首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 834 毫秒
1.
Virus‐infected plants show strong morphological and physiological alterations. Many physiological processes in chloroplast are affected, including the plastidic isoprenoid biosynthetic pathway [the 2C‐methyl‐D‐erythritol‐4‐phosphate (MEP) pathway]; indeed, isoprenoid contents have been demonstrated to be altered in virus‐infected plants. In this study, we found that the levels of photosynthetic pigments and abscisic acid (ABA) were altered in Potato virus Y (PVY)‐infected tobacco. Using yeast two‐hybrid assays, we demonstrated an interaction between virus protein PVY helper component‐proteinase (HC‐Pro) and tobacco chloroplast protein 1‐deoxy‐D‐xylulose‐5‐phosphate synthase (NtDXS). This interaction was confirmed using bimolecular fluorescence complementation (BiFC) assays and pull‐down assays. The Transket_pyr domain (residues 394–561) of NtDXS was required for interaction with HC‐Pro, while the N‐terminal region of HC‐Pro (residues 1–97) was necessary for interaction with NtDXS. Using in vitro enzyme activity assays, PVY HC‐Pro was found to promote the synthase activity of NtDXS. We observed increases in photosynthetic pigment contents and ABA levels in transgenic plants with HC‐Pro accumulating in the chloroplasts. During virus infection, the enhancement of plastidic isoprenoid biosynthesis was attributed to the enhancement of DXS activity by HC‐Pro. Our study reveals a new role of HC‐Pro in the host plant metabolic system and will contribute to the study of host–virus relationships.  相似文献   

2.
The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant–pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV) accumulation in its natural host papaya (Carica papaya). We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome), but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome), associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54), which impaired the HcPro – PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation.  相似文献   

3.
Occurrence and relative incidence of viruses infecting papaya in Venezuela   总被引:1,自引:0,他引:1  
A survey of the main papaya (Carica papaya L.) production fields in Venezuela during 1997, indicated that crops were heavily affected with various virus‐like symptoms. A total of 745 samples from papaya plants showing symptoms suggestive of virus infection were collected and analysed using electron microscopy and enzyme‐linked immunosorbent assay (ELISA). Papaya ringspot virus (PRSV) and Papaya mild yellowing virus (PMYV) were the most frequently found viruses, which also occurred, in mixed infections. Rhabdovirus‐like particles were found only in samples collected in Distrito Federal (D.F). Papaya mosaic virus (papMV) and Tomato spotted wild virus (TSW V) were not detected during the survey.  相似文献   

4.
Production of polyclonal antibodies requires large amount of purified virus that can be avoided by the use of recombinant coat protein (CP). Recombinant CP of Papaya ringspot virus (PRSV) was thus used for the production of polyclonal antibodies as the virus purification from papaya tissues provides low virus yields. CP was expressed as a fusion protein (~72 kD) containing a fragment of E. coli maltose binding protein. Polyclonal antibodies from rabbits immunized with the fusion protein, successfully detected natural infection of PRSV in papaya and cucurbits samples collected from different locations at 1:4000 dilution in direct antigen-coated enzyme-linked immunosorbent assay.  相似文献   

5.
Cyclodipeptides, formed from two amino acids by cyclodehydration, are produced naturally by many organisms, and are known to possess a large number of biological activities. In this study, we found that cyclo (l ‐Pro‐l ‐Pro) and cyclo (d ‐Pro‐d ‐Pro) (where Pro is proline) could induce defence responses and systemic resistance in Nicotiana benthamiana. Treatment with the two cyclodipeptides led to a reduction in disease severity by Phytophthora nicotianae and Tobacco mosaic virus (TMV) infections compared with controls. Both cyclopeptides triggered stomatal closure, induced reactive oxygen species production and stimulated cytosolic calcium ion and nitric oxide production in guard cells. In addition, the application of cyclodipeptides significantly up‐regulated the expression of the plant defence gene PR‐1a and the PR‐1a protein, and increased cellular salicylic acid (SA) levels. These results suggest that the SA‐dependent defence pathway is involved in cyclodipeptide‐mediated pathogen resistance in N. benthamiana. We report the systemic resistance induced by cyclodipeptides, which sheds light on the potential of cyclodipeptides for the control of plant diseases.  相似文献   

