首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geographic variation in offspring size can be viewed as an adaptive response to local environmental conditions, but the causes of such variation remain unclear. Here, we compared the size and composition of eggs laid by female Chinese skinks (Plestiodon chinensis) from six geographically distinct populations in southeastern China to evaluate geographic variation in hatchling size. We also incubated eggs from these six populations at three constant temperatures (24, 28 and 32 °C) to evaluate the combined effects of incubation temperature and population source on hatchling size. Egg mass and composition varied among populations, and interpopulation differences in yolk dry mass and energy content were still evident after accounting for egg mass. Population mean egg mass and thus hatchling mass were greater in the colder localities. Females from three northern populations increased offspring size by laying larger eggs relative to their own size. Females from an inland population in Rongjiang could increase offspring size by investing relatively more dry materials and thus more energy into individual eggs without enlarging the size of their eggs. The degree of embryonic development at oviposition was almost the same across the six populations, so was the rate of embryonic development and thus incubation length at any given temperature. Both incubation temperature and population source affected hatchling traits examined, but the relative importance of these two factors varied between traits. Our data show that in P. chinensis hatchling traits reflecting overall body size (body mass, snout‐vent length and tail length) are more profoundly affected by population source. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 283–296.  相似文献   

2.
We collected gravid king ratsnakes (Elaphe carinata) from three geographically separated populations in Chenzhou (CZ), Lishui (LS) and Dinghai (DH) of China to study the geographical variation in female reproductive traits and trade‐offs between the size and number of eggs. Not all reproductive traits varied among the three populations. Of the traits examined, five (egg‐laying date, post‐oviposition body mass, clutch size, egg mass and egg width) differed among the three populations. The egg‐laying date, ranging from late June to early August, varied among populations in a geographically continuous trend, with females at the most northern latitude (DH) laying eggs latest, and females at the most southern latitude (CZ) laying eggs earliest. Such a trend was less evident or even absent in the other traits that differed among the three populations. CZ and DH females, although separated by a distance of approximately 1100 km as the crow flies, were similar to each other in most traits examined. LS females were distinguished from CZ and DH females by the fact that they laid a greater number of eggs, but these were smaller. The egg size–number trade‐off was evident in each of the three populations and, at a given level of relative fecundity, egg mass was significantly greater in the DH population than in the LS population. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 701–709.  相似文献   

3.
I used comparative and experimental analysis of egg size in a Sceloporus lizard to examine a fundamental tenet of life-history theory: the presumed trade-offs among offspring number, offspring size, and performance traits related to offspring size that are likely to influence fitness. I analyzed latitudinal and elevational patterns of egg life-history characteristics among populations and experimentally manipulated egg size and hatchling size by removing yolk from the eggs to examine the causal bases of population differences in offspring traits. Mean clutch size among populations increased to the north (seven vs. 12 eggs/clutch, California vs. Washington), whereas egg size decreased (0.65 g vs. 0.40 g). The elevational patterns in southern California paralleled the latitudinal trends. Several offspring life-history traits that are correlated with egg size also varied geographically; these traits included incubation time, hatchling size, growth rate, and hatchling sprint performance. Hatchling viability of experimentally reduced eggs was remarkably high (~70%), even when up to 50% of the yolk was removed. The experimentally reduced eggs and hatchlings demonstrated the degree to which size influences each of the offspring life-history traits considered. Northern eggs hatched sooner, in part because of their small size. Though growth rate is allometrically related to size within each population (i.e., smaller hatchlings grow faster on a mass-specific basis), population differences in growth rate, as measured in the laboratory, are likely to reflect genetic differentiation in the underlying physiology of growth. Moreover, smaller juveniles, because of experimental reduction, had slower sprint speeds than larger juveniles. The slower sprint speed of hatchlings from Washington compared to hatchlings from California is thus largely due to the fact that eggs are smaller in the Washington population. These results provide a basis for interpreting the evolutionary divergence of the suite of traits involved in the evolution of maternal investment per offspring in lizards. For example, evolutionary divergence in some offspring traits functionally related to size (e.g., sprint speed) may be constrained, relative to traits that are determined by other aspects of development or physiology (e.g., growth). I also discuss issues relating to the evolution of maternal investment that could be tested in laboratory and natural populations using experimentally reduced offspring.  相似文献   

