首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation, induces proliferation of naive CD4+ T cells, and synergizes with IL-12 in IFN-gamma production. It has been recently reported that IL-27 induces T-bet and IL-12Rbeta2 expression through JAK1/STAT1 activation. In the present study, we further investigated the JAK/STAT signaling molecules activated by IL-27 and also the role of STAT1 in IL-27-mediated responses using STAT1-deficient mice. In addition to JAK1 and STAT1, IL-27-activated JAK2, tyrosine kinase-2, and STAT2, -3, and -5 in naive CD4+ T cells. The activation of STAT2 and STAT5, but not of STAT3, was greatly diminished in STAT1-deficient naive CD4+ T cells. Comparable proliferative response to IL-27 was observed between STAT1-deficient and wild-type naive CD4+ T cells. In contrast, IL-27 hardly induced T-bet and subsequent IL-12Rbeta2 expression, and synergistic IFN-gamma production by IL-27 and IL-12 was impaired in STAT1-deficient naive CD4+ T cells. Moreover, IL-27 augmented the expression of MHC class I on naive CD4+ T cells in a STAT1-dependent manner. These results suggest that IL-27 activates JAK1 and -2, tyrosine kinase-2, STAT1, -2, -3, and -5 in naive CD4+ T cells and that STAT1 plays an indispensable role in IL-27-induced T-bet and subsequent IL-12Rbeta2 expression and MHC class I expression as well but not proliferation, while STAT3 presumably plays an important role in IL-27-induced proliferation.  相似文献   

2.
WSX-1 is the alpha subunit of the IL-27R complex expressed by T, B, NK/NKT cells, as well as macrophages and dendritic cells (DCs). Although it has been shown that IL-27 has both stimulatory and inhibitory effects on T cells, little is known on the role of IL-27/WSX-1 on DCs. LPS stimulation of splenic DCs in vivo resulted in prolonged CD80/CD86 expression on WSX-1-deficient DCs over wild-type DCs. Upon LPS stimulation in vitro, WSX-1-deficient DCs expressed Th1-promoting molecules higher than wild-type DCs. In an allogeneic MLR assay, WSX-1-deficient DCs were more potent than wild-type DCs in the induction of proliferation of and IFN-gamma production by responder cell proliferation. When cocultured with purified NK cells, WSX-1-deficient DCs induced higher IFN-gamma production and killing activity of NK cells than wild-type DCs. As such, Ag-pulsed WSX-1-deficient DCs induced Th1-biased strong immune responses over wild-type DCs when transferred in vivo. WSX-1-deficient DCs were hyperreactive to LPS stimulation as compared with wild-type DCs by cytokine production. IL-27 suppressed LPS-induced CD80/86 expression and cytokine production by DCs in vitro. Thus, our study demonstrated that IL-27/WSX-1 signaling potently down-regulates APC function and Th1-promoting function of DCs to modulate overall immune responses.  相似文献   

3.
IL-27, a member of the IL-6/IL-12 family, activates both STAT1 and STAT3 through its receptor, which consists of WSX-1 and gp130 subunits, resulting in augmentation of Th1 differentiation and suppression of proinflammatory cytokine production. In the present study, we investigated the role of STAT3 in the IL-27-mediated immune functions. IL-27 induced phosphorylation of STAT1, -2, -3 and -5 in wild-type naive CD4+ T cells, but failed to induce that of STAT3 and STAT5 in STAT3-deficient cohorts. IL-27 induced not only proinflammatory responses including up-regulation of ICAM-1, T-box expressed in T cells, and IL-12Rbeta2 and Th1 differentiation, but also anti-inflammatory responses including suppression of proinflammatory cytokine production such as IL-2, IL-4, and IL-13 even in STAT3-deficient naive CD4+ T cells. In contrast, IL-27 augmented c-Myc and Pim-1 expression and induced cell proliferation in wild-type naive CD4+ T cells but not in STAT3-deficient cohorts. Moreover, IL-27 failed to activate STAT3, augment c-Myc and Pim-1 expression, and induce cell proliferation in pro-B BaF/3 transfectants expressing mutant gp130, in which the putative STAT3-binding four Tyr residues in the YXXQ motif of the cytoplasmic region was replaced by Phe. These results suggest that STAT3 is activated through gp130 by IL-27 and is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. Thus, IL-27 may be a cytokine, which activates both STAT1 and STAT3 through distinct receptor subunits, WSX-1 and gp130, respectively, to mediate its individual immune functions.  相似文献   