6.
7.
The multigenic Rsv1 locus in the soybean plant introduction (PI) ‘PI96983’ confers extreme resistance against the majority of Soybean mosaic virus (SMV) strains, including SMV‐N, but not SMV‐G7 and SMV‐G7d. In contrast, in susceptible soybean cultivars lacking a functional Rsv1 locus, such as ‘Williams82’ (rsv1), SMV‐N induces severe disease symptoms and accumulates to a high level, whereas both SMV‐G7 and SMV‐G7d induce mild symptoms and accumulate to a significantly lower level. Gain of virulence by SMV‐N on Rsv1‐genotype soybean requires concurrent mutations in both the helper‐component proteinase (HC‐Pro) and P3 cistrons. This is because of the presence of at least two resistance (R) genes, probably belonging to the nucleotide‐binding leucine‐rich repeat (NB‐LRR) class, within the Rsv1 locus, independently mediating the recognition of HC‐Pro or P3. In this study, we show that the majority of experimentally evolved mutational pathways that disrupt the avirulence functions of SMV‐N on Rsv1‐genotype soybean also result in mild symptoms and reduced accumulation, relative to parental SMV‐N, in Williams82 (rsv1). Furthermore, the evaluation of SMV‐N‐derived HC‐Pro and P3 chimeras, containing homologous sequences from virulent SMV‐G7 or SMV‐G7d strains, as well as SMV‐N‐derived variants containing HC‐Pro or P3 point mutation(s) associated with gain of virulence, reveals a direct correlation between the perturbation of HC‐Pro and a fitness penalty in Williams82 (rsv1). Collectively, these data demonstrate that gain of virulence by SMV on Rsv1‐genotype soybean results in fitness loss in a previously susceptible soybean genotype, this being a consequence of mutations in HC‐Pro, but not in P3.  相似文献   

8.
以模式植物拟南芥(Arabidopsis thaliana)和烟草(Nicotiana tabacum)及PRSV寄主植物番木瓜(CaricapapayaL.)作为试验材料,开展了番木瓜环斑病毒外壳蛋白基因dsRNA介导的PRSV病原抗性的研究。利用农杆菌介导法将番木瓜环斑病毒外壳蛋白CP基因反向重复表达载体pHellsgate12-CPIR(简称PHG12-CPIR)分别转化到烟草和拟南芥中,获得阳性植株,并利用渗透法和农杆菌介导的瞬时表达体系将pHG12-CPIR载体导入到番木瓜中。对转基因植株进行攻毒试验并分析了其抗病性。在接种3~7d内,在拟南芥和番木瓜上转基因植株的发病情况较轻,而野生型植株叶片与转基因植株相比,均表现出不同程度的黄化、皱缩和枯斑等症状。在接种PRSV后,番木瓜和拟南芥转化植株表现症状的叶片的比例与对照相比,结果显著低于对照,而在烟草植株上症状表现的差异不明显。在3种植物上RT-PCR检测结果显示,在接种番木瓜环斑病毒PRSV后,野生型植株中有高浓度的病毒积累,而转pHG12-CPIR基因植株中几乎没有病毒积累,推测转pHG12-CPIR基因植株中瞬时表达系统已启动RNAi机制抑制了CP基因的表达。  相似文献   

9.
10.
Viral diseases have been studied in-depth for reducing quality, yield, health and longevity of the fruit, to highlight the economic losses. Positive-sense single-stranded RNA viruses are more devastating among all viruses that infect fruit trees. One of the best examples is papaya ringspot virus (PRSV). It belongs to the genus Potyvirus and it is limited to cause diseases on the family Chenopodiaceae, Cucurbitaceae and Caricaceae. This virus has a serious threat to the production of papaya, which is famous for its high nutritional and pharmaceutical values. The plant parts such as leaves, latex, seeds, fruits, bark, peel and roots may contain the biological compound that can be isolated and used in pharmaceutical industries as a disease control. Viral disease symptoms consist of vein clearing and yellowing of young leaves. Distinctive ring spot patterns with concentric rings and spots on fruit reduce its quality and taste. The virus has two major strains P and W. The former cause disease in papaya while the later one in papaya. Virion comprises 94.4% protein, including a 36 kDa coat protein which is a component responsible for a non-persistent transmission through aphids, and 5.5% nucleic acid. Cross protection, development of transgenic crops, exploring the resistant sources and induction of pathogen derived resistance have been recorded as effective management of PRSV. Along with these practices reduced aphid population through insecticides and plant extracts have been found ecofriendly approaches to minimize the disease incidence. Adoption of transgenic crops is a big challenge for the success of disease resistant papaya crops. The aim of this review is to understand the genomic nature of PRSV, detection methods and the different advanced control methods. This review article will be helpful in developing the best management strategies for controlling PRSV.  相似文献   

