首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antimicrobial peptides (AMPs) constitute an essential part of the innate immune defence. Pathogenic bacteria have evolved numerous strategies to withstand AMP‐mediated killing. The influence of host epithelia on bacterial AMP resistance is, however, still largely unknown. We found that adhesion to pharyngeal epithelial cells protected Neisseria meningitidis, a leading cause of meningitis and sepsis, from the human cathelicidin LL‐37, the cationic model amphipathic peptide (MAP) and the peptaibol alamethicin, but not from polymyxin B. Adhesion to primary airway epithelia resulted in a similar increase in LL‐37 resistance. The inhibition of selective host cell signalling mediated by RhoA and Cdc42 was found to abolish the adhesion‐induced LL‐37 resistance by a mechanism unrelated to the actin cytoskeleton. Moreover, N. meningitidis triggered the formation of cholesterol‐rich membrane microdomains in pharyngeal epithelial cells, and host cell cholesterol proved to be essential for adhesion‐induced resistance. Our data highlight the importance of Rho GTPase‐dependent host cell signalling for meningococcal AMP resistance. These results indicate that N. meningitidis selectively exploits the epithelial microenvironment in order to protect itself from LL‐37.  相似文献   

2.
Temporin‐1Tl (TL) is a 13‐residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti‐inflammatory activity. To develop novel AMP with improved anti‐inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin‐resistant Staphylococcus aureus strains compared with TL. TL‐1 and TL‐4 showed a little increase in antimicrobial selectivity, while TL‐2 and TL‐3 displayed slightly decreased antimicrobial selectivity because of their about twofold increased hemolytic activity. All TL analogs demonstrated greatly increased anti‐inflammatory activity, evident by their higher inhibition of the production tumor necrosis factor‐α (TNF‐α) and nitric oxide and the mRNA expression of inducible nitric oxide synthase and TNF‐α in lipopolysaccharide (LPS)‐stimulated RAW264.7 macrophage cells, compared with TL. Taken together, the peptide anti‐inflammatory activity is as follows: TL‐2 ≈ TL‐3 ≈ TL‐4 > TL‐1 > TL. In addition, LPS binding ability of the peptides corresponded with their anti‐inflammatory activity. These results apparently suggest that the anti‐inflammatory activity of TL analogs is associated with the direct binding ability between these peptides and LPS. Collectively, our designed TL analogs possess improved anti‐inflammatory activity and retain antimicrobial activity without a significant increase in hemolysis. Therefore, it is evident that our TL analogs constitute promising candidates for the development of peptide therapeutics for gram‐negative bacterial infection. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Current cancer treatment is frequently compromised by severe adverse effects on healthy cells and tissues as well as by the increasing burden of (multi‐)drug resistances. Some representatives of small, amphipathic peptides known as host defense peptides possess the potential to overcome these limitations and to evolve as future anti‐cancer therapeutics. Peptide NK‐2, derived from porcine NK‐lysin, was originally discovered due to its broad‐spectrum antimicrobial activities. Today, also potent anti‐cancer activity is proven and accompanied by low toxicity towards normal human cells. The molecular basis underlying this target selectivity remains rather elusive. Nevertheless, it is presumptive that preferential peptide interactions with surface factors non‐abundant on healthy human cells play a key role. Here, we investigated the cytotoxicity of peptide NK‐2 and structurally improved anti‐cancer variants thereof against two patient‐derived colorectal cancer cell lines, exposing high and low levels of phosphatidylserine on their cell surfaces, respectively. Concluding from a range of in vitro tests involving cellular as well as lipid vesicle‐based methods, it is proposed that the magnitude of the accessible membrane surface charge is not a primarily decisive factor for selective peptide interactions. Instead, it is suggested that the level of membrane surface‐exposed phosphatidylserine is of crucial importance for the activity of peptide NK‐2 and enhanced variants thereof in terms of their cancer cell selectivity, the overall efficacy, as well as the underlying mode of action and kinetics. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Antimicrobial peptides are important effector molecules of the innate immune system. Here, we describe that peptides derived from the heparin‐binding disulfide‐constrained loop region of human ß‐amyloid precursor protein are antimicrobial. The peptides investigated were linear and cyclic forms of NWCKRGRKQCKTHPH (NWC15) as well as the cyclic form comprising the C‐terminal hydrophobic amino acid extension FVIPY (NWCKRGRKQCKTHPHFVIPY; NWC20c). Compared with the benchmark antimicrobial peptide LL‐37, these peptides efficiently killed the Gram‐negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram‐positive Staphylococcus aureus and Bacillus subtilis, and the fungi Candida albicans and Candida parapsilosis. Correspondingly, fluorescence and electron microscopy demonstrated that the peptides caused defects in bacterial membranes. Analogously, the peptides permeabilised negatively charged liposomes. Despite their bactericidal effect, the peptides displayed very limited hemolytic activities within the concentration range investigated and exerted very small membrane permeabilising effects on human epithelial cells. The efficiency of the peptides with respect to bacterial killing and liposome membrane leakage was in the order NWC20c > NWC15c > NWC15l, which also correlated to the adsorption density for these peptides at the model lipid membrane. Thus, whereas the cationic sequence is a minimum determinant for antimicrobial action, a constrained loop‐structure as well as a hydrophobic extension further contributes to membrane permeabilising activity of this region of amyloid precursor protein. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Osmosensing transporter ProP protects bacteria from osmotically induced dehydration by mediating the uptake of zwitterionic osmolytes. ProP activity is a sigmoidal function of the osmolality. ProP orthologues share an extended, cytoplasmic C‐terminal domain. Orthologues with and without a C‐terminal, α‐helical coiled‐coil domain respond similarly to the osmolality. ProP concentrates at the poles and septa of Escherichia coli cells in a cardiolipin (CL)‐dependent manner. The roles of phospholipids and the C‐terminal domain in subcellular localization of ProP were explored. Liposome association of peptides representing the C‐terminal domains of ProP orthologues and variants in vitro was compared with subcellular localization of the corresponding orthologues and variants in vivo. In the absence of coiled‐coil formation, the C‐terminal domain bound liposomes and ProP concentrated at the cell poles in a CL‐independent manner. The presence of the coiled‐coil replaced those phenomena with CL‐dependent binding and localization. The effects of amino acid replacements on lipid association of the C‐terminal peptide fully recapitulated their effects on the subcellular localization of ProP. These data suggest that polar localization of ProP results from association of its C‐terminal domain with the anionic lipid‐enriched membrane at the cell poles. The coiled‐coil domain present on only some orthologues renders that phenomenon CL‐dependent.  相似文献   

