首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the impact of drought and arbuscular mycorrhizal (AM) fungi on the morphological structure and physiological function of shoots and roots of male and female seedlings of the dioecious plant Populus cathayana Rehder. Pot-grown seedlings were subjected to well watered or water-limiting conditions (drought) and were grown in soil that was either inoculated or not inoculated with the AM fungus Rhizophagus intraradices. No significant differences were found in the infection rates between the two sexes. Drought decreased root and shoot growth, biomass and root morphological characteristics, whereas superoxide radical (O2–) and hydrogen peroxide content, peroxidase (POD) activity, malondialdehyde (MDA) concentration and proline content were significantly enhanced in both sexes. Male plants that formed an AM fungal symbiosis showed a significant increase in shoot and root morphological growth, increased proline content of leaves and roots, and increased POD activity in roots under both watering regimes; however, MDA concentration in the roots decreased. By contrast, AM fungi either had no effect or a slight negative effect on the shoot and root growth of female plants, with lower root biomass, total biomass and root/shoot ration under drought. In females, MDA concentration increased in leaves and roots under both watering regimes, and the proline content and POD activity of roots increased under drought conditions; however, POD activity significantly decreased under well-watered conditions. These findings suggest that AM fungi enhanced the tolerance of male plants to drought by improving shoot and root growth, biomass and the antioxidant system. Further investigation is needed to unravel the complex effects of AM fungi on the growth and antioxidant system of female plants.  相似文献   

2.
The influence of Glomus etunicatum colonization on plant growth and drought tolerance of 3-month-old Pistacia vera seedlings in potted culture was studied in two different water treatments. The arbuscular mycorrhiza (AM) inoculation and plant growth (including plant shoot and root weight, leaf area, and total chlorophyll) were higher for well-watered than for water-stressed plants. The growth of AM-treated seedlings was higher than non-AM-treatment regardless of water status. P, K, Zn and Cu contents in AM-treated shoots were greater than those in non-AM shoots under well-watered conditions and drought stress. N and Ca content were higher under drought stress, while AM symbiosis did not affect the Mg content. The contents of soluble sugars, proteins, flavonoid and proline were higher in mycorrhizal than non-mycorrhizal-treated plants under the whole water regime. AM colonization increased the activities of peroxidase enzyme in treatments, but did not affect the catalase activity in shoots and roots under well-watered conditions and drought stress. We conclude that AM colonization improved the drought tolerance of P. vera seedlings by increasing the accumulation of osmotic adjustment compounds, nutritional and antioxidant enzyme activity. It appears that AM formation enhanced the drought tolerance of pistachio plants, which increased host biomass and plant growth.  相似文献   

3.
Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress   总被引:3,自引:0,他引:3  
The effect of salt stress (100 mM and 200 mM NaCl) on antioxidant responses in shoots and roots of 14-day-old lentil (Lens culinaris M.) seedlings was investigated. Salt stress caused a significant decrease in length, wet-dry weight and an increase in proline content of both shoot and root tissues. In leaf tissues, high salinity treatment resulted in a 4.4 fold increase in H2O2 content which was accompanied by a significant level of lipid peroxidation and an increase in electrolyte leakage. Root tissues were less affected with respect to these parameters. Leaf tissue extracts exhibited four activity bands, of which two were identified as Cu/Zn-SOD and others as Fe-SOD and Mn-SOD. Fe-SOD activity was missing in root extracts. In both tissues Cu/Zn-SOD activity comprised 70–75% of total SOD activity. Salt stress did not cause a significant increase in total SOD activity of leaf tissues but a significant enhancement (88%) was observed in roots mainly due to an enhancement in Cu/ZnSOD isoforms. Compared to leaf tissues a significantly higher constitutive ascorbate peroxidase (APX) and glutathion reductase (GR) activity was observed in root tissues. Upon salt stress no significant change in the activity of APX, catalase (CAT) and GR was observed in root tissues but a higher APX activity was present when compared to leaf tissues. On the other hand, in leaf tissues, with the exception of CAT, salt stress caused significant enhancement in the activity of other antioxidant enzymes. These results suggested that, root tissues of lentil are protected better from NaCl stress induced oxidative damage due to enhanced total SOD activity together with a higher level of APX activity under salinity stress. To our knowledge this is the first report describing antioxidant enzyme activities in lentil.  相似文献   

