首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pressures between 10 and 100 MPa can exert powerful effects on the growth and viability of organisms. Here I describe the effects of elevated pressure in this range on mesophilic (atmospheric pressure adapted) and piezophilic (high-pressure adapted) microorganisms. Examination of pressure effects on mesophiles makes use of this unique physical parameter to aid in the characterization of fundamental cellular processes, while in the case of piezophiles it provides information on the essence of the adaptation of life to high-pressure environments, which comprise the bulk of our biosphere. Research is presented on the isolation of pressure-resistant mutants, high-pressure regulation of gene expression, the role of membrane lipids and proteins in determining growth ability at high pressure, pressure effects on DNA replication and topology as well as on cell division, and the role of extrinsic factors in modulating enzyme activity at high pressure.  相似文献   

2.
Deep-sea sediment samples were collected at a depth of 3,064 m in the Japan Sea. Microorganisms in the sediment sample were cultivated under several pressure conditions, and the high-pressure adapted microbes were isolated. Two of the isolates exhibited piezophilic growth profiles. This is the first report to show the presence of piezophiles in the Japan Sea.  相似文献   

3.
The discovery of piezophiles (previously referred to as barophiles) prompted researchers to investigate the survival strategies they employ in high-pressure environments. There have been innovative high-pressure studies on biological processes applying modern techniques of genetics and molecular biology in bacteria and yeasts as model organisms. Recent advanced studies in this field have shown unexpected outcomes in microbial growth, physiology and survival when living cells are subjected to high hydrostatic pressure. The effects are conceptually dependent on the sign and magnitude of volume changes associated with any chemical reaction in the cells. Nevertheless, it is difficult to explain the pressure effects on complex metabolic networks based on a simple volume law. The challenges in piezophysiology are to discover whether the physiological responses of living cells to high pressure are relevant to their growth and to identify the critical factors in cell viability and lethality under high pressure from the general and organism-specific viewpoints.  相似文献   

4.
Hydrostatic pressure has a vital role in the biological adaptation of the piezophiles, organisms that live under high hydrostatic pressure. However, the mechanisms by which piezophiles are able to adapt their proteins to high hydrostatic pressure is not well understood. One proposed hypothesis is that the volume changes of unfolding (ΔVTot) for proteins from piezophiles is distinct from those of nonpiezophilic organisms. Since ΔVTot defines pressure dependence of stability, we performed a comprehensive computational analysis of this property for proteins from piezophilic and nonpiezophilic organisms. In addition, we experimentally measured the ΔVTot of acylphosphatases and thioredoxins belonging to piezophilic and nonpiezophilic organisms. Based on this analysis we concluded that there is no difference in ΔVTot for proteins from piezophilic and nonpiezophilic organisms. Finally, we put forward the hypothesis that increased concentrations of osmolytes can provide a systemic increase in pressure stability of proteins from piezophilic organisms and provide experimental thermodynamic evidence in support of this hypothesis.  相似文献   

5.
深海微生物高压适应与生物地球化学循环   总被引:3,自引:0,他引:3  
深海是典型的高压环境,嗜压微生物是深海生态系统中的重要类群.随着深海采样技术的发展及高压微生物特殊培养设备的开发,已从深海环境中分离到一系列嗜压微生物,包括一些常压环境不能生长的严格嗜压菌.对这些嗜压菌的研究,不仅对微生物适应极端高压环境的机制有一定了解,而且发现了一些特殊的代谢产物.研究微生物高压嗜压机理,还有助于探索地球生命的温度压力极限及生命起源和演化等科学问题.从深海嗜压微生物多样性、深海微生物高压环境适应机理及深海微生物在生物地球化学循环中的作用等方面对嗜压微生物的研究进展进行综述.  相似文献   