4.
Reproductive characteristics of a landlocked goby, Rhinogobius sp. (the orange form), in the Lake Biwa water system were compared between the fluvial-lacustrine and lacustrine populations to show the relationship of the egg size to the risk of larval starvation. The comparison of both oocytes in the ovaries and spawned eggs showed that egg size is larger in the fluvial-lacustrine population than in the lacustrine population. Although females of the two populations spawn eggs of the same number as a function of their body size, those of the fluvial-lacustrine population spawn larger eggs even in relation to their body size by investing more in reproduction than those of the lacustrine population. A positive correlation was experimentally shown between the egg size and larval starvation tolerance. Most larvae of the fluvial-lacustrine population (>2 days old) had exhausted their yolk during their larval drift downstream to the lake, indicating that larvae severely suffer from starvation. Egg-size variation between the two populations seemed to be the result of adaptation to the different life cycles, in which the fluvial-lacustrine population confronts the risk of larval starvation, whereas the lacustrine population seems safe from such risk of starvation.  相似文献   

5.
Offspring size is a key characteristic in life histories, reflecting maternal investment per offspring and, in marine invertebrates, being linked to mode of development. Few studies have focused explicitly on intraspecific variation and plasticity in developmental characteristics such as egg size and hatching size in marine invertebrates. We measured over 1000 eggs and hatchlings of the marine gastropods Crepidula atrasolea and Crepidula ustulatulina from two sites in Florida. A common‐garden experiment showed that egg size and hatching size were larger at 23 °C than at 28 °C in both species. In C. ustulatulina, the species with significant genetic population structure in cytochrome oxidase I (COI), there was a significant effect of population: Eggs and hatchlings from the Atlantic population were smaller than those from the Gulf. The two populations also differed significantly in hatchling shape. Population effects were not significant in C. atrasolea, the species with little genetic population structure in COI, and were apparent through their marginal interaction with temperature. In both species, 60–65% of the variation in egg size and hatching size was a result of variation among females and, in both species, the population from the Atlantic coast showed greater temperature‐mediated plasticity than the population from the Gulf. These results demonstrate that genetic differentiation among populations, plastic responses to variation in environmental temperature, and differences between females all contribute significantly to intraspecific variation in egg size and hatching size. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 489–499.  相似文献   

6.
In ectothermic species, females often produce larger eggs in colder environments. Models based on energetic constraints suggest that this pattern is an adaptation to compensate for the slower growth of offspring in the cold. Yet, females in cold environments also tend to be larger than females in warm environments. Consequently, thermal clines in egg size could be caused by pelvic constraints, which stem from the inability of large eggs to pass through a small pelvic aperture. Models based on energetic constraints and models based on pelvic constraints predict similar relationships between maternal size and egg size. However, pelvic constraints should produce these relationships both within and among populations, whereas energetic constraints would not necessarily do so. If pelvic constraints are important, we might also expect small females to compensate by producing eggs that are relatively rich in lipids (i.e. high energy density). The present study aimed to assess whether energetic or pelvic constraints generate geographical variation in egg size of the lizard Sceloporus undulatus . Pelvic width is very highly correlated with body length in S. undulatus , making maternal size a suitable measure of pelvic constraint. Although maternal size and egg mass (dry and wet) covaried among populations, these variables were generally not related within populations. Energetic density of eggs tended to increase with decreasing egg mass (dry and wet), but this relationship was strongest in populations where no relationship between maternal size and egg mass was observed. Our results do not support the pelvic constraint model and thus indicate energetic constraints play a greater role in generating geographical variation in egg size.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 513–521.  相似文献   

