首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Intraspecific variation in egg size and hatching size, and the genetic and environmental trade‐offs that contribute to variation, are the basis of the evolution of life histories. The present study examined both univariate and multivariate temperature‐mediated plasticity of life‐history traits, as well as temperature‐mediated trade‐offs in egg size and clutch size, in two planktotrophic species of marine slipper limpets, Crepidula. Previous work with two species of Crepidula with large eggs and lecithotrophic development has shown a significant effect of temperature on egg size and hatching size. To further examine the effect of temperature on egg size in Crepidula, the effects of temperature on egg size and hatching size, as well as the possible trade‐offs with other the life‐history features, were examined for two planktotrophic species: Crepidula incurva and Crepidula cf. marginalis. Field‐collected juveniles were raised at 23 or 28 °C and egg size, hatching size, capsules/brood, eggs/capsule, time to hatch, interbrood interval, and final body weight were recorded. Consistent with results for the lecithotrophic Crepidula, egg size and hatching size decreased with temperature in the planktotrophic species. The affects of maternal identity and individual brood account for more than half of the intraspecific variation in egg size and hatching size. Temperature also showed a significant effect on reproductive rate, with time to hatch and interbrood interval both decreasing with increasing temperature. However, temperature had contrasting effects on the number of offspring. Crepidula cf. marginalis has significantly more eggs/capsule and therefore more eggs per brood at 28 °C compared to 23 °C, although capsules/brood did not vary with temperature. Crepidula incurva, on the other hand, produced significantly more capsules/brood and more eggs per brood at the lower temperature, whereas the number of eggs/capsule did not vary with temperature. The phenotypic variance–covariance matrix of life‐history variables showed a greater response to temperature in C. incurva than in C. cf. marginalis, and temperature induced trade‐offs between offspring size and number differ between the species. These differences suggest that temperature changes as a result of seasonal upwelling along the coast of Panama will effect the reproduction and evolution of life histories of these two co‐occurring species differently. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

2.
1. The Glanville fritillary butterfly (Melitaea cinxia L.) has a small population (Ne ~ 100) on the small island of Pikku Tytärsaari (PT) in the Gulf of Finland. The population has remained completely isolated for ~100 generations, which has resulted in greatly reduced genetic variation and high genetic load (low fitness). In particular, females lay small egg clutches with a low egg‐hatching rate in comparison with a large reference population in the Åland Islands (ÅL). 2. In the present study, to what extent egg clutch size and egg‐hatching rate are influenced by male population and spermatophore size was analysed. 3. Spermatophore size increases with male body size, is smaller after the first mating, and is smaller in the small PT population. In the ÅL population but not in the PT population, the egg‐hatching rate increases with spermatophore size. The egg‐hatching rate of PT females is higher when mated with ÅL males than when mated with PT males (heterosis), but there is no such effect on clutch size. The clutch size of ÅL females is, however, reduced when mated with PT males. 4. These results indicate that both male and female traits contribute to reduced reproductive fitness in the small isolated population.  相似文献   

3.
Egg size and offspring size are fundamentally important aspects of the life histories of all animals. However the impact of environmental conditions on intraspecific variation in egg size of marine invertebrates is poorly documented. Here we followed three species of intertidal crabs Xanthodius sternberghii, Petrolisthes armatus and Clibanarius albidigitus to understand how seasonal environmental variation in temperature and salinity associated with seasonal upwelling impacts egg size. Ovigerous females of both P. armatus and C. albidigitus were found year round, while X. sternberghii has a limited reproductive season, with ovigerous females found only between November and February. In all three species more than half of the variation in egg size was attributable to variation among broods from different females. Eggs collected during the dry, upwelling season were significantly larger than those collected during the wet, non-upwelling season. Multiple regression analysis showed that average egg size from each brood was significantly negatively correlated with temperature for all three species. Egg size was also negatively correlated with salinity in P. armatus when we controlled for temperature. Overall these results support the idea that changes in environmental temperature caused by seasonal upwelling play a significant role in generating seasonal differences in egg size.  相似文献   