7.
We report here the screening of five marine invertebrate species from two taxa (tunicates and echinoderms) for the presence of cationic antimicrobial peptides (AMP) in defence cells (hemocytes). Antimicrobial activities were detected only in the two tunicates Microcosmus sabatieri and Halocynthia papillosa. In addition, we report the isolation and characterization of two novel peptides from H. papillosa hemocytes. These molecules display antibacterial activity against Gram‐positive and Gram‐negative bacteria. Complete peptide characterization was obtained by a combination of Edman degradation and mass spectrometry. The mature molecules, named halocyntin and papillosin, comprise 26 and 34 amino acid residues, respectively. Their primary structure display no significant similarities with previously described AMP. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
9.
10.
A rich source of bioactive peptides, including a large number of antimicrobial peptides, has been found in amphibian skin. In this study, a novel short antimicrobial peptide was purified from Xenopus laevis skin and characterised through reversed‐phase high‐performance liquid chromatography, Edman degradation and matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry. The peptide was composed of six amino acids with a sequence of DEDLDE and thus named X. laevis antibacterial peptide‐P2 (XLAsp‐P2). Transmission electron microscopy revealed that this peptide showed potential antimicrobial abilities against bacteria by damaging the bacterial cell membrane. XLAsp‐P2 maybe inhibit bacterial growth by binding to the microbial genomic DNA. The peptide also exhibited a weak haemolytic activity against rabbit red blood cells. Therefore, XLAsp‐P2 is a novel short anionic antibacterial peptide with broad activities. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Antimicrobial peptides (AMPs), Os and Os‐C, have been identified as multifunctional peptides with antibacterial, antiendotoxin, and anti‐inflammatory properties. For further development of Os and Os‐C as therapeutic peptides, it is essential to evaluate these effects in human mononuclear (MN) and polymorphonuclear (PMN) leukocytes. The cytotoxicity and the effects of both peptides on MN and PMN morphology were determined with the Alamar‐Blue assay and scanning electron microscopy, respectively. The ability of Os and Os‐C to induce reactive oxygen species (ROS) and to protect against 2,2′‐azobis(2‐amidinopropane) dihydrochloride–induced oxidative damage in both cell populations was evaluated using 2′,7′‐dichlorofluorescin diacetate (DCFH‐DA). Using fluorescently labeled peptides, the ability of the peptides to cross the cell membranes of MN and PMN was also evaluated. At the minimum bactericidal concentrations of Os and Os‐C, neither peptide was cytotoxic. Os caused morphological features of toxicity at 100 μM, entered MN cells, and also protected these cells against oxidative damage. Os‐C caused MN and PMN leukocyte activation associated with ROS formation and was unable to penetrate cell membranes, indicating extracellular membrane interactions. This study confirms that both Os and Os‐C at less than 100 μM are not cytotoxic. The MN‐specific uptake of Os identifies it as a cell‐specific cargo‐carrier peptide, with additional anti‐inflammatory properties. In contrast, the ability of Os‐C to activate MN and PMN cells implies that this peptide should be further evaluated as an AMP, which, in addition to its ability to eradicate infection, can further enhance host immunity. These novel characteristics of Os and Os‐C indicate that these AMPs as peptides can be further developed for specific applications.  相似文献   