4.
This study evaluates antioxidant responses and jasmonate regulation in Digitaria eriantha cv. Sudafricana plants inoculated (AM) and non-inoculated (non-AM) with Rhizophagus irregularis and subjected to drought, cold, or salinity. Stomatal conductance, photosynthetic efficiency, biomass production, hydrogen peroxide accumulation, lipid peroxidation, antioxidants enzymes activities, and jasmonate levels were determined. Stomatal conductance and photosynthetic efficiency decreased in AM and non-AM plants under all stress conditions. However, AM plants subjected to drought, salinity, or non-stress conditions showed significantly higher stomatal conductance values. AM plants subjected to drought or non-stress conditions increased their shoot/root biomass ratios, whereas salinity and cold caused a decrease in these ratios. Hydrogen peroxide accumulation, which was high in non-AM plant roots under all treatments, increased significantly in non-AM plant shoots under cold stress and in AM plants under non-stress and drought conditions. Lipid peroxidation increased in the roots of all plants under drought conditions. In shoots, although lipid peroxidation decreased in AM plants under non-stress and cold conditions, it increased under drought and salinity. AM plants consistently showed high catalase (CAT) and ascorbate peroxidase (APX) activity under all treatments. By contrast, the glutathione reductase (GR) and superoxide dismutase (SOD) activity of AM roots was lower than that of non-AM plants and increased in shoots. The endogenous levels of cis-12-oxophytodienoc acid (OPDA), jasmonic acid (JA), and 12-OH-JA showed a significant increase in AM plants as compared to non-AM plants. 11-OH-JA content only increased in AM plants subjected to drought. Results show that D. eriantha is sensitive to drought, salinity, and cold stresses and that inoculation with AM fungi regulates its physiology and performance under such conditions, with antioxidants and jasmonates being involved in this process.  相似文献   

5.
干旱胁迫条件下AMF促进小马鞍羊蹄甲幼苗生长的机理研究   总被引:1,自引:0,他引:1  
张亚敏  马克明  李芳兰  曲来叶 《生态学报》2016,36(11):3329-3337
采用温室水分控制试验,在干旱胁迫条件下,定量化研究优势丛枝菌根真菌(AMF)影响优势乡土植物小马鞍羊蹄甲(Bauhinia faberi var.microphylla)幼苗生长的机理,主要通过研究干旱胁迫条件下摩西球囊霉菌(Funneliformis mosseae)与小马鞍羊蹄甲的共生关系,阐明AMF在植物生长初期的作用。结果表明,干旱胁迫条件下,摩西球囊霉菌能够很好地侵染幼苗,侵染率高达89%—97%,并且不受水分条件影响。接种的幼苗最大光合速率、水分利用效率随着干旱胁迫程度从重度到轻度(水分从低到高)逐渐增大,相反地,叶片脯氨酸含量逐渐减小。接种显著地促进幼苗株高、叶片数、叶面积、根长、根面积等生长指标,提高幼苗各部分生物量、地上地下磷(P)含量。当含水量为60%田间持水量时,AMF促进小马鞍羊蹄甲幼苗吸收P的效果最好。接种还显著影响幼苗的生物量分配,在重度干旱胁迫时影响P分配,水分条件也显著影响幼苗的生物量分配。此外,接种和水分的交互作用对叶生物量、总生物量、生长指标以及地上部氮(N)总量影响显著。结果表明干旱胁迫条件下菌根效应显著,并在干旱条件下显著促进了小马鞍羊蹄甲幼苗的生长,这为进一步干旱河谷植被恢复提供了理论依据。  相似文献   

6.
The effect of osmotic stress on wheat (Triticum aestivum L.) mitochondrial activity and phospholipid composition was investigated. Preliminary growth measurements showed that osmotic stress (−0.25 or −0.5 megapascal external water potential) inhibited the rate of shoot dry matter accumulation while root dry matter accumulation was less sensitive. We have determined that differences in sensitivity to osmotic stress existed between tissues at the mitochondrial level. Mitochondria isolated from roots or shoots of stressed seedlings showed respiratory control and ADP/O ratios similar to control seedlings which indicates that stressed mitochondria were well coupled. However, under passive swelling conditions in a KCl reaction mixture, the rate and extent of valinomycin-induced swelling of shoot mitochondria were increased by osmotic stress while root mitochondria were largely unaffected. Active ion transport studies showed efflux transport by stressed-shoot mitochondria to be partially inhibited since mitochondrial contraction required the addition of N-ethylmaleimide or nigericin. Efflux ion transport by root mitochondria was not inhibited by osmotic stress which indicates that stress-induced changes in ion transport were largely limited to shoot mitochondria. Characterization of mitochondrial fatty acid and phospholipid composition showed an increase in the percentage of phosphatidylcholine in stressed shoot mitochondria compared to the control. Mitochondrial fatty acid composition was not markedly altered by stress. No significant changes in either the phospholipid or fatty acid composition of stressed root mitochondria were observed. Hence, these results suggest that a tissue-specific response to osmotic stress exists at the mitochondrial level.  相似文献   