7.
Size‐dependent reproductive success of wild zebrafish Danio rerio was studied under controlled conditions in the laboratory to further understand the influence of spawner body size on reproductive output and egg and larval traits. Three different spawner size categories attained by size‐selective harvesting of the F1‐offspring of wild D. rerio were established and their reproductive performance compared during a 5 day period. As to be expected, large females spawned more frequently and had significantly greater clutch sizes than small females. Contrary to expectations, small females produced larger eggs when measured as egg diameter with similar amounts of yolk compared to eggs spawned by large spawners. Eggs from small fish, however, suffered from higher egg mortality than the eggs of large individuals. Embryos from small‐sized spawners also hatched later than offspring from eggs laid by large females. Larval standard length (LS)‐at‐hatch did not differ between the size categories, but the offspring of the large fish had significantly larger area‐at‐hatch and greater yolk‐sac volume indicating better condition. Offspring growth rates were generally similar between offspring from all size categories, but they were significantly higher for offspring spawned by small females in terms of LS between days 60 and 90 post‐fertilization. Despite temporarily higher growth rates among the small fish offspring, the smaller energy reserves at hatching translated into lower condition later in ontogeny. It appeared that the influence of spawner body size on egg and larval traits was relatively pronounced early in development and seemed to remain in terms of condition, but not in growth, after the onset of exogenous feeding. Further studies are needed to explore the mechanisms behind the differences in offspring quality between large‐ and small‐sized spawners by disentangling size‐dependent maternal and paternal effects on reproductive variables in D. rerio.  相似文献   

8.
Geographic variation in body size is of special interest because it affects nearly all aspects of an organism’s life. I examined whether differences in body size among four populations of the green anole lizard, Anolis carolinensis, were attributable to maternal investment in egg size and/or growth rates of embryos and juveniles. Larger body size and larger egg size relative to female size in the northern part of the range have been documented in this species, and suggested to be adaptive responses to more extreme winters. The current study confirmed the trends in adult size and egg size in the north, but rejected the trend of larger egg size relative to body size in the south. To control for differences in maternal investment in egg size among populations, I performed yolk removals on eggs from two northern populations to produce comparably sized eggs relative to one southern population. This manipulation was designed to minimize the confounding effect of maternal investment in yolk, the primary energy reserves for eggs, so that intrinsic differences in embryonic growth due to metabolism could be investigated. I found that differences in juvenile and, potentially, embryonic growth rates existed among populations of A. carolinensis, both due to and independent of differences in egg size. Juveniles from the northernmost population were bigger not only due to larger egg size, but also due to faster juvenile growth and possibly differences in developmental stage of oviposition or conversion of egg mass to hatchling mass. Larger body size may hold a number of advantages in northern populations of this species, including starvation resistance through winters and better competitive access to food resources and warmer microhabitats.  相似文献   

9.
Plastic responses of embryos to developmental environments can shape phenotypes in ways that impact fitness. The mechanisms by which developmental conditions affect offspring phenotypes vary substantially among taxa and are poorly understood in most systems. In this study, we evaluate the effects of thermal and hydric conditions on patterns of egg water uptake, embryonic development and yolk metabolism in embryos of the lizard Anolis sagrei to gain insights into how these factors shape morphological variation in hatchlings. Our 3 × 2 experimental design (3 thermal and 2 hydric conditions) revealed that developmental temperature has strong effects on rates of development and yolk metabolism, but the impacts of moisture were minimal. Increased water uptake by eggs under relatively wet conditions resulted in larger hatchlings with less internalized residual yolk than hatchlings from dry‐incubated eggs. However, the relatively small phenotypic differences among treatments may have small fitness consequences. These results demonstrate that embryos of A. sagrei can tolerate a broad range of environmental conditions without substantial impacts on critical morphological traits. Such embryonic tolerances may facilitate colonization and establishment in novel environments. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 25–41.  相似文献   

10.
We collected gravid Chinese cobras (Naja atra) from one island (Dinghai) and three mainland (Yiwu, Lishui and Quanzhou) populations in south‐eastern China to study geographical variation in female reproductive traits and the trade‐off between the size and number of eggs. We then conducted an common experiment on cobras from two of the four populations to further identify factors contributing to the observed trade‐offs. The mean size (snout–vent length) of the smallest five reproductive females increased with increasing latitude. Oviposition occurred between late June and early August, with females from the warmer localities laying eggs earlier than those from the colder localities. Maternal size was a major determinant of the reproductive investment in all populations, with larger females producing not only more but also larger eggs. Clutch size was more variable than egg size within and among populations. The observed geographical variation in clutch size, egg size, clutch mass and post‐oviposition body condition was not a simple consequence of variation in maternal size among populations, because interpopulation differences in these traits were still evident when the influence of maternal size was removed. The upper limit to reproductive investment was more likely to be set by the space availability in the island population, but by the resource availability in the three mainland populations. Trade‐offs between size and number of eggs were detected in all populations, with females that had larger clutches for their size having smaller eggs. Egg size at any given level of relative fecundity differed among populations, primarily because of interpopulation differences in the resource availability rather than the space availability. Except for the timing date of oviposition and the mean size of the smallest five reproductive females, all other examined traits did not vary in a geographically continuous trend. The common garden experiment, which standardized environmental factors, synchronized the timing date of oviposition, but it did not modify the conclusion drawn from the gravid females collected from the field. The observed geographical variation in the female reproductive traits could be attributed to the consequence of the effects of either proximate or ultimate factors. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85 , 27–40.  相似文献   