12.
Antimicrobial peptides are derived from the viral fusion domain of influenza virus hemagglutinin based on rational analysis of the intermolecular interaction between peptides and bacterial outer membrane. It is revealed that the isolated viral fusion domain is a negatively charged peptide HAfp1‐23 that cannot effectively interact with the anionic membrane. Conversion of the native HAfp1‐23 to a positively charged peptide HAfp1‐23_KK by E11K/D19K mutation can promote the peptide‐membrane interaction substantially; this confers to the peptide a moderate antibacterial potency against antibiotic‐resistant bacterial strains. Cyclization of the linear peptide HAfp1‐23_KK results in a cyclic peptide cHAfp1‐23_KK, which can largely minimize entropy penalty upon the peptide‐membrane binding by pre‐stabilizing peptide hairpin configuration in solvent, where the linear peptide would incur in a considerable conformational change/folding from intrinsic disorder (in water) to the structured hairpin conformation (in lipid). As might be expected, the cyclization considerably improves peptide antibacterial activity with minimum inhibitory concentration of 67 and 34 μg/mL against multidrug‐resistant Pseudomonas aeruginosa and methicillin‐resistant Staphylococcus aureus, respectively.  相似文献   

13.
Gomesin (Gm) was the first antimicrobial peptide (AMP) isolated from the hemocytes of a spider, the Brazilian mygalomorph Acanthoscurria gomesiana. We have been studying the properties of this interesting AMP, which also displays anticancer, antimalarial, anticryptococcal and anti‐Leishmania activities. In the present study, the total syntheses of backbone‐cyclized analogues of Gm (two disulfide bonds), [Cys(Acm)2,15]‐Gm (one disulfide bond) and [Thr2,6,11,15,d ‐Pro9]‐Gm (no disulfide bonds) were accomplished, and the impact of cyclization on their properties was examined. The consequence of simultaneous deletion of pGlu1 and Arg16‐Glu‐Arg18‐NH2 on Gm antimicrobial activity and structure was also analyzed. The results obtained showed that the synthetic route that includes peptide backbone cyclization on resin was advantageous and that a combination of 20% DMSO/NMP, EDC/HOBt, 60 °C and conventional heating appears to be particularly suitable for backbone cyclization of bioactive peptides. The biological properties of the Gm analogues clearly revealed that the N‐terminal amino acid pGlu1 and the amidated C‐terminal tripeptide Arg16‐Glu‐Arg18‐NH2 play a major role in the interaction of Gm with the target membranes. Moreover, backbone cyclization practically did not affect the stability of the peptides in human serum; it also did not affect or enhanced hemolytic activity, but induced selectivity and, in some cases, discrete enhancements of antimicrobial activity and salt tolerance. Because of its high therapeutic index, easy synthesis and lower cost, the [Thr2,6,11,15,d ‐Pro9]‐Gm analogue remains the best active Gm‐derived AMP developed so far; nevertheless, its elevated instability in human serum may limit its therapeutic potential. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Thiazole, isothiazole, thiadiazole, and their derivatives are used to control various human, animal and plant diseases. In addition to having direct anti‐microbial and anti‐fungal properties, these compounds are thought to induce host defences, but the mechanism of defence induction remains poorly understood. This article reports that the thiadiazoles of zinc thiazole and bismerthiazol induce H2O2 accumulation, up‐regulation of defence‐related genes, callose deposition and hypersensitive response‐like cell death in rice leaves infected with Xanthomonas oryaze pv. oryzae (Xoo) strain ZJ173, but not in non‐infected leaves. These defence responses in Xoo‐infected leaves were suppressed by the exogenous application of catalase, which reduces H2O2 accumulation. The application of extracellular polysaccharides (EPSs) extracted from strain ZJ173 significantly compromised rice defence against ZJ173 with or without thiadiazole treatment. The EPS‐deficient Xoo mutant ?gumH triggered a stronger defence than its parent strain ZJ173. The thiadiazole treatments reduced EPS production by strain ZJ173, but not by the thiadiazole‐resistant strain 2‐1‐1, which is thiadiazole resistant in vivo, but not in vitro; moreover, enhanced defence was not detected in thiadiazole‐treated rice inoculated with 2‐1‐1. Based on these data, we infer that zinc thiazole and bismerthiazol promote rice defence against Xoo by inhibiting the production of bacterial EPS.  相似文献   

15.
pVEC is a cell‐penetrating peptide derived from the murine vascular endothelial‐cadherin protein. To evaluate the potential of pVEC as antimicrobial peptide (AMP), we synthesized pVEC and its analogs with Trp and Arg/Lys substitution, and their antimicrobial and lipopolysaccharide (LPS)‐neutralizing activities were investigated. pVEC and its analogs displayed a potent antimicrobial activity (minimal inhibitory concentration: 4–16 μM) against Gram‐positive and Gram‐negative bacteria but no or less hemolytic activity (less than 10% hemolysis) even at a concentration of 200 μM. These peptides induced a near‐complete membrane depolarization (more than 80%) at 4 μM against Staphylococcus aureus and a significant dye leakage (35–70%) from bacterial membrane‐mimicking liposome at a concentration as low as 1 μM. The fluorescence profiles of pVEC and its analogs in dye leakage from liposome and membrane depolarization were similar to those of a frog‐derived AMP, magainin 2. These results suggest that pVEC and its analogs kill bacteria by forming a pore or ion channel in the cytoplasmic membrane. pVEC and its analogs significantly inhibited nitric oxide production or tumor necrosis factor‐α release in LPS‐stimulated mouse macrophage RAW264.7 cells at 10 to 50 μM, in which RAW264.7 were not damaged. Taken together, our results suggest that pVEC and its analogs with potent antimicrobial and LPS‐neutralizing activities can serve as AMPs for the treatment of microbial infection and sepsis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Cationic amphipathic α-helical peptides preferentially disrupt anionic lipids in mixed model membranes, potentially causing a catastrophic release of the cell contents or attenuation of the membrane potential. The effective role of such peptides requires considerable discrimination between target and host cells, which is likely to occur at the level of the cell membrane. Here, we explore the roles of a variety of common membrane constituents in mediating the interaction between the antimicrobial peptide pleurocidin and model membranes. We employ intrinsic tryptophan fluorescence and circular dichroism to observe the effect of increasing concentrations of sterol in the membrane on peptide binding, using 2H solid-state NMR of chain deuterated lipids simultaneously to probe the effective chain disruption of the anionic phospholipid component of the membrane. We show that the degree of ordering of the lipid acyl chains in the membrane is dependent on the nature of the zwitterionic phospholipid headgroup in mixed anionic membranes. Furthermore, the presence of cholesterol and ergosterol increases acyl chain order in the liquid crystalline model membranes, but to differing degrees. Our results show how sterols can protect even negatively charged membranes from the disruptive effects of antimicrobial peptides, thereby providing a molecular view of the differences in sensitivity of various target membranes to linear cationic antibiotic peptides where bacteria (no sterols) are most susceptible, lower eukaryotes including fungi (containing ergosterol) exhibit an intermediate degree of sensitivity, and higher organisms (containing cholesterol) are largely resistant to antimicrobial peptides.  相似文献   

17.