4.
We evaluate the correlation between intraspecific variation in egg size and population size in breeding British birds. Using information on abundance, range occupancy, migration status and phylogenetic relationships among species, we show that a wider geographical distribution rather than larger population size per se best predicts egg size variability. A similar result applies to wing length variability. Results from a phylogenetic path analysis suggest that geographical variation is the most parsimonious causal explanation for high intraspecific variation in common species.  相似文献   

5.
Intraclutch egg size variation may non‐adaptively result from nutritional/energetic constraints acting on laying females or may reflect adaptive differential investment in offspring in relation to laying/hatching order. This variation may contribute to size hierarchies among siblings already established due to hatching asynchrony, and resultant competitive asymmetries often lead to starvation of the weakest nestling within a brood. The costs in terms of chick mortality can be high. However, the extent to which this mortality is egg size‐mediated remains unclear, especially in relation to hatching asynchrony which may operate concomitantly. I assessed effects of egg size and hatching asynchrony on nestling development and survival of Herring Gulls (Larus argentatus), where the smaller size and later hatching of c‐eggs may represent a brood‐reduction strategy. To analyze variation in egg size, I recorded the laying order and laying date of 870 eggs in 290 three‐egg clutches over a 3‐yr period (2010–2012). I measured hatchlings and monitored growth and survival of 130 chicks from enclosed nests in 2011 and 2012. The negative effect of laying date (β = ?0.18 ± SE 0.06, P = 0.002) on c‐egg size possibly reflected the fact that late breeders were either low quality or inexperienced females. The mass, size, and condition of hatchling Herring Gulls were positively related to egg size (all P < 0.0001). C‐chicks suffered from increased mortality risk during the first 12 d, identified as the brood‐reduction period in my study population. Although intraclutch variation in egg size was not directly related to patterns of chick mortality, I found that smaller relative egg size interactively increased differences in relative body condition of nestlings, primarily brought about by the degree of hatching asynchrony during this brood‐reduction period. Thus, the value of relatively small c‐eggs in Herring Gulls may lie in reinforcing brood reduction through effects on nestling body condition. A reproductive strategy Herring Gulls might have adopted to maintain a three‐egg clutch, but that also enables them to adjust the number of chicks they rear relative to the prevailing environmental conditions and to their own condition during the nestling stage.  相似文献   

6.
Geographic variation in offspring size is widespread, but the proximate causes of this variation have not yet been explicitly determined. We compared egg size and egg contents among five populations of a lizard (Takydromus septentrionalis, Günther, 1864) along a latitudinal gradient, and incubated eggs at two temperatures to determine the influence of maternal investment and incubation temperature on offspring size. The mean values for female size and egg size were both greater in the two northern populations (Chuzhou and Anji) than in the three southern populations (Lishui, Dongtou, and Ningde). The larger eggs were entirely attributable to the body size of females in the Anji population, but their increased size also stemmed from further enlargement of egg size relative to female body size in Chuzhou, the northernmost population sampled in this study. Eggs of the Chuzhou population contained more yolk and less water than those of southern populations. Despite the lower lipid content in the yolk, eggs from the Chuzhou population had higher energy contents than those from the two southern populations, owing to the larger egg size and increased volume of yolk. Hatchling size was not affected by incubation temperature, but differed significantly among populations, with hatchlings being larger in the Chuzhou population than in the other populations. Our data provide an inference that oviparous reptiles from cold climates may produce larger offspring, not only by increasing egg size but also by investing more energy into their eggs. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 59–67.  相似文献   

7.
The Persian Gulf and Oman Sea constitute one of the most important marine ecosystems and have many economically important aquatic species, including several coleoid cephalopods. Some coleoids are difficult to identify using traditional morphological characteristics. In this study, two mitochondrial fragments, cytochrome oxidase I (COI) and the large ribosomal subunit (16S rRNA), were used for identification of coleoid species in four regions in the northern Persian Gulf and Oman Sea. The study led to the identification of potential cryptic species of Sepia, Amphioctopus and Uroteuthis. Furthermore, Euprymna hyllebergi was reported for the first time from the Persian Gulf. A high diversity of Coeloidea was found in the study area. Mean intraspecific and interspecific nucleotide distances for COI were 0%–2% and 2%–7%, respectively, while these values for 16S rRNA sequences were 0%–1% and 1%–4%. Given the uncertainty about species identity and the high levels of intraspecific genetic diversity reported for some species in GenBank, a comprehensive global study will be needed to resolve the taxonomic status of several coleoid species.  相似文献   