11.
To investigate whether or not oviposition on substrates other than host plants (e.g., non‐host plants, abiotic materials) would affect the evolution of egg size in phytophagous insects, we studied the winter cherry bug, Acanthocoris sordidus (Thunberg) (Heteroptera: Coreidae), as a model organism for its interpopulation variation in oviposition preference. The rate of oviposition off host plants is much higher in the Amami Island population than in either the Kyoto or Kochi populations. We compared egg size and number among the three local populations from Kyoto, Kochi, and Amami Island. In addition, to evaluate the adaptive significance of larger eggs for offspring in terms of searching for host plants, we examined the relationship between egg size and first‐instar body size. We also searched for a relationship between egg size and starvation tolerance in the second instars because first instars can develop to second instars without food intake, and thus the substantial host‐searching stage is the second instar, when females lay their eggs off host plants. Females from the Amami population produced fewer larger eggs than females from either the Kyoto or Kochi population. Regardless of the local population, the body size of first instars that emerged from larger eggs was larger, and the second instars originating from larger eggs had a higher starvation tolerance. The larger body size and higher starvation tolerance should enable nymphs to disperse further, which may enhance the probability of successfully reaching host plants. These results suggest that egg size in A. sordidus may be determined in relation to its oviposition habits to maximize reproductive success, resulting in interpopulation variation in egg size.  相似文献   

12.
Within a single clutch, smaller species of ectotherms generally lay a smaller number of relatively larger eggs than do larger species. Many hypotheses explaining both the interspecific negative allometry in egg size and egg size–number trade-off postulate the existence of an upper limit to the egg size of larger species. Specifically, in lizards, large eggs of large species could have too long a duration of incubation, or they could be too large to pass through the pelvic opening, which is presumably constrained mechanically in larger species. Alternatively, negative allometry could be a result of limits affecting eggs of smaller species. Under the latter concept, hatchling size in smaller species may be close to the lower limit imposed by ecological interactions or physiological processes, and therefore smaller species have to invest in relatively larger offspring. Contrary to these lower limit hypotheses, explanations based on the existence of an upper limit always predict negative egg-size allometry even in animals with invariant clutch size, in which naturally there is no egg size–number trade-off. We studied egg-size allometry in lizards of the family Eublepharidae, a monophyletic group of primitive geckos with large variance in body size and an invariant number of two eggs per clutch. We found an isometric relationship between egg and female size that does not support the upper limit hypotheses.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 527–532.  相似文献   

13.
中国石龙子雌体繁殖特征和卵孵化的地理变异   总被引:12,自引:0,他引:12  
浙江丽水和广东韶关中国石龙子均年产单窝卵,窝卵数,窝卵重和卵重均与雌体SVL呈正相关,雌体头部形态,繁殖特征,产卵起始时间和孵孵化的热依赖性等有显著的地理变异;韶关石龙子产卵起始时间为5月中旬,比丽水经子约早两周,韶关石龙子窝卵数较大,卵较小,窝卵重与丽水石龙子无显著差异。韶关石龙子特定SVL的窝卵数比丽水石龙子多2.8枚卵,中国经子卵数量和大小之间有种群间权衡,无种数内权衡,同一种群内卵数量与卵大小无关,孵化温度影响石龙子孵出幼体的一些特征,24℃孵出细幼体比32℃孵出幼体大,躯干发育好,剩余卵黄少,韶关24℃孵出幼体的体重,躯干干重小于丽水幼体,韶关32℃孵出幼体的SVL小于丽水幼体,剩余卵黄大于丽水幼体,表明适宜卵孵化温度范围有地理变异。丽水石龙子卵对极端高温和低温的耐受性较强,适宜卵孵化温度范围较宽。  相似文献   