Background  

The mechanism of action of antimicrobial peptides (AMP) was initially correlated with peptide membrane permeation properties. However, recent evidences indicate that action of a number of AMP is more complex and involves specific interactions at cell envelopes or with intracellular targets. In this study, a genomic approach was undertaken on the model yeast Saccharomyces cerevisiae to characterize the antifungal effect of two unrelated AMP.  相似文献   

18.
Aim Rapidly evolving pathogens may exert diversifying selection on genes involved in host immune defence including those encoding antimicrobial peptides (AMPs). Amphibian skin peptides are one important defence against chytridiomycosis, an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). We examined the population‐level variation in this innate immune defence to understand its relationship with disease dynamics. Location Queensland, Australia. Methods We examined skin peptide defences in five geographically distinct populations of Australian green‐eyed treefrogs, Litoria genimaculata. Skin peptide samples were collected from 52 frogs from three upland populations that previously declined as chytridiomycosis emerged, but subsequently recovered, and from 34 frogs in two lowland populations that did not decline. Historical samples of skin peptides preceding Bd emergence were not available from any population. Results In general, lowland populations had more effective peptide defences than upland populations. Peptide profiles were similar among populations, although relative amounts of peptides expressed differed significantly among populations and were more variable in the uplands. Infected frogs in upland populations carried a significantly higher infection burden compared to lowland populations. The presence of effective AMPs in the skin of L. genimaculata does not eliminate infection; however, more effective peptide defences may limit infection intensity and the progression of disease. Main conclusions The population bottleneck in upland populations caused by chytridiomycosis emergence did not appear to produce responses to selection for more effective peptide defences against chytridiomycosis compared to lowland populations of L. genimaculata. This does not exclude the possibility that current peptide defences have adapted in response to disease emergence. A suggestive (P < 0.10) interaction between infection status and population indicates that in lowland populations, infected individuals tend to be those with lower relative intensities of AMPs, whereas in the upland populations, infected and uninfected individuals are similar. Thus, both the AMPs and the environment may act to mediate resistance to Bd infection.  相似文献   

19.
Antimicrobial peptides are important components of the host innate immune responses by exerting broad‐spectrum microbicidal activity against pathogenic microbes. Cy‐AMP1 found in the cycad (Cycas revoluta) seeds has chitin‐binding ability, and the chitin‐binding domain was conserved in knottin‐type and hevein‐type antimicrobial peptides. The recombinant Cy‐AMP1 was expressed in Escherichia coli and purified to study the role of chitin‐binding domain. The mutants of Cy‐AMP1 lost chitin‐binding ability completely, and its antifungal activity was markedly decreased in comparison with native Cy‐AMP1. However, the antimicrobial activities of the mutant peptides are nearly identical to that of native one. It was suggested that the chitin‐binding domain plays an essential role in antifungal, but not antimicrobial, activity of Cy‐AMP1. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Membrane trafficking is vital to plant development and adaptation to the environment. It is suggested that post‐Golgi vesicles and multivesicular bodies are essential for plant defence against directly penetrating fungal parasites at the cell wall. However, the actual plant proteins involved in membrane transport for defence are largely unidentified. We applied a candidate gene approach and single cell transient‐induced gene silencing for the identification of membrane trafficking proteins of barley involved in the response to the fungal pathogen Blumeria graminis f.sp. hordei. This revealed potential components of vesicle tethering complexes [putative exocyst subunit HvEXO70F‐like and subunits of the conserved oligomeric Golgi (COG) complex] and Golgi membrane trafficking (COPIγ coatomer and HvYPT1‐like RAB GTPase) as essential for resistance to fungal penetration into the host cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号