8.
The genetic variation of the critically endangered Corfu killifish (Valencia letourneuxi), an endemic freshwater fish species of the western Balkans, was assessed for nine populations sampled in eight water systems in western continental Greece, the Peloponnese and the Ionian Island of Corfu, using mitochondrial and microsatellite markers. The analyses were based on data from three mtDNA regions (D‐loop, COI and 16S rRNA sequences) and 14 microsatellite loci. Samples from the congeneric species Valencia hispanica and the phylogenetically closely related species Aphanius fasciatus were also used in the study as outgroups. Both the mitochondrial and the microsatellite analyses revealed three distinct population groupings associated with the geographical distribution of the populations: one southern group occupying rivers draining to the Patraikos Gulf, the second one including the populations flowing into the Amvrakikos Gulf and the third, more northern group, including the other populations from rivers in Corfu Island and Epirus flowing into the Ionian Sea. Within these groupings there is limited genetic differentiation between populations; in addition, there is reduced intrapopulation genetic variation, evidenced by low heterozygosity values, number of alleles and haplotype diversity. In terms of taxonomic implications and appropriate management actions for conservation, our data suggest that the major population groups should be regarded at least as three distinct conservation units (CUs), with translocation and restocking actions to take place only within the geographical range of the CU concerned. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 334–349.  相似文献   

9.
Countergradient variation in norms of reaction can dampen the direct effects of environmental influences on phenotypic traits, allowing phenotypic similarity among populations despite exposure to different environmental conditions. Such norms of reaction may occur at any phase of the life‐history (e.g. growth rates during both embryonic and postembryonic stages may influence geographical variation in adult body size). We collected gravid female lizards (Sceloporus undulatus) from northern (Indiana), central (Mississippi), and southern (Florida) populations, spanning almost the full latitudinal range of the species. Adult females from the southern population were smaller. Intrinsic growth rates of hatchlings were higher for the central population than for the other two populations. This pattern does not parallel the countergradient variation previously found in embryonic developmental rates among these populations. Earlier hatching enhanced survival rates of juveniles to a similar degree among populations, although juvenile survival rates in the field generally increase with latitude in this species. Our data reveal geographical variation in the ways in which intrinsic developmental/growth rates and survival shift during ontogeny, and suggest that latitudinal patterns in adult body size (such as Bergmann's rule) can result from both faster growth, and longer periods of growth. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 202–209.  相似文献   

10.
Collin R 《Molecular ecology》2001,10(9):2249-2262
The mode of development of marine invertebrates is thought to influence levels of population structure and the location of species range endpoints via differences in dispersal ability. To examine these effects, populations of three sympatric clades of sedentary, marine gastropods in the genus Crepidula were sampled along the Atlantic and Gulf coasts of North America. A haplotype tree was constructed for each clade based on 640 bp sequences of mitochondrial cytochrome oxidase c subunit I. Examination of the tree topology, and AMOVA analysis show that species with direct development (those hatching as benthic juveniles) have higher levels of population structure than do species with planktonic development. Both species in the direct-developing C. convexa clade have high levels of geographical differentiation, with most populations representing a discrete clade of haplotypes. The planktotrophic species C. fornicata contains two major haplotype clades, both of which include samples from throughout the Atlantic coast. In this species there is no geographical differentiation among haplotypes but AMOVA analysis detects a small but statistically significant level of geographical structure. The population structure within the C. plana species complex appears also to vary with mode of development: C. atrasolea, a direct-developing species, has higher levels of population structure than does C. depressa, a sympatric planktotrophic species. The coincident occurrence of range endpoints and genetic breaks along the east coast of Florida in both direct-developing species and species with planktonic development indicates that this biogeographic break is not due to development-specific mechanisms such as hydrographic effects on larval recruitment.  相似文献   