14.
The range boundaries of organisms are frequently interpreted in terms of a decline in the extent to which the life histories of outer populations are able to adapt to local environmental conditions. To test this hypothesis, we compared the reproductive characteristics of two Iberian populations of the lizard Psammodromus algirus (Linnaeus, 1758). One of them (Lerma) is close to the northern edge of the species' range, whereas the other one (El Pardo) occupies a typical core habitat 200 km further south. Gravid females were captured in the field and transported to the lab for egg laying. Second clutches were less frequent at Lerma (where clutch size and clutch mass were larger for first than for second clutches) than at El Pardo. The total mass of both clutches combined was similar at both sites. Thus, the higher frequency of second clutches at El Pardo appeared to balance the between-sites difference in energy allocation to the first clutch. Females from Lerma laid more but smaller eggs than those from El Pardo. When incubated at the same temperature, eggs from Lerma hatched sooner even when controlling for between-sites differences in mean egg size. These differences are interpreted in the light of the advantages of early hatching and high fecundity in the northern population, as opposed to large offspring size in the core population. We conclude that the life-history traits studied show enough variation, presumably of an adaptive nature, to cope with environmental challenges at the edge of the species' range.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 87–96.  相似文献   

15.
Reproducing females can allocate energy between the production of eggs or offspring of different size or number, both of which can strongly influence fitness. The physical capacity to store developing offspring imposes constraints on maximum clutch volume, but individual females and populations can trade off whether more or fewer eggs or offspring are produced, and their relative sizes. Harsh environments are likely to select for larger egg or offspring size, and many vertebrate populations compensate for this reproductive investment through an increase in female body size. We report a different trade‐off in a frog endemic to the Tibetan Plateau, Rana kukunoris. Females living at higher altitudes (n = 11 populations, 2000–3500 m) produce larger eggs, but without a concomitant increase in female body size or clutch size. The reduced diel and seasonal activity at high altitudes may impose constraints on the maximum body size of adult frogs, by limiting the opportunity for energy accumulation. Simultaneously, producing larger eggs likely helps to increase the rate of embryonic development, causing tadpoles to hatch earlier. The gelatinous matrix surrounding eggs, more of which is produced by large females, may help buffer developing embryos from temperature fluctuations or offer protection from ultraviolet radiation. High‐altitude frogs on the Tibetan Plateau employ a reproductive strategy that favours large egg size independent of body size, which is unusual in amphibians. The harsh and unpredictable environmental conditions at high altitudes can thus impose strong and opposing selection pressures on adult and embryonic life stages, both of which can simultaneously influence fitness.  相似文献   

16.
Abstract. In some insects, the finding of oviposition substrate triggers the uptake into oocytes of yolk proteins that are stored in the fat body during post‐embryonic development. The main host of the bean weevil Zabrotes subfasciatus (Coleoptera; Chrysomelidae; Bruchinae; Amblycerini), in which larval resources are the sole source for future egg maturation, is Phaseolus vulgaris. Despite not feeding as adults, females of this species are able to lay eggs after encountering host seeds but it is not known how females react to changes in the availability of bean seeds. In the present study, the behaviour of Z. subfasciatus facing two very different environments for oviposition is investigated, as well as how this influences offspring fitness. The results obtained show that females of Z. subfasciatus react to variations in the availability of seeds belonging to the same host species by adjusting egg size and number. Females on low bean seed density lay larger and fewer eggs than those on high bean seed density, demonstrating a trade‐off between these reproductive traits. Moreover, females can adjust egg size to changing levels of host availability during the first 4 days of their oviposition period. Although no difference in offspring weight is found, those from small eggs (low competition environment) result in larger adults. No response to selection on these traits after rearing beetles on the same host for 40 generations is observed. This unresponsiveness may indicate that beetle populations behave according to their reaction norm that already allows rapid adaptation to a varying amount of host‐seed availability and better exploitation of the environments of this widespread stored‐seed pest.  相似文献   

