the virus strain was also detected by dot blot hybridization test using DNA‐B specific probe.  相似文献   

10.
Recently, CRISPR‐Cas (clustered, regularly interspaced short palindromic repeats–CRISPR‐associated proteins) system has been used to produce plants resistant to DNA virus infections. However, there is no RNA virus control method in plants that uses CRISPR‐Cas system to target the viral genome directly. Here, we reprogrammed the CRISPR‐Cas9 system from Francisella novicida to confer molecular immunity against RNA viruses in Nicotiana benthamiana and Arabidopsis plants. Plants expressing FnCas9 and sgRNA specific for the cucumber mosaic virus (CMV) or tobacco mosaic virus (TMV) exhibited significantly attenuated virus infection symptoms and reduced viral RNA accumulation. Furthermore, in the transgenic virus‐targeting plants, the resistance was inheritable and the progenies showed significantly less virus accumulation. These data reveal that the CRISPR/Cas9 system can be used to produce plant that stable resistant to RNA viruses, thereby broadening the use of such technology for virus control in agricultural field.  相似文献   

11.
The multifunctional protein translationally controlled tumour protein (TCTP) was previously identified as necessary for infection by the potyvirus pepper yellow mosaic virus. Using turnip mosaic virus (TuMV) as a model to study potyvirus biology, we confirmed that TCTP has a positive effect on virus infection. Living cell confocal microscopy demonstrated that TCTP colocalises with 6K2-tagged replication vesicles and with a perinuclear globular structure typically observed during potyvirus infection. Also, TCTP silenced protoplasts showed reduced virus accumulation, quantified by qRT-PCR, which suggests an effect on virus replication, translation or other intracellular process. Finally, TCTP silencing in plants reduced the accumulation of two species belonging to Orthotospovirus and a Begomovirus genus, which are not closely related to potyviruses. The results suggest that TCTP is a general susceptibility factor to several unrelated viruses.  相似文献   

12.
Transgenic tomato plants expressing wild-type or mutated BV1 or BC1 movement proteins from Bean dwarf mosaic virus (BDMV) were generated and examined for phenotypic effects and resistance to Tomato mottle virus (ToMoV). Fewer transgenic plants were recovered with the wild-type or mutated BC1 genes, compared with the wild-type or mutated BV1 genes. Transgenic tomato plants expressing the wild-type or mutated BV1 proteins appeared normal. Interestingly, although BDMV induces only a symptomless infection in tomato (i.e., BDMV is not well adapted to tomato), transgenic tomato plants expressing the BDMV BC1 protein showed a viral disease-like phenotype (i.e., stunted growth, and leaf mottling, curling, and distortion). This suggests that the symptomless phenotype of BDMV in tomato is not due to a host-specific defect in the BC1 protein. One transgenic line expressing the BC1 gene did not show the viral disease-like phenotype. This was associated with a deletion in the 3' region of the gene, which resulted in expression of a truncated BC1 protein. Several R0 plants, expressing either wild-type or mutated BV1 or BC1 proteins, showed a significant delay in ToMoV infection, compared with non-transformed plants. R1 progeny plants also showed a significant delay in ToMoV infection, but this delay was less than that in the R0 parents. These results also demonstrate that expression of viral movement proteins, in transgenic plants, can have deleterious effects on various aspects of plant development.  相似文献   

13.
The complete genome of a novel bipartite begomovirus (genus Begomovirus, family Geminiviridae) was cloned from a severely diseased yellow Peruvian chili pepper (Capsicum baccatum cv. Pendulum) plant collected in the department of La Libertad, Northern Peru and full‐length sequenced. The two genomic components share a common region of 156 nucleotides with a 100% sequence identity. Analysis of the genome organisation and phylogenetic comparisons revealed that the virus is a typical New World begomovirus. The closest related begomovirus, an isolate of Tomato yellow vein streak virus (ToYVSV), shared only 76.8% nucleotide sequence identity for the DNA‐A component. Therefore, following species demarcation criteria of the International Committee on Taxonomy of Viruses, this virus isolate belongs to a new begomovirus species for which the name pepper leafroll virus (PepLRV) is proposed. Pepper plants infected with the cloned PepLRV isolate developed leaf roll symptoms similar to those observed in field‐infected plants suggesting this virus as the causal agent of the disease syndrome observed in the field. Widespread occurrence of PepLRV throughout Peru was demonstrated, infecting plants of diverse cultivated species such as tomato, pepper, common and pallar beans, and of the weed species Nicandra physaloides. Low genetic diversity was observed among PepLRV isolates present in this country with no evident geographical or temporal structure of the population, typical of a recent founder effect. This is the first report of a begomovirus infecting pepper and bean crops in Peru.  相似文献   

14.
Aphis gossypii is the main virus vector in muskmelon crops. The melon gene Vat confers resistance to non‐persistent virus transmission by this aphid. The mechanism of this resistance is not well understood, but no relationship has been detected between resistance and the probing behaviour of aphids on resistant plants. Results presented here suggest that temporary blockage of aphid stylet tips preventing virus particle release may explain the resistance conferred by Vat gene. We performed experiments in which viruliferous aphids were allowed to probe different sequences of resistant (Vat‐bearing) and/or susceptible melon plants. The results demonstrated that A. gossypii inoculates Cucumber mosaic virus (CMV) efficiently in susceptible plants having previously probed resistant plants, showing that the resistance mechanism is reversible. Furthermore, the infection rate obtained for susceptible plants was the same (25%) regardless of whether the transmitting aphid had come directly from the CMV source or had subsequently probed on resistant plants. This result suggests that virus is not lost from stylet to plant during probing of resistant plants, supporting the temporary blockage hypothesis. We also found that the ability of Myzus persicae to transmit CMV is noticeably reduced after probing on resistant plants, providing evidence that this aphid species also responds to the presence of the Vat gene. Finally, we also found that in probes immediately after virus acquisition M. persicae inoculates resistant plants with CMV more efficiently than susceptible plants, perhaps because the Vat gene product induces increased salivation by this aphid.  相似文献   