6.
Abstract

In this study, a niosome nanodispersion was manufactured using high-pressure homogenization following the hydration of proniosomes. Using beclometasone dipropionate (BDP) as a model drug, the characteristics of the homogenized niosomes were compared with vesicles prepared via the conventional approach of probe-sonication. Particle size, zeta potential, and the drug entrapment efficiency were similar for both size reduction mechanisms. However, high-pressure homogenization was much more efficient than sonication in terms of homogenization output rate, avoidance of sample contamination, offering a greater potential for a large-scale manufacturing of noisome nanodispersions. For example, high-pressure homogenization was capable of producing small size niosomes (209?nm) using a short single-step of size reduction (6?min) as compared with the time-consuming process of sonication (237?nm in >18?min) and the BDP entrapment efficiency was 29.65%?±?4.04 and 36.4%?±?2.8. In addition, for homogenization, the output rate of the high-pressure homogenization was 10?ml/min compared with 0.83?ml/min using the sonication protocol. In conclusion, a facile, applicable, and highly efficient approach for preparing niosome nanodispersions has been established using proniosome technology and high-pressure homogenization.  相似文献   

7.
Knowledge of our Planet's biosphere has increased tremendously during the last 10 to 20 years. In the field of Microbiology in particular, scientists have discovered novel "extremophiles", microorganisms capable of living in extreme environments such as highly acidic or alkaline conditions, at high salt concentration, with no oxygen, extreme temperatures (as low as -20 degrees C and as high as 300 degrees C), at high concentrations of heavy metals and in high pressure environments such as the deep-sea. It is apparent that microorganisms can exist in any extreme environment of the Earth, yet already scientists have started to look for life on other planets; the so-called "Exobiology" project. But as yet we have little knowledge of the deep-sea and subsurface biosphere of our own planet. We believe that we should elucidate the Biodiversity of Earth more thoroughly before exploring life on other planets, and these attempts would provide deeper insight into clarifying the existence of extraterrestrial life. We focused on two deep-sea extremophiles in this article; one is "Piezophiles", and another is "Hyperthermophiles". Piezophiles are typical microorganisms adapted to high-pressure and cold temperature environments, and located in deep-sea bottom. Otherwise, hyperthermophiles are living in high temperature environment, and located at around the hydrothermal vent systems in deep-sea. They are not typical deep-sea microorganisms, but they can grow well at high-pressure condition, just like piezophiles. Deming and Baross mentioned that most of the hyperthermophilic archaea isolated from deep-sea hydrothermal vents are able to grow under conditions of high temperature and pressure, and in most cases their optimal pressure for growth was greater than the environmental pressure they were isolated from. It is possible that originally their native environment may have been deeper than the sea floor and that there had to be a deeper biosphere. This implication suggests that the deep-sea hydrothermal vents are the windows to a deep subsurface biosphere. A vast array of chemoautotrophic deep-sea animal communities have been found to exist in cold seep environments, and most of these animals are common with those found in hydrothermal vent environments. Thus, it is possible to consider that the cold seeps are also one of slit windows to a deep subsurface biosphere. We conclude that the deep-sea extremophiles are very closely related into the unseen majority in subsurface biosphere, and the subsurface biosphere probably concerns to consider the "exobiology".  相似文献   

8.
Many pseudomonads and other bacteria can grow on aliphatic and aromatic hydrocarbons that occur in the environment. We are examining the potential of such organisms as biocatalysts for the oxidation of a variety of substituted aliphatic and aromatic compounds. To attain a high production rate of oxidation products via such biotransformations, we have focused on two-liquid phase culture systems. In these systems, cells are grown in liquid media consisting of an aqueous phase containing water-soluble growth substrates and droplets of a water-immiscible organic solvent containing bioconversion substrates and products. For industrial applications of such two-liquid phase processes, several questions remain. What are the maximum rates at which apolar compounds can be transferred from the apolar phase to cells growing in the aqueous phase, i.e., what are the maximum space-time yields attainable in two-liquid phase fermentations under practical conditions? What does an efficient downstream processing of two-liquid phase medium involve? What safety regimes should be considered in working with flammable organic solvents? Can elevated pressure be used to increase oxygen transfer? Based on answers to these questions, we have recently developed a high-pressure, explosion-proof bioreactor system with Bioengineering AG (Wald, Switzerland), which will be installed in our pilot plant and used to explore two-liquid phase bioconversions at a pilot scale.  相似文献   