17.
Using lines artificially selected on egg size and being subjected to a restricted and an unrestricted feeding treatment, we examined the relationships between egg size, egg number, egg composition, and reproductive investment in the butterfly Bicyclus anynana . Despite a successful manipulation of egg size, correlated responses to selection in larval time, pupal mass, pupal time, longevity, fecundity, or the amount of energy allocated to reproduction were virtually absent. Thus, there was no indication for an evolutionary link between offspring size and reproductive investment. Egg composition, in contrast, was affected by selection, with larger eggs containing relatively more lipid and water, but less protein and energy compared to smaller eggs. Hence, females producing large eggs did not have to sacrifice fecundity due to adjustments in egg composition. Food limitation per se caused only minor changes in egg composition, and there was no general reduction in egg provisioning with female age. The latter was restricted to food-limited females, whereas egg quality remained remarkably similar throughout the females' life in control groups. We conclude that neglecting changes in biochemical egg composition, depending on genetic background, food availability, and female age, may introduce substantial error when estimating reproductive effort, and may ultimately lead to invalid conclusions.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 403–418.  相似文献   

18.
During the early stages of adaptive radiation, populations diverge in life history traits such as egg size and growth rates, in addition to eco‐morphological and behavioral characteristics. However, there are few studies of life history divergence within ongoing adaptive radiations. Here, we studied Astatotilapia calliptera, a maternal mouthbrooding cichlid fish within the Lake Malawi haplochromine radiation. This species occupies a rich diversity of habitats, including the main body of Lake Malawi, as well as peripheral rivers and shallow lakes. We used common garden experiments to test for life history divergence among populations, focussing on clutch size, duration of incubation, egg mass, offspring size, and growth rates. In a first experiment, we found significant differences among populations in average clutch size and egg mass, and larger clutches were associated with smaller eggs. In a second experiment, we found significant differences among populations in brood size, duration of incubation, juvenile length when released, and growth rates. Larger broods were associated with smaller juveniles when released and shorter incubation times. Although juvenile growth rates differed between populations, these were not strongly related to initial size on release. Overall, differences in life history characters among populations were not predicted by major habitat classifications (Lake Malawi or peripheral habitats) or population genetic divergence (microsatellite‐based FST). We suggest that the observed patterns are consistent with local selective forces driving the observed patterns of trait divergence. The results provide strong evidence of evolutionary divergence and covariance of life history traits among populations within a radiating cichlid species, highlighting opportunities for further work to identify the processes driving the observed divergence.  相似文献   

19.
The present study aimed to investigate the relationship between growth rate, final mass, and larval development, as well as how this relationship influences reproductive trade‐offs, in the context of a gregarious life‐style and the need to keep an optimal group size. We use as a model two sympatric populations of the pine processionary moth Thaumetopoea pityocampa, which occur in different seasons and thus experience different climatic conditions. Thaumetopoea pityocampa is a strictly gregarious caterpillar throughout the larval period, which occurs during winter in countries all over the Mediterranean Basin. However, in 1997, a population in which larval development occurs during the summer was discovered in Portugal, namely the summer population (SP), as opposed to the normal winter population (WP), which coexists in the same forest feeding on the same host during the winter. Both populations were monitored over 3 years, with an assessment of the length of the larval period and its relationship with different climatic variables, final mass and adult size, egg size and number, colony size, and mortality at different life stages. The SP larval period was reduced as a result of development in the warmer part of the year, although it reached the same final mass and adult size as the WP. Despite an equal size at maturity, a trade‐off between egg size and number was found between the two populations: SP produced less but bigger eggs than WP. This contrasts with the findings obtained in other Lepidoptera species, where development in colder environments leads to larger eggs at the expense of fecundity, but corroborates the trend found at a macro‐geographical scale for T. pityocampa, with females from northern latitudes and a colder environment producing more (and smaller) eggs. The results demonstrate the importance of the number of eggs in cold environments as a result of an advantage of large colonies when gregarious caterpillars develop in such environments, and these findings are discussed in accordance with the major theories regarding size in animals. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 340–349.  相似文献   

20.
The trade‐off between offspring size and number can present a conflict between parents and their offspring. Because egg size is constrained by clutch size, the optimal egg size for offspring fitness may not always be equivalent to that which maximizes parental fitness. We evaluated selection on egg size in three turtle species (Apalone mutica, Chelydra serpentina and Chrysemys picta) to determine if optimal egg sizes differ between offspring and their mothers. Although hatching success was generally greater for larger eggs, the strength and form of selection varied. In most cases, the egg size that maximized offspring fitness was greater than that which maximized maternal fitness. Consistent with optimality theory, mean egg sizes in the populations were more similar to the egg sizes that maximized maternal fitness, rather than offspring fitness. These results provide evidence that selection has maximized maternal fitness to achieve an optimal balance between egg size and number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号