7.
采用盆栽法研究了丛枝菌根(AM)真菌摩西球囊霉(Glomus mosseae)对水分胁迫条件下百喜草(Paspalum notatum)生长、渗透调节及抗氧化酶的影响。结果表明:接种AM真菌显著提高了百喜草的株高、地上部与根部鲜重、地上部P、K、Mn及根部P、Ca、Mn含量,明显降低了地上部Zn及根部Fe、B、Cu水平;随着干旱程度的加深,接种株的地上部相对含水量及叶绿素含量相对稳定且均显著高于未接种株,接种株地上部相对电导率、MDA含量均显著低于未接种株,接种株的地上部POD活性与脯氨酸含量均显著增加且均显著高于未接种株,AM侵染对SOD活性的影响较小。可见,接种AM真菌Glomusmossecte提高了植株体内保护酶活性(如POD)及渗透调节能力(如脯氨酸、P、K、Ca等渗透调节物含量的增加),从而显著增强了百喜草的抗旱性。  相似文献   

8.
One of the proposed mechanisms through which plant growth-promoting rhizobacteria (PGPR) enhance plant growth is the production of plant growth regulators, especially cytokinin. However, little information is available regarding cytokinin-producing PGPR inoculation on growth and water stress consistence of forest container seedlings under drought condition. This study determined the effects of Bacillus subtilis on hormone concentration, drought resistance, and plant growth under water-stressed conditions. Although no significant difference was observed under well-watered conditions, leaves of inoculated Platycladus orientalis (oriental thuja) seedlings under drought stress had higher relative water content and leaf water potential compared with those of noninoculated ones. Regardless of water supply levels, the root exudates, namely sugars, amino acids and organic acids, significantly increased because of B. subtilis inoculation. Water stress reduced shoot cytokinins by 39.14 %. However, inoculation decreased this deficit to only 10.22 %. The elevated levels of cytokinins in P. orientalis shoot were associated with higher concentration of abscisic acid (ABA). Stomatal conductance was significantly increased by B. subtilis inoculation in well-watered seedlings. However, the promoting effect of cytokinins on stomatal conductance was hampered, possibly by the combined action of elevated cytokinins and ABA. B. subtilis inoculation increased the shoot dry weight of well-watered and drought seedlings by 34.85 and 19.23 %, as well as the root by 15.445 and 13.99 %, respectively. Consequently, the root/shoot ratio significantly decreased, indicative of the greater benefits of PGPR on shoot growth than root. Thus, inoculation of cytokinin-producing PGPR in container seedlings can alleviate the drought stress and interfere with the suppression of shoot growth, showing a real potential to perform as a drought stress inhibitor in arid environments.  相似文献   

9.
Plant responses to drought stress include proline and abscisic acid (ABA) accumulation. Proline dehydrogenase (PDH) (EC 1.4.3) is the first enzyme in the proline oxidation pathway, and its activity has been shown to decline in response to water stress (PJ Rayapati, CR Stewart [1991] Plant Physiol 95: 787-791). In this investigation, we determined whether ABA treatment affects PDH activity in a manner similar to drought stress in maize (Zea mays L.) seedlings. Four exogenous ABA treatments (0, 11, 33, and 100 micromolar ABA) were applied to well-watered maize seedlings. Mitochondria were isolated and PDH was solubilized using Nonidet P-40. PDH activity was measured by the reduction of iodonitrotetrazolium violet under proline-dependent conditions. There was no effect of ABA on PDH activity at 33 and 100 micromolar ABA, but there was a 38% decline at 11 micromolar. This decline was less than the 69% reduction in activity under drought stress. Endogenous ABA determinations and plant growth rate showed that ABA entered the plant and was affecting metabolic processes. ABA treatments had a small effect on shoot and root proline concentration, whereas drought stress caused a 220% increase in root tissues. We conclude that ABA is not part of the pathway linking drought stress and decreased PDH activity.  相似文献   