4.
Chronic infection by the gastrointestinal nematode Trichuris muris in susceptible AKR mice, which mount a Th1 response, is associated with IL-27p28 expression in the cecum. In contrast to wild-type mice, mice that lack the WSX-1/IL-27R gene fail to harbor a chronic infection, having significantly lower Th1 responses. The lower level of Ag-specific IFN-gamma-positive cells in WSX-1 knockout (KO) mice was found to be CD4(+) T cell specific, and the KO mice also had increased levels of IL-4-positive CD4(+) T cells. Polyclonal activation of mesenteric lymph node cells from naive WSX-1 KO or wild-type mice demonstrated that there was no inherent defect in the production of IFN-gamma by CD4(+) T cells, suggesting the decrease in these cells seen in infected WSX-1 KO mice is an in vivo Ag-driven effect. IL-12 treatment of WSX-1 KO mice failed to rescue the type 1 response, resulting in unaltered type-2-driven resistance. Infection of WSX-1 KO mice was also associated with a reduction of IL-27/WSX-1 downstream signaling gene expression within the cecum. These studies demonstrate an important role for WSX-1 signaling in the promotion of type 1 responses and chronic gastrointestinal nematode infection.  相似文献   

5.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation. We have recently demonstrated that IL-27 has a potent antitumor activity, which is mainly mediated through CD8+ T cells, and also has an adjuvant activity to induce epitope-specific CTL in vivo. In this study, we further investigated the in vitro effect of IL-27 on CD8+ T cells of mouse spleen cells. In a manner similar to CD4+ T cells, IL-27 activated STAT1, -2, -3, -4, and -5, and augmented the expression of T-bet, IL-12Rbeta2, and granzyme B, and slightly that of perforin in naive CD8+ T cells stimulated with anti-CD3. IL-27 induced synergistic IFN-gamma production with IL-12 and proliferation of naive CD8+ T cells. Moreover, IL-27 enhanced proliferation of CD4+ T cell-depleted spleen cells stimulated by allogeneic spleen cells and augmented the generation of CTL. In STAT1-deficient naive CD8+ T cells, IL-27-induced proliferation was not reduced, but synergistic IFN-gamma production with IL-12 was diminished with decreased expression of T-bet, IL-12Rbeta2, granzyme B, and perforin. In T-bet-deficient naive CD8+ T cells, IL-27-induced proliferation was hardly reduced, but synergistic IFN-gamma production with IL-12 was diminished with decreased expression of IL-12Rbeta2, granzyme B, and perforin. However, IL-27 still augmented the generation of CTL from T-bet-deficient CD4+ T cell-depleted spleen cells stimulated by allogeneic spleen cells with increased granzyme B expression. These results suggest that IL-27 directly acts on naive CD8+ T cells in T-bet-dependent and -independent manners and augments generation of CTL with enhanced granzyme B expression.  相似文献   

6.
The cyclin-dependent kinase inhibitor p27(Kip1) is a critical regulator of T cell proliferation. To further examine the relationship of T cell proliferation and differentiation, we examined the ability of T cells deficient in p27(Kip1) to differentiate into Th subsets. We observed increased Th2 differentiation in p27(Kip1)-deficient cultures. In addition to increases in CD4(+) and CD8(+) T cells, there is a similar increase in gamma delta T cells in p27(Kip1)-deficient mice compared with wild-type mice. The increase in Th2 differentiation is correlated to an increase of IL-4 secretion by CD4(+)DX5(+)TCR alpha beta(+)CD62L(low) T cells but not to increased expansion of differentiating Th2 cells. While STAT4- and STAT6-deficient T cells have diminished proliferative responses to IL-12 and IL-4, respectively, proliferative responses are increased in T cells doubly deficient in p27(Kip1) and STAT4 or STAT6. In contrast, the increased proliferation and differentiative capacity of p27(Kip1)-deficient T cells has no effect on the ability of STAT4/p27(Kip1)- or STAT6/p27(Kip1)-deficient CD4(+) cells to differentiate into Th1 or Th2 cells, respectively. Thus, while p27(Kip1) regulates the expansion and homeostasis of several T cell subsets, it does not affect the differentiation of Th subsets.  相似文献   