11.
It is a widespread notion that in arthropods female reproductive output is strongly affected by female size. In butterflies egg size scales positively with female size across species, suggesting a constraint imposed by maternal size. However, in intraspecific comparisons body size often explains only a minor part of the variation in progeny size. We here include representatives of various butterfly families to test the generality of this phenomenon across butterflies. Phenotypic correlations between egg and maternal body size were inconsistent across species: correlations were non-significant for Pararge aegeria and Lycaena tityrus, significantly positive for Papilio machaon, significantly negative for Araschnia levana, and contradictory for Pieris napi. Thus, there was no general pattern linking egg size to maternal size, e.g., caused by an allometric relationship. Consequently, there was at best limited evidence for maternal size acting as a morphological constraint on egg size within butterfly species. Realized fecundity depended on maternal size in P. napi and A. levana, but not in P. aegeria, suggesting that maternal size may affect egg number more strongly than egg size. Yet, variation in fecundity was primarily explained by variation in longevity as is expected for income breeders. Heritability estimates across species were rather similar for pupal mass (ranging between 0.14 and 0.19), but more variable for egg size (0.17–0.31).  相似文献   

12.
The tendency of ectotherms to get larger in the cold (Bergmann clines) has potentially great implications for individual performance and food web dynamics. The mechanistic drivers of this trend are not well understood, however. One fundamental question is to which extent variation in body size is attributed to variation in cell size, which again is related to genome size. In this study, we analyzed body and genome size in four species of marine calanoid copepods, Calanus finmarchicus, C. glacialis, C. hyperboreus and Paraeuchaeta norvegica, with populations from both south Norwegian fjords and the High Arctic. The Calanus species showed typical interspecific Bergmann clines, and we assessed whether they also displayed similar intraspecific variations—and if correlation between genome size and body size differed between species. There were considerable inter‐ as well as intraspecific variations in body size and genome size, with the northernmost populations having the largest values of both variables within each species. Positive intraspecific relationships suggest a functional link between body and genome size, although its adaptiveness has not been settled. Impact of additional drivers like phylogeny or specific adaptations, however, was suggested by striking divergences in body size – genome size ratios among species. Thus, C. glacialis and C. hyperboreus, had fairly similar genome size despite very different body size, while P. norvegica, of similar body size as C. hyperboreus, had the largest genome sizes ever recorded from copepods. The inter‐ and intraspecific latitudinal body size clines suggest that climate change may have major impact on body size composition of keystone species in marine planktonic food webs.  相似文献   

13.
Species invasions are occurring at an increasing rate in coastal environments. Accurately identifying introductions is a critical issue to take full advantage of the new invasion databases. Further, life history differences between morphologically comparable species may require that different management strategies be instigated to effectively control different species. Facing this problem, we used molecular approaches and documented a case of mistaken identification in a group of marine invertebrates, the calyptraeid gastropods. Members of this group have repeatedly and successfully invaded new habitats after anthropogenic introduction, especially in estuaries and bays on the west coast of the United States of America. For example, Crepidula fornicata, native to the east coast of the USA, has been reported from at least five USA west coast estuaries. We sequenced a fragment of the COI gene of a sample of putative C. fornicata from Humboldt Bay, California. By constructing a phylogeny of these and other calpytraeid gastropod sequences, we discovered that the individuals were C. convexa, the convex slippershell. In contrast to C. fornicata, C. convexa has large, demersal eggs and larvae are well developed at hatching. Its potential for dispersal is therefore lower as compared to C. fornicata and therefore any strategy to manage the invasion should take this into account. In the present study, we demonstrated the utility of molecular tools that can be used by non-taxonomic experts, to quickly and accurately identify alien species – an important first step in any study of invasion biology.  相似文献   