11.
12.
13.
Many plant viruses depend on aphids and other phloem‐feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus‐infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over‐expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a‐protease domain (NIa‐Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa‐Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa‐Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant–aphid interactions to promote its own transmission.  相似文献   

14.
Most strains of Papaya ringspot virus (PRSV) belong to type W, causing severe loss on cucurbits worldwide, or type P, devastating papaya in tropical areas. While the host range of PRSV W is limited to plants of the families Chenopodiaceae and Cucuribitaceae, PRSV P, in addition, infects plants of the family Caricaceae (papaya family). To investigate one or more viral genetic determinants for papaya infection, recombinant viruses were constructed between PRSV P-YK and PRSV W-CI. Host reactions to recombinant viruses indicated that the viral genomic region covering the C-terminal region (142 residues) of NIaVPg, full NIaPro, and N-terminal region (18 residues) of NIb, is critical for papaya infection. Sequence analysis of this region revealed residue variations at position 176 of NIaVPg and positions 27 and 205 of NIaPro between type P and W viruses. Host reactions to the constructed mutants indicated that the amino acid Lys27 of NIaPro determines the host-specificity of PRSV for papaya infection. Predicted three-dimensional structures of NIaPros of parental viruses suggested that Lys27 does not affect the protease activity of NIaPro. Recovery of the infected plants from certain papaya-infecting mutants implied involvement of other viral factors for enhancing virulence and adaptation of PRSV on papaya.  相似文献   

15.
16.
17.
Recent studies have identified that proteinaceous effectors secreted by Parastagonospora nodorum are required to cause disease on wheat. These effectors interact in a gene‐for‐gene manner with host‐dominant susceptibilty loci, resulting in disease. However, whilst the requirement of these effectors for infection is clear, their mechanisms of action remain poorly understood. A yeast‐two‐hybrid library approach was used to search for wheat proteins that interacted with the necrotrophic effector SnTox3. Using this strategy we indentified an interaction between SnTox3 and the wheat pathogenicity‐related protein TaPR‐1‐1, and confirmed it by in‐planta co‐immunprecipitation. PR‐1 proteins represent a large family (23 in wheat) of proteins that are upregulated early in the defence response; however, their function remains ellusive. Interestingly, the P. nodorum effector SnToxA has recently been shown to interact specifically with TaPR‐1‐5. Our analysis of the SnTox3–TaPR‐1 interaction demonstrated that SnTox3 can interact with a broader range of TaPR‐1 proteins. Based on these data we utilised homology modeling to predict, and validate, regions on TaPR‐1 proteins that are likely to be involved in the SnTox3 interaction. Precipitating from this work, we identified that a PR‐1‐derived defence signalling peptide from the C‐terminus of TaPR‐1‐1, known as CAPE1, enhanced the infection of wheat by P. nodorum in an SnTox3‐dependent manner, but played no role in ToxA‐mediated disease. Collectively, our data suggest that P. nodorum has evolved unique effectors that target a common host‐protein involved in host defence, albeit with different mechanisms and potentially outcomes.  相似文献   

18.
19.
Globally, death due to cancers is likely to rise to over 20 million by 2030, which has created an urgent need for novel approaches to anticancer therapies such as the development of host defence peptides. Cn‐AMP2 (TESYFVFSVGM), an anionic host defence peptide from green coconut water of the plant Cocos nucifera, showed anti‐proliferative activity against the 1321N1 and U87MG human glioma cell lines with IC50 values of 1.25 and 1.85 mM, respectively. The membrane interactive form of the peptide was found to be an extended conformation, which primarily included β‐type structures (levels > 45%) and random coil architecture (levels > 45%). On the basis of these and other data, it is suggested that the short anionic N‐terminal sequence (TES) of Cn‐AMP2 interacts with positively charged moieties in the cancer cell membrane. Concomitantly, the long hydrophobic C‐terminal sequence (YFVFSVGM) of the peptide penetrates the membrane core region, thereby driving the translocation of Cn‐AMP2 across the cancer cell membrane to attack intracellular targets and induce anti‐proliferative mechanisms. This work is the first to demonstrate that anionic host defence peptides have activity against human glioblastoma, which potentially provides an untapped source of lead compounds for development as novel agents in the treatment of these and other cancers. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号