7.
During activation in vivo, naive CD4(+) T cells are exposed to various endogenous ligands, such as cytokines and the neurotransmitter norepinephrine (NE). To determine whether NE affects naive T cell differentiation, we used naive CD4(+) T cells sort-purified from either BALB/c or DO11.10 TCR-transgenic mouse spleens and activated these cells with either anti-CD3/anti-CD28 mAbs or APC and OVA(323-329) peptide, respectively, under Th1-promoting conditions. RT-PCR and functional assays using selective adrenergic receptor (AR) subtype antagonists showed that naive CD4(+) T cells expressed only the beta 2AR subtype to bind NE and that stimulation of this receptor generated Th1 cells that produced 2- to 4-fold more IFN-gamma. This increase was due to more IFN-gamma produced per cell upon restimulation instead of more IFN-gamma-secreting cells, as determined by IFN-gamma-specific immunofluorescence and enzyme-linked immunospot. In contrast, Th1 cell differentiation was unaffected when naive T cells were exposed to NE and activated either in the presence of a neutralizing anti-IL-12 mAb or by APC from IL-12-deficient mice. Moreover, the addition of IL-12 to the IL-12-deficient APC cultures restored the ability of NE to increase Th1 differentiation. Taken together, these results indicate that a possible link may exist between the signaling pathways used by NE and IL-12 to increase naive CD4(+) T cell differentiation to a Th1 cell.  相似文献   

8.
Previous reports have focused on the ability of IL-27 to promote naive T cell responses but the present study reveals that surface expression of WSX-1, the ligand-specific component of the IL-27R, is low on these cells and that highest levels are found on effector and memory CD4(+) and CD8(+) T cells. Accordingly, during infection with Toxoplasma gondii, in vivo T cell activation is associated with enhanced expression of WSX-1, and, in vitro, TCR ligation can induce expression of WSX-1 regardless of the polarizing (Th1/Th2) environment present at the time of priming. However, while these data establish that mitogenic stimulation promotes expression of WSX-1 by T cells, activation of NK cells and NKT cells prompts a reduction in WSX-1 levels during acute toxoplasmosis. Together, with the finding that IL-2 can suppress expression of WSX-1 by activated CD4(+) T cells, these studies indicate that surface levels of the IL-27R can be regulated by positive and negative signals associated with lymphoid cell activation. Additionally, since high levels of WSX-1 are evident on resting NK cells, resting NKT cells, effector T cells, regulatory T cells, and memory T cells, the current work demonstrates that IL-27 can influence multiple effector cells of innate and adaptive immunity.  相似文献   

9.
WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27   总被引:32,自引:0,他引:32  
The recently discovered cytokine IL-27 belongs to the IL-6/IL-12 family of cytokines and induced proliferation of naive CD4(+) T cells and the generation of a Th1-type adaptive immune response. Although binding of IL-27 to the cytokine receptor WSX-1 was demonstrated, this interaction proved insufficient to mediate cellular effects. Hence, IL-27 was believed to form a heteromeric signaling receptor complex with WSX-1 and another, yet to be identified, cytokine receptor subunit. In this study, we describe that WSX-1 together with gp130 constitutes a functional signal-transducing receptor for IL-27. We show that neither of the two subunits itself is sufficient to mediate IL-27-induced signal transduction, but that the combination of both is required for this event. Expression analysis of WSX-1 and gp130 by quantitative PCR suggests that IL-27 might have a variety of cellular targets besides naive CD4(+) T cells: we demonstrate gene induction of a subset of inflammatory cytokines in primary human mast cells and monocytes in response to IL-27 stimulation. Thus, IL-27 not only contributes to the development of an adaptive immune response through its action on CD4(+) T cells, it also directly acts on cells of the innate immune system.  相似文献   

10.
Induction of IgG2a class switching in B cells by IL-27   总被引:8,自引:0,他引:8  
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation. However, its role in B cells remains unexplored. We here show a role for IL-27 in the induction of T-bet expression and regulation of Ig class switching in B cells. Expression of WSX-1, one subunit of IL-27R, was detected at the mRNA level in primary mouse spleen B cells, and stimulation of these B cells by IL-27 rapidly activated STAT1. IL-27 then induced T-bet expression and IgG2a, but not IgG1, class switching in B cells activated with anti-CD40 or LPS. In contrast, IL-27 inhibited IgG1 class switching induced by IL-4 in activated B cells. Similar induction of STAT1 activation, T-bet expression and IgG2a class switching was observed in IFN-gamma-deficient B cells, but not in STAT1-deficient ones. The induction of IgG2a class switching was abolished in T-bet-deficient B cells activated with LPS. These results suggest that primary spleen B cells express functional IL-27R and that the stimulation of these B cells by IL-27 induces T-bet expression and IgG2a, but not IgG1, class switching in a STAT1-dependent but IFN-gamma-independent manner. The IL-27-induced IgG2a class switching is highly dependent on T-bet in response to T-independent stimuli such as LPS. Thus, IL-27 may be a novel attractive candidate as a therapeutic agent against diseases such as allergic disorders by not only regulating Th1 differentiation but also directly acting on B cells and inducing IgG2a class switching.  相似文献   