14.
Tom M. Spight 《Oecologia》1976,24(4):283-294
Summary Chances for survival increase as a snail grows, and the resulting size-specific survival curve dictates hatching size. Related species tend to hatch at the same size, reflecting similarities in ecological roles. Hatching size depends upon macrohabitat and microhabitat among the Muricidae. Thais emarginata hatches large enough to escape from a major predator (the hermit crab) of newly hatched T. lamellosa. However, Thais hatching sizes reflect a general trend for upper shore muricids to hatch larger than lower shore ones, rather than a response to predators. A given volume of yolk will yield the same volume of hatchlings (regardless of hatching type or number of hatchlings) for all prosobranchs, including those whose embryos feed on nurse eggs. Therefore, no hatchlings are inflated more than others to make them less attractive to predators.  相似文献   

15.
B. Baur 《Oecologia》1988,77(3):390-394
Summary The relationships between local population density and adult size, clutch size and spatial distribution of egg batches were investigated in 11 natural populations of the land snail Arianta arbustorum in a forest near Uppsala, Sweden. Shell size of adults decreased with increasing population density as did clutch size. Within populations, clutch size scaled allometrically with shell size indicating size-specific fecundity. It is hypothesized that food unpalatability caused by mucus deposition slows down juvenile growth rate in high density populations, resulting in small adults and thus reducing their fecundity in subsequent years. The influence of the distance between batches on the incidence of egg cannibalism by hatchlings was examined in a laboratory experiment. In this experiment the number of eggs cannibalized increased with decreasing distance to the batch of hatching snails. Thus, in the field, eggs of highly aggregated batches suffer a high risk of cannibalism. In the 3 populations with the highest snail density, 21–39% of all batches were deposited close to each other (nearest neighbour distance 5 cm, i.e. less than hatchlings more within 1 day). These findings indicate that egg cannibalism can act as a population regulating factor.  相似文献   

16.
We tested the efficiency of cytochrome oxidase I (COI)‐barcoding as a taxonomic tool to discriminate and identify sympatric shrew species on Mount Nimba (Guinea). We identified 148 specimens at the species level using morphological characters and comparison with type specimens, including several taxa from Mount Nimba. We identified ten morphospecies and tested aspects of genetic diversity and monophyly using genetic data from three mitochondrial (16S, cytochrome b, and COI) and one nuclear marker (the breast cancer gene, BRCA). Nine morphospecies were validated under the phylogenetic and genetic species concepts, including the recently diverged species Crocidura buettikoferi, Crocidura theresae, and Crocidura grandiceps. Under the same concepts, our analyses revealed the presence of two cryptic species amongst animals identified as Crocidura muricauda. We then tested the efficiency of barcoding thanks to commonly used phenetic methods, with the 148 specimens representing 11 potentially valid species based on morphological and molecular data. We show that COI‐barcoding is a powerful tool for shrew identification and can be used for taxonomic surveys. The comparison of genetic divergence values shows the presence of a barcoding gap (i.e. difference between the highest intraspecific and the lowest interspecific genetic divergence values). Given that only a few COI sequences are available for Afrotropical shrews, our work is an important step forward toward their enrichment. We also tested the efficiency of the three other sequenced markers and found that cytochrome b is as efficient as COI for barcoding shrews. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 672–687.  相似文献   

17.
Species with larger geographic distributions are more likely to encounter a greater variety of environmental conditions and barriers to gene flow than geographically‐restricted species. Thus, even closely‐related species with similar life‐history strategies might vary in degree and geographic structure of variation if they differ in geographic range size. In the present study, we investigated this using samples collected across the geographic ranges of eight species of fiddler crabs (Crustacea: Uca) from the Atlantic and Gulf coasts of North America. Morphological variation in the carapace was assessed using geometric morphometric analysis of 945 specimens. Although the eight Uca species exhibit different degrees of intraspecific variation, widespread species do not necessarily exhibit more intraspecific or geographic variation in carapace morphology. Instead, species with more intraspecific variation show stronger morphological divergence among populations. This morphological divergence is partly a result of allometric growth coupled with differences in maximum body size among populations. On average, 10% of total within‐species variation is attributable to allometry. Possible drivers of the remaining morphological differences among populations include gene flow mediated by ocean currents and plastic responses to various environmental stimuli, with isolation‐by‐distance playing a less important role. The results obtained indicate that morphological divergence among populations can occur over shorter distances than expected based on dispersal potential. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 248–270.  相似文献   