15.
A leaf curl disease with symptoms typical of begomoviruses was observed in bean (Phaseolus vulgaris) at the Main Research Farm of the Indian Institute of Pulses Research, Kanpur, India. Infected plants had severe distortion of leaves and the plants were unproductive. PCR indicated the involvement of French bean leaf curl virus (JQ866297), a recently described Begomovirus, and Tomato leaf curl Gujarat virus (ToLCGV). The full‐length genome of ToLCGV associated with leaf curl disease of bean was 2757 nucleotides long and had maximum identity (97–98%) with seven isolates of ToLCGV (AY234383, AF449999, EU573714, GQ994098, AY190290, FR819708, AF413671) and is designated as Tomato leaf curl Gujarat virus‐(IN:Knp:Bean:2013) (KF440686). To the best of our knowledge, this is the first record of ToLCGV infecting a leguminous host, P. vulgaris.  相似文献   

16.
Summary Transgenic Phaseolus vulgaris or common bean has been produced using electric-discharge particle acceleration. The method uses particle acceleration to introduce DNA into bean seed meristems. Multiple shoots are then generated and screened to recover transgenic plants at a rate of 0.03% germline transformed plants/shoot. We have been able to recover transgenic plants using both GUS and herbicide screening to introduce the gus, bar, and bean golden mosaic virus coat protein genes into the navy bean cultivar, Seafarer. The transgenic plants have been characterized over 5 generations of self-fertilization with no loss of introduced genes or expression. In addition, several families have been crossed with non-transgenic parents and these plants also show expected inheritance patterns. The introduced bar gene has been shown to confer strong resistance in transgenic beans to basta herbicide application in the greenhouse.Abbreviations BGMV bean golden mosaic virus - PAT phosphinothricin acetyltransferase  相似文献   

17.
Three viral isolates Hn8, Hn40 and Hn41 were obtained from Sida acuta showing yellow mosaic symptom in the Hainan province, China. Comparison of partial DNA‐A sequences amplified with degenerate primers confirmed the existence of single type of Begomovirus. The complete nucleotide sequence of the DNA‐A‐like molecule of Hn8 was determined to be 2749 nucleotides, having a typical genetic organization of a Begomovirus. Hn8 DNA‐A had the highest sequence identity (78%) with that of Ageratum yellow vein China virus‐[G13] ( AJ558120 ), and had less sequence identity with other begomoviruses. Based on the above molecular data, Hn8 was thus considered as a new Begomovirus species, for which the name Sida yellow mosaic China virus (SiYMCNV) is proposed. Satellite DNA‐β molecules (Hn8‐β, Hn40‐β and Hn41‐β) were found to be associated with Hn8, Hn40 and Hn41 and their complete nucleotide sequences were determined. Sequence analysis showed that Hn8‐β, Hn40‐β and Hn41‐β shared more than 84% nucleotide sequence identity, and they were different from other characterized DNA‐β, sharing the highest nucleotide sequence identity (47.8%) with DNA‐β of Ageratum yellow vein virus.  相似文献   

18.
19.
Plants exposed for 24–72 h to light of different wavelengths differed in their subsequent susceptibility to virus infection. French bean leaves were less susceptible to infection by tobacco necrosis virus and Nicotiana glutinosa leaves were less susceptible to infection by tobacco mosaic virus when previously exposed to blue or red light than when exposed to green light. These differences were most pronounced at low energy levels. Leaves exposed to each kind of light were less susceptible than those kept in darkness.  相似文献   

20.
The BV1 gene of the bipartite Begomovirus genome encodes a nuclear shuttle protein (NSP) that is also an avirulence determinant in common bean. The function of the NSP of two common bean-infecting bipartite begomoviruses, Bean dwarf mosaic virus (BDMV) and Bean golden yellow mosaic virus (BGYMV), was investigated using a series of hybrid DNA-B components expressing chimeric BDMV and BGYMV NSP, and genotypes of the two major common bean gene pools: Andean (cv. Topcrop) and Middle American (cvs. Alpine and UI 114). BDMV DNA-A coinoculated with HBDBG4 (BDMV DNA-B expressing the BGYMV NSP) and HBDBG9 (BDMV DNA-B expressing a chimeric NSP with the N-terminal 1 to 42 amino acids from BGYMV) overcame the BDMV resistance of UI 114. This established that the BDMV NSP is an avirulence determinant in UI 114, and mapped the domain involved in this response to the N-terminus, which is a variable surface-exposed region. BDMV DNA-A coinoculated with HBDBG10, expressing a chimeric NSP with amino acids 43 to 92 from BGYMV, was not infectious, revealing an essential virus-specific domain. In the BGYMV background, the BDMV NSP was a virulence factor in the Andean cv. Topcrop, whereas it was an avirulence factor in the Middle American cultivars, particularly in the absence of the BGYMV NSP. The capsid protein (CP) also played a gene pool-specific role in viral infectivity; it was dispensable for infectivity in the Andean cv. Topcrop, but was required for infectivity of BDMV, BGYMV, and certain hybrid viruses in the Middle American cultivars. Redundancy of the CP and NSP, which are nuclear proteins involved directly or indirectly in viral movement, provides a masking effect that may allow the virus to avoid host defense responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号