11.
WSX-1 (IL-27R) is a class I cytokine receptor with homology to gp130 and IL-12 receptors and is typically expressed on CD4+ T lymphocytes. Although previous reports have clarified that IL-27/WSX-1 signaling plays critical roles in both Th1 differentiation and attenuation of cell activation and proinflammatory cytokine production during some bacterial or protozoan infections, little is known about the importance of WSX-1 in cytokine-mediated diseases of allergic origin. To this aim, we took advantage of WSX-1-deficient (WSX-1(-/-)) mice and induced experimental asthma, in which Th2 cytokines are central modulators of the pathology. OVA-challenged WSX-1(-/-) mice showed marked enhancement of airway responsiveness with goblet cell hyperplasia, pulmonary eosinophil infiltration, and increased serum IgE levels compared with wild-type mice. Production of Th2 cytokines, which are largely responsible for the pathogenesis of asthma, was augmented in the lung or in the culture supernatants of peribronchial lymph node CD4+ T cells from WSX-1(-/-) mice compared with those from wild-type mice. Surprisingly, IFN-gamma production was also enhanced in WSX-1(-/-) mice, albeit at a low concentration. The cytokine overproduction, thus, seems independent from the Th1-promoting property of WSX-1. These results demonstrated that IL-27/WSX-1 also plays an important role in the down-regulation of airway hyper-reactivity and lung inflammation during the development of allergic asthma through its suppressive effect on cytokine production.  相似文献   

12.
In this study we demonstrated that CD4(+) T cells from STAT4(-/-) mice exhibit reduced IL-12R expression and poor IL-12R signaling function. This raised the question of whether activated STAT4 participates in Th1 cell development mainly through its effects on IL-12 signaling. In a first approach to this question we determined the capacity of CD4(+) T cells from STAT4(-/-) bearing an IL-12Rbeta2 chain transgene (and thus capable of normal IL-12R expression and signaling) to undergo Th1 differentiation when stimulated by Con A and APCs. We found that such cells were still unable to exhibit IL-12-mediated IFN-gamma production. In a second approach to this question, we created Th2 cell lines (D10 cells) transfected with STAT4-expressing plasmids with various tyrosine-->phenylalanine mutations and CD4(+) T cell lines from IL-12beta2(-/-) mice infected with retroviruses expressing similarly STAT4 mutations that nevertheless express surface IL-12Rbeta2 chains. We then showed that constructs that were unable to support STAT4 tyrosine phosphorylation (in D10 cells) as a result of mutation were also incapable of supporting IL-12-induced IFN-gamma production (in IL-12Rbeta2(-/-) cells). Thus, by two complementary approaches we demonstrated that activated STAT4 has an essential downstream role in Th1 cell differentiation that is independent of its role in the support of IL-12Rbeta2 chain signaling. This implies that STAT4 is an essential element in the early events of Th1 differentiation.  相似文献   

13.
IL-12 and IL-18 are both proinflammatory cytokines that contribute to promoting Th1 development and IFN-gamma expression. However, neither IL-12R nor IL-18R is expressed as a functional complex on most resting T cells. This study investigated the molecular mechanisms underlying the induction of an IL-18R complex in T cells. Resting T cells expressed IL-18Ralpha chains but did not exhibit IL-18 binding sites as detected by incubation with rIL-18 followed by anti-IL-18 Ab, suggesting a lack of IL-18Rbeta expression in resting T cells. Although they also failed to express IL-12R, stimulation with anti-CD3 plus anti-CD28 generated IL-12R. Exposure of these cells to IL-12 led not only to up-regulation of IL-18Ralpha expression but also to induction of IL-18R binding sites on both CD4(+) and CD8(+) T cells concomitant with IL-18Rbeta mRNA expression. The IL-18 binding site represented a functional IL-18R complex capable of exhibiting IL-18 responsiveness. IL-12 induction of an IL-18R complex and IL-18Rbeta mRNA expression was not observed in STAT4-deficient (STAT4(-/-)) T cells and was substantially decreased in IFN-gamma(-/-) T cells. However, the failure of STAT4(-/-) T cells to induce an IL-18R complex was not corrected by IFN-gamma. These results indicate that STAT4 and IFN-gamma play an indispensable role and a role as an amplifying factor, respectively, in IL-12 induction of the functional IL-18R complex.  相似文献   