18.
Egg size is considered to be a major maternal effect for offspring in oviparous organisms. It has profound consequences on fitness, and differences in egg size are viewed as plastic responses to environmental variability. However, it is difficult to identify the effect of egg size per se because egg size can covary with genetic features of the mother and with other nongenetic factors. We analysed the relationship between offspring starting size (i.e. a proxy of egg size) and larval survival in the frog Rana latastei . We analysed this relationship: (1) among five populations at different altitudes; (2) among clutches laid from different females; and (3) among siblings within clutches, to evaluate the effect of starting size. We observed differences among populations for offspring size, but starting size was not related to altitude or genetic diversity. Mortality was higher in populations and families with small average starting size; however, among siblings, the relationship between starting size and mortality was not verified. The relationship observed among clutches may therefore be caused by covariation between egg size and other effects. This suggests that the covariation between egg size and other effects can result in apparent relationships between egg size and fitness-related traits. Proximate and ultimate factors can cause the phenotypic variation of hatchlings in the wild, and key traits can be related to this variation, but the underlying causes require further investigation.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 845–853.  相似文献   

19.
Abstract. Theories of density-dependent natural selection suggest that intraspecific competition will favor juveniles of high competitive ability. Empirical evidence has been provided from laboratory selection experiments, but field studies are lacking due to the logistical difficulties of experimentally manipulating population densities in natural settings. Here, we present data from a decade-long experimental field study of side-blotched lizards, Uta stansburiana that overcomes these difficulties. We tested the hypothesis that density-dependent natural selection causes egg size to increase from early to late clutches in this and many other species. Using a novel combination of environmental manipulations of hatchling density and phenotypic manipulations of egg size, we demonstrate that the nature of selection on egg size changes dramatically in the absence of older competitors. The strength of selection on egg size among later-clutch hatchlings released in areas without competitors from early clutches became almost doubled in magnitude, compared to that among hatchlings released in the presence of older competitors. These experimental findings demonstrate density-dependent natural selection on egg size; however, they contradict the classical idea that egg size increases during the reproductive season because of competition between early and late hatchlings. The results indicate that competitive age or size asymmetries between early and late hatchlings can override within-cohort asymmetries due to egg size. We suggest that competition could be an important mediator of oscillating selection pressures in this and other systems. Finally, we discuss the utility of "double-level," simultaneous experimental manipulation of both phenotypic traits that are targets of selection (e.g., egg size) as well the environmental agents of selection (e.g., population density).  相似文献   

20.
In interspecific crosses, a mismatch in internal physiological conditions between two species can reduce sperm viability in the interval from insemination to fertilization, leading to gametic isolation. Two closely related Japanese phytophagous ladybird beetles, Henosepilachna vigintioctomaculata and H. pustulosa, show several isolating barriers, including reduction in the number of heterospecific sperm in the female reproductive tract and low egg‐hatching rates in interspecific matings. However, the mechanisms of these two potential isolating barriers and the association between them are unknown. Here we investigated temporal changes in the number of sperm stored in the female reproductive tract and egg‐hatching rates in inter‐ and intraspecific crosses between these species. Although the number of sperm decreased after both inter‐ and intraspecific crosses, the reduction was more drastic in inter‐ than in intraspecific crosses for females of both species. Most of the sperm reduction occurred early on, during sperm transfer from the bursa copulatrix to the paired ampullae of the common oviduct (the sperm storage organs). These two species also demonstrated stably low egg‐hatching rates in interspecific crosses. Since the degree and timing of the sperm reduction did not correlate with egg‐hatching rates, the reduction in heterospecific sperm in interspecific crosses may not directly cause the low hatching rates. These two isolating barriers could be different expressions of the physiological mismatch and/or genetic incompatibility between gametes of these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号