首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentrations of heavy metals in rice grains and soils from Ada cultivated fields were investigated. Rice and soil samples were digested and the heavy metal concentrations determined using atomic absorption spectrophotometer. The results showed the following concentrations of metals (mg/kg): soil—Pb (4.64 ± 2.18), Cd (0.83 ± 0.83), Zn (20.26 ± 18.60), Mn (68.90 ± 19.91), Ni (3.46 ± 2.42), and Cr (21.41 ± 14.6); rice—Pb (3.99 ± 1.43), Cd (1.10 ± 0.53), Zn (65.37 ± 58.09), Mn (37.81 ± 5.82), Ni (3.12 ± 1.49), and Cr (10.87 ± 6.47). The Canadian, Nigerian and Chinese maximum allowable concentration for cadmium in soil were exceeded by 15%, 30%, and 85% of the soil samples, respectively. Heavy metals in all the rice samples evaluated were found to be above the World Health Organization (WHO) maximum permissible limit for lead, cadmium, and chromium. Strong positive and significant correlations were observed between some metal pairs in soil and rice indicating the similarity in origin. The estimated daily intakes of Pb and Cd from rice grown on the fields were higher than the safety levels established by WHO and the Joint FAO/WHO Expert Committee Food Additive, respectively. Hazard quotients and total hazard index for Pb and Cd were greater than 