14.
15.
16.
TGF-beta1 plays a critical role in restraining pathogenic Th1 autoimmune responses in vivo, but the mechanisms that mediate TGF-beta1's suppressive effects on CD4(+) T cell expression of IFN-gamma expression remain incompletely understood. To evaluate mechanisms by which TGF-beta1 inhibits IFN-gamma expression in CD4(+) T cells, we primed naive wild-type murine BALB/c CD4(+) T cells in vitro under Th1 development conditions in the presence or the absence of added TGF-beta1. We found that the presence of TGF-beta1 during priming of CD4(+) T cells suppressed both IFN-gamma expression during priming as well as the development of Th1 effector cells expressing IFN-gamma at a recall stimulation. TGF-beta1 inhibited the development of IFN-gamma-expressing cells in a dose-dependent fashion and in the absence of APC, indicating that TGF-beta1 can inhibit Th1 development by acting directly on the CD4(+) T cell. During priming, TGF-beta1 strongly inhibited the expression of both T-bet (T box expressed in T cells) and Stat4. We evaluated the importance of these two molecules in the suppression of IFN-gamma expression at the two phases of Th1 responses. Enforced expression of T-bet by retrovirus prevented TGF-beta1's inhibition of Th1 development, but did not prevent TGF-beta1's inhibition of IFN-gamma expression at priming. Conversely, enforced expression of Stat4 partly prevented TGF-beta1's inhibition of IFN-gamma expression during priming, but did not prevent TGF-beta1's inhibition of Th1 development. These data show that TGF-beta1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4(+) T cells at priming and at recall.  相似文献   

17.
During inflammatory immune responses, the innate cytokine IL-12 promotes CD4+ Th-1 development through the activation of the second messenger STAT4 and the subsequent expression of T-bet. In addition, type I IFN (IFN-alphabeta), secreted primarily during viral and intracellular bacterial infections, can promote STAT4 activation in human CD4+ T cells. However, the role of IFN-alphabeta in regulating Th1 development is controversial, and previous studies have suggested a species-specific pathway leading to Th1 development in human but not mouse CD4+ T cells. In this study, we found that although both IFN-alpha and IL-12 can promote STAT4 activation, IFN-alpha failed to promote Th1 commitment in human CD4+ T cells. The difference between these innate signaling pathways lies with the ability of IL-12 to promote sustained STAT4 tyrosine phosphorylation, which correlated with stable T-bet expression in committed Th1 cells. IFN-alpha did not promote Th1 development in human CD4+ T cells because of attenuated STAT4 phosphorylation, which was insufficient to induce stable expression of T-bet. Further, the defect in IFN-alpha-driven Th1 development was corrected by ectopic expression of T-bet within primary naive human CD4+ T cells. These results indicate that IL-12 remains unique in its ability to drive Th1 development in human CD4+ T cells and that IFN-alpha lacks this activity due to its inability to promote sustained T-bet expression.  相似文献   

18.
19.
20.
Suppressor of cytokine signaling (SOCS1/JAB) has been shown to play an important role in regulating dendritic cell (DC) function and suppressing inflammatory diseases and systemic autoimmunity. However, role of SOCS1 in DCs for the initiation of Th cell response has not been clarified. Here we demonstrate that SOCS1-deficient DCs induce stronger Th1-type responses both in vitro and in vivo. SOCS1-deficient DCs induced higher IFN-gamma production from naive T cells than wild-type (WT) DCs in vitro. Lymph node T cells also produced a higher amount of IFN-gamma when SOCS1-deficient bone marrow-derived DCs (BMDCs) were transferred in vivo. Moreover, SOCS1(-/-) BMDCs raised more effective anti-tumor immunity than WT BMDCs. Microarray analysis revealed that IFN-inducible genes were highly expressed in SOCS1-deficient DCs without IFN stimulation, suggesting hyper STAT1 activation in SOCS1(-/-) DCs. These phenotypes of SOCS1-deficient DCs were similar to those of CD8alpha(+) DCs, and in the WT spleen, SOCS1 is expressed at higher levels in the Th2-inducing CD4(+) DC subset, relative to the Th1-inducing CD8alpha(+) DC subset. We propose that reduction of the SOCS1 gene expression in DCs leads to CD8alpha(+) DC-like phenotype which promotes Th1-type hyperresponses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号