9.
In the ocean's most extreme depths, pressures of 70 to 110 megapascals prevent the growth of all but the most hyperpiezophilic (pressure-loving) organisms. The physiological adaptations required for growth under these conditions are considered to be substantial. Efforts to determine specific adaptations permitting growth at extreme pressures have thus far focused on relatively few gamma-proteobacteria, in part due to the technical difficulties of obtaining piezophilic bacteria in pure culture. Here, we present the molecular phylogenies of several new piezophiles of widely differing geographic origins. Included are results from an analysis of the first deep-trench bacterial isolates recovered from the southern hemisphere (9.9-km depth) and of the first gram-positive piezophilic strains. These new data allowed both phylogenetic and structural 16S rRNA comparisons among deep-ocean trench piezophiles and closely related strains not adapted to high pressure. Our results suggest that (i) the Circumpolar Deep Water acts as repository for hyperpiezophiles and drives their dissemination to deep trenches in the Pacific Ocean and (ii) the occurrence of elongated helices in the 16S rRNA genes increases with the extent of adaptation to growth at elevated pressure. These helix changes are believed to improve ribosome function under deep-sea conditions.  相似文献   

10.
The application of artificial microbial consortia for biotechnological production processes is an emerging field in research as it offers great potential for the improvement of established as well as the development of novel processes. In this review, we summarize recent highlights in the usage of various microbial consortia for the production of, for example, platform chemicals, biofuels, or pharmaceutical compounds. It aims to demonstrate the great potential of co-cultures by employing different organisms and interaction mechanisms and exploiting their respective advantages. Bacteria and yeasts often offer a broad spectrum of possible products, fungi enable the utilization of complex lignocellulosic substrates via enzyme secretion and hydrolysis, and microalgae can feature their abilities to fixate CO2 through photosynthesis for other organisms as well as to form lipids as potential fuelstocks. However, the complexity of interactions between microbes require methods for observing population dynamics within the process and modern approaches such as modeling or automation for process development. After shortly discussing these interaction mechanisms, we aim to present a broad variety of successfully established co-culture processes to display the potential of artificial microbial consortia for the production of biotechnological products.  相似文献   

11.
An increasing effort is dedicated to investigate the potential of native plants used in traditional medicine as a source of bioactive compounds for numerous industries. The bioprospection of the metabolome of medicinal and/or endangered plants has two important merits: confirming or revealing the biotechnological potential of that species, and assisting in its conservation. In addition, biotechnological techniques, such as tissue culture, are key strategies in conservation and multiplication of medicinal plants. This is the first in vitro development and non-targeted metabolome study by UPLC–QTOF–MSE of extracts from C. menthoides, an endangered medicinal plant. In vitro development investigation with a wide range of plant growth regulators resulted in maximum survival rate (81%) and the highest growth rate (1.74 cm?±?0.36) for plantlets cultured on Murashige and Skoog medium, supplemented with 1 µM gibberellic acid. Maximum rooting occurred on medium supplemented with 4.4 µM 6-benzyladenine, which also resulted in more leaves per plantlet (10.16?±?1.7). We developed a protocol that can be used for the clonal propagation and ex situ conservation of this species. In terms of metabolome analysis, a total of 107 metabolites from several classes were detected and identified in its hydrophilic extract (HE), including organic acids and derivatives, glucosinolates, terpenes, phenolic compounds as well as other polar metabolites. The metabolites in HE with the greatest signal intensity included the isoquinoline alkaloid magnoflorine; the coumaric acid rosmarinic acid; the steroid-cardanolide convallatoxin; two anthraquinones including the poorly investigated ventinone A. Several molecules identified here carry potential pharmacological benefits such as anti-inflammatory and anticancer applications.  相似文献   