10.
The effect of phosphate starvation on growth and acid phosphatases (APases) localization and activity in oat tissues was investigated. Oat cultivars (Avena sativa L.??Arab, Polar, Szakal) were grown for 1?C3?weeks in complete nutrient medium (+P) and without phosphate (?P). Pi concentration in plant tissues decreased strongly after culturing on ?P medium. Pi deficit reduced shoot growth, stimulated root elongation and increased ratio of root/shoot in all oat cultivars. Pi deficit had a greater impact on growth of oat cv. Polar than other varieties. A decrease in the internal Pi status led to an increase of acid phosphatase activities in extracts from shoots and roots, and in root exudates. The highest activity of secreted APases was observed for oat cv. Arab, during the third week of growth under Pi-deficient conditions. The activity of extracellular APase was high in young, growing zones of roots of ?P plants. Histochemical visualization indicated high activity of APases in the epidermis and vascular tissues of ?P plants. Pi deficiency increased intracellular APase activity in shoot mainly in oat cv. Polar, whereas APase activity in roots was the highest in oat cv. Szakal. Protein extracts from roots and shoots were run on native discontinuous PAGE to determine which isoform(s) may be affected by Pi deficiency. Three major APase isoforms were detected in all oat plants; one was strongly induced by Pi deficit. The studied oat cultivars differed in terms of acclimation to deficiency of phosphate??used various pools of APases to acquire Pi from external or internal sources.  相似文献   

11.
Seven-day-old seedlings obtained from seeds primed with mannitol (4%)and water showed three to four fold more growth with respect to root and shootlength in comparison with seedlings obtained from non-primed seeds. Seedlingswere grown under water deficit stress conditions created by 15% polyethyleneglycol (PEG) 6000 in the medium. Priming of chickpea seeds with NaCl and PEGwasnot effective in increasing seedling growth under these water deficit stressconditions. The activities of amylase, invertases (acid and alkaline), sucrosesynthase (SS) and sucrose phosphate synthase (SPS) were higher in shoots ofprimed seedlings. An increase in the activities of SS, and both the acid andalkaline invertases was also observed in roots of primed seedlings. The twofoldincrease in specific activity of sucrose phosphate synthase was observed incotyledons of primed seedlings. The higher amylase activity in shoots of primedseedlings enhanced the rapid hydrolysis of transitory starch of the shootleading to more availability of glucose for shoot growth and this was confirmedby the low level of starch in shoots of primed seedlings.  相似文献   

12.
The effect of benzylaminopurine (BAP) on the formation of roots from lentil shoots regenerated on media containing BAP was studied. Seedling shoot tips, first nodes and bractlets, and immature seeds cultured on the initiation media containing 2.25 or 0.225 mg/l of BAP regenerated multiple bud shoots. The regenerated shoots formed roots in percentages ranging from 4.6 to 39.9% on a rooting medium (R medium) containing 2 mg/l of indoleacetic acid. Rooting success on R medium depended upon the cytokinin used in the initiation media, its concentration, and the time elapsed during shoot formation on these media prior to transplanting regenerated shoots to R medium. In vivo study of root growth of lentil seedlings demonstrated the strong inhibitory effect of BAP on root growth reflected in a drastic reduction of the mitotic index of the root meristem. Received: 27 August 1996 / Revision received: 12 December 1996 / Accepted: 15 January 1997  相似文献   

13.
丛枝菌根真菌对百喜草的生理特性的影响   总被引:1,自引:0,他引:1  
采用盆栽法研究了丛枝菌根(AM)真菌摩西球囊霉(Glomus mosseae)对水分胁迫条件下百喜草(Paspalum notatum)生长、渗透调节及抗氧化酶的影响。结果表明:接种AM真菌显著提高了百喜草的株高、地上部与根部鲜重、地上部P、K、Mn及根部P、Ca、Mn含量,明显降低了地上部Zn及根部Fe、B、Cu水平;随着干旱程度的加深,接种株的地上部相对含水量及叶绿素含量相对稳定且均显著高于未接种株,接种株地上部相对电导率、MDA含量均显著低于未接种株,接种株的地上部POD活性与脯氨酸含量均显著增加且均显著高于未接种株,AM侵染对SOD活性的影响较小。可见,接种AM真菌Glomus mosseae提高了植株体内保护酶活性(如POD)及渗透调节能力(如脯氨酸、P、K、Ca等渗透调节物含量的增加),从而显著增强了百喜草的抗旱性。  相似文献   

14.
Morphological changes of roots and shoots following oxygen deficiencyin the root medium and after partial pruning of the root systemwere analyzed to obtain easily measurable parameters of theadaptive capacity of the root system against stress. Wheat seedlings(Triticum aestivum L. cv. Hatri) were cultivated on nutrientsolution which was either aerated or flushed with nitrogen,or were cultivated on flooded sand. On the third day after grainswelling in two pruning variants, roots 1–3 or 4–8were excised. Root anaerobiosis retarded longitudinal growth and biomass accumulationof the shoot and the seminal roots, and stimulated the developmentof adventitious roots. Partial removal caused a general compensativegrowth of the remaining roots under aerobic conditions. Root pruning plus anaerobiosis exceeded the compensatory capacityof the seedlings and thus caused a strong delay of elongationand biomass accumulation of both roots and shoots, includingdecrease of the root/shoot ratio. Roots became independent ofendosperm reserves on the seventh day under aerobic conditionsthough caryopses were not completely exhausted at this time.Additionally, oxygen deficiency delayed the reserve exhaustionprocess. Triticum aestivum L. cv Hatri, wheat, roots, growth analysis, morphology, anaerobiosis, strees, root pruning, compensatory capacity, caryopsis  相似文献   

15.
The effects of arbuscular mycorrhizal (AM) fungus, Glomus mosseae, on growth, osmotic adjustment and antioxidant enzymes of bahia grass (Paspalum notatum) were studied in potted plants under water stress conditions. AM colonization significantly enhanced the plant height, root and shoot fresh weight, Phosphorus (P), potasium (K), manganese (Mn) contents in shoots, P, calcium (Ca), Mn contents in roots, whereas obviously decreased zinc (Zn) content in shoots, iron (Fe), boron (B), copper (Cu) contents in roots. During water stress, the relative water and chlorophyll contents were relatively stable and signifciantly higher in AM than in non-AM plants, AM inoculation notabley decreased the shoot relative conductivity and malondialdehyde (MDA) content, markedly increased shoot peroxidase (POD) activity and proline content, while AM infection did not affect the dismutase (SOD) activity of shoots. Our results suggested that AM colonization improved the protective enzyme activity (such as POD) and osmotic adjustment originating from proline P, K, Ca, resulting in the enhancement of drought tolerance.  相似文献   

16.
Influence of supra-optimal concentrations of N on growth and accumulation of N, K, P and Ca in the shoots and roots in Pennisetum glaucum (L.) R.Br. under water stress was assessed in a pot experiment under glasshouse conditions. Thirty four-day-old plants of two lines, ICMV94133 and WCA-78, were subjected to 224, 336, or 448 mg(N) kg–1(soil) and soil moisture 100 or 30 % of field capacity for 30 d. Increasing soil N supply decreased growth of both lines under water deficit. Nitrogen content in the shoots of both lines was not affected by supra-optimal levels of N or different watering regimes, but in contrast, the root N content was increased consistently in WCA-78 with increase in soil N content. Shoot P content increased considerably in WCA-78 at the two higher N contents, but it was significantly lower at drought stress than at well-watered treatment. In contrast, shoot or root P content in ICMV94133 did not differ under both watering regimes. Potassium content in the shoots of WCA-78 was considerably increased at the two higher N contents under drought conditions. Root K content was increased in WCA-78 at the highest N content under well-watered conditions, whereas the reverse was true in ICMV94133. Calcium content in the shoots of ICMV94133 was higher under drought stress compared with that at well-watered conditions, but such pattern was not observed in WCA-78. However, root Ca content increased in both lines with increase in N supply.  相似文献   

17.
It is common for the root/shoot ratio of plants to increase when water availability is limiting. This ratio increases because roots are less sensitive than shoots to growth inhibition by low water potentials. The physiological and molecular mechanisms that assist root growth under drought conditions are reviewed, with a focus on changes in cell walls. Maize seedlings adapt to low water potential by making the walls in the apical part of the root more extensible. In part, this is accomplished by increases in expansin activity and in part by other, more complex changes in the wall. The role of xyloglucan endotransglycosylase, peroxidase and other wall enzymes in root adaptation to low water potential is evaluated and some of the complications in the field of study are listed.  相似文献   