12.
Fungi are generally easily dispersed, able to colonise a wide variety of substrata and can tolerate diverse environmental conditions. However, despite these abilities, the diversity of fungi in the Atacama Desert is practically unknown. Most of the resident fungi in desert regions are ubiquitous. Some of them, however, seem to display specific adaptations that enable them to survive under the variety of extreme conditions of these regions, such as high temperature, low availability of water, osmotic stress, desiccation, low availability of nutrients, and exposure to high levels of UV radiation. For these reasons, fungal communities living in the Atacama Desert represent an unknown part of global fungal diversity and, consequently, may be source of new species that could be potential sources for new biotechnological products. In this review, we focus on the current knowledge of the diversity, ecology, adaptive strategies, and biotechnological potential of the fungi reported in the different ecosystems of the Atacama Desert.  相似文献   

13.
The use of white-rot fungi as a biotechnological tool for cleaning the environment of recalcitrant pollutants has been under evaluation for several years. However, it is still not possible to find sufficiently detailed investigations of this subject to conclude that these fungi can decontaminate the environment. In the present review, we have summarized and discussed evidence about the potential of white-rot fungi to degrade such pollutants as polycyclic aromatic hydrocarbons, dyes or antibiotics as an example of the complex structures that these microorganisms can attack. This review also discusses field experiment results and limitations of white-rot fungi trials from contaminated sites. Moreover, the use of catabolic potential of white-rot fungi in biopurification systems (biobeds) is also discussed. The current status and future perspectives of white-rot fungi, as a viable biotechnological alternative for improvement of environmental health are noted.  相似文献   

14.
Marine microorganisms play key roles in every marine ecological process, hence the growing interest in studying their populations and functions. Microbial communities on algae remain underexplored, however, despite their huge biodiversity and the fact that they differ markedly from those living freely in seawater. The study of this microbiota and of its relationships with algal hosts should provide crucial information for ecological investigations on algae and aquatic ecosystems. Furthermore, because these microorganisms interact with algae in multiple, complex ways, they constitute an interesting source of novel bioactive compounds with biotechnological potential, such as dehalogenases, antimicrobials, and alga-specific polysaccharidases (e.g., agarases, carrageenases, and alginate lyases). Here, to demonstrate the huge potential of alga-associated organisms and their metabolites in developing future biotechnological applications, we first describe the immense diversity and density of these microbial biofilms. We further describe their complex interactions with algae, leading to the production of specific bioactive compounds and hydrolytic enzymes of biotechnological interest. We end with a glance at their potential use in medical and industrial applications.  相似文献   

15.
Due its innate ability to produce extracellular enzymes which can provide eco‐friendly solutions for a variety of biotechnological applications, Paecilomyces variotii is a potential source of industrial bioproducts. In this review, we report biotechnological records on the biochemistry of different enzymes produced by the fermentation of the P. variotii fungus, including tannases, phytases, cellulases, xylanases, chitinases, amylases and pectinases. Additionally, the main physicochemical properties which can affect the enzymatic reactions of the enzymes involved in the conversion of a huge number of substrates to high‐value bioproducts are described. Despite all the background information compiled in this review, more research is required to consolidate the catalytic efficiency of P. variotii, which must be optimized so that it is more accurate and reproducible on a large scale.  相似文献   

16.
The microalga Dunaliella salina is the best commercial source of natural β-carotene. Additionally, different species of Dunaliella can accumulate significant amounts of valuable fine chemicals such as carotenoids, glycerol, lipids, vitamins, minerals and proteins. They also have a large potential for biotechnological processes such as expressing of foreign proteins and treatment of wastewater. In this review, we discussed several biotechnological aspects of the mass cultivation of D. salina like strain selection, carotenoid induction, culture conditions, culture systems and downstream processes. We also discuss several traditional and new applications of the genus.  相似文献   