18.
Seedlings of Acacia tortilis (Forsk) Hyne and Acacia xanthophloea Benth. were raised under controlled glasshouse conditions. Control plants were watered daily while other treatments involved withholding water for 2, 4 and 6 days with 1‐day rehydration to container capacity. Compared to A. tortilis, A. xanthophloea seedlings showed higher leaf area, relative growth rates and total dry weight production under adequate water supply conditions. However, with increased water stress, A. xanthophloea seedlings could not alter their pattern of carbon allocation, retaining their root : shoot (r : s) ratio of about 0.5. By comparison, A. tortilis seedlings shifted carbon allocation to the roots, leading to a r : s ratio of 1.5 in water‐stressed seedlings, compared to 0.5 in the control plants. The ability of A. tortilis to reallocate carbon to the roots away from the shoots and to actually increase root growth compared to A. xanthophloea was a dehydration postponement strategy that may be important in species survival during drought.  相似文献   

19.
Drought susceptibility and low genetic variability are the major constraints of lentil (Lens culinaris Medik.) production worldwide. Development of an efficient pre-field drought phenotyping technique and identification of diversified drought tolerant lentil genotype(s) are therefore vital and necessary. Two separate experiments were conducted using thirty diverse lentil genotypes to isolate drought tolerant genotype(s) as well as to assess their diversity. In both of the experiments, significant (p ≤ 0.01) variation in genotype (G), treatment (T) and G X T was observed for most of the studied traits. In experiment I, genotypes were examined for drought tolerance at the seedlings stage under hydroponic conditions by assessing root and shoot traits. Among the 30 genotypes studied, BM-1247, BM-1227 and BM-502 were selected as highly tolerant to drought stress as they showed maximum seedling survivability and minimum reduction in growth parameters under drought stress. In experiment II, the genotypes were assayed for diversity and drought stress tolerance based on morphological traits grown under field condition. Drought stress caused a substantial reduction in yield attributing traits, however, the genotypes BM-1247, BM-981, BM-1227 and BM-502 were categorized as drought tolerant genotypes with less than 20% yield reduction. The field screening result of drought stress tolerance was coincided well with the results of laboratory screening. Genetic divergence study reflected the presence of considerable diversity among the genotypes. Considering laboratory and field screening results, the genotypes, BM-1247, BM-1227, BM-981 and BM- 502 were selected as the best drought tolerant genotypes. This information can be exploited for further breeding in developing drought tolerance in lentil.  相似文献   

20.
Quantitative RT-PCR can be a very sensitive and powerful technique for measuring differential gene expression. Changes in gene expression induced by abiotic stresses are complex and multifaceted, which make determining stably expressed genes for data normalization difficult. To identify the most suitable reference genes for abiotic stress studies in soybean, 13 candidate genes collected from literature were evaluated for stability of expression under dehydration, high salinity, cold and ABA (abscisic acid) treatments using delta CT and geNorm approaches. Validation of reference genes indicated that the best reference genes are tissue- and stress-dependent. With respect to dehydration treatment, the Fbox/ABC, Fbox/60s gene pairs were found to have the highest expression stability in the root and shoot tissues of soybean seedlings, respectively. Fbox and 60s genes are the most suitable reference genes across dehydrated root and shoot tissues. Under salt stress the ELF1b/IDE and Fbox/ELF1b are the most stably expressed gene pairs in roots and shoots, respectively, while 60s/Fbox is the best gene pair in both tissues. For studying cold stress in roots or shoots, IDE/60s and Fbox/Act27 are good reference gene pairs, respectively. With regard to gene expression analysis under ABA treatment in either roots, shoots or across these tissues, 60s/ELF1b, ELF1b/Fbox and 60s/ELF1b are the most suitable reference genes, respectively. The expression of ELF1b/60s, 60s/Fbox and 60s/Fbox genes was most stable in roots, shoots and both tissues, respectively, under various stresses studied. Among the genes tested, 60s was found to be the best reference gene in different tissues and under various stress conditions. The highly ranked reference genes identified from this study were proved to be capable of detecting subtle differences in expression rates that otherwise would be missed if a less stable reference gene was used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号