17.
Recently there has been increasing interest in possible biotechnological applications of the bacterial genus Amycolatopsis. This genus originally attracted attention for its antibiotic producing capabilities; although it is actually a multifaceted genus and a more diverse range of studies involving biotechnological processes have now been undertaken. Several works have demonstrated that the versatility shown by these bacteria is valuable in industrial applications. Here, we provide a condensed overview of the most important biotechnological applications such as bioremediation, biodegradation and bioconversion, as well as aspects that need to be explored further in order to gain a fuller insight into this genus, including its possible potential in the production of biofuel. Antibiotic production is not discussed since this is well covered by the latest edition of Bergey’s Manual of Systematic Bacteriology. To our knowledge this is the first report highlighting the versatility and biotechnological potential of the genus Amycolatopsis.  相似文献   

18.
Recalcitrant polysaccharide degradation by novel oxidative biocatalysts   总被引:1,自引:0,他引:1  
The classical hydrolytic mechanism for the degradation of plant polysaccharides by saprophytic microorganisms has been reconsidered after the recent landmark discovery of a new class of oxidases termed lytic polysaccharide monooxygenases (LPMOs). LPMOs are of increased biotechnological interest due to their implication in lignocellulosic biomass decomposition for the production of biofuels and high-value chemicals. They act on recalcitrant polysaccharides by a combination of hydrolytic and oxidative function, generating oxidized and non-oxidized chain ends. They are copper-dependent and require molecular oxygen and an external electron donor for their proper function. In this review, we present the recent findings concerning the mechanism of action of these oxidative enzymes and identify issues and questions to be addressed in the future.  相似文献   

19.
Many transnational organizations are investing heavily in biotechnological research1. They are primarily interested in activities such as the sale of chemicals and/or food processing. Consequently, research leading to an expansion in the use of chemicals or a reduction of commodity prices is advantageous to those companies. An increase in the sale of chemicals can, for instance, be expected as a result of research on herbicide resistance2, a further reduction of commodity prices can be stimulated by biotechnological research directed at cost reduction or finding cheaper substitutes3. Western governmental research institutes and universities contribute to these research directions by cooperating closely with these companies4,5.In view of these developments, it can be expected that biotechnological research will contribute to a further decrease in commodity prices and further instability of the agricultural structure in many developing countries and, consequently, an acceleration of migration to the already overcrowded cities.The question is, can biotechnology also contribute to sustainable development in rural areas by assisting small-scale and semi-subsistence farmers? I suggest it can.  相似文献   

20.
Microbial metabolites are of huge biotechnological potential and their production can be coupled with detoxification of environmental pollutants and wastewater treatment mediated by the versatile microorganisms. The consortia of cyanobacteria/microalgae and bacteria can be efficient in detoxification of organic and inorganic pollutants, and removal of nutrients from wastewaters, compared to the individual microorganisms. Cyanobacterial/algal photosynthesis provides oxygen, a key electron acceptor to the pollutant-degrading heterotrophic bacteria. In turn, bacteria support photoautotrophic growth of the partners by providing carbon dioxide and other stimulatory means. Competition for resources and cooperation for pollutant abatement between these two guilds of microorganisms will determine the success of consortium engineering while harnessing the biotechnological potential of the partners. Relative to the introduction of gene(s) in a single organism wherein the genes depend on the regulatory- and metabolic network for proper expression, microbial consortium engineering is easier and achievable. The currently available biotechnological tools such as metabolic profiling and functional genomics can aid in the consortium engineering. The present review examines the current status of research on the consortia, and emphasizes the construction of consortia with desired partners to serve a dual mission of pollutant removal and commercial production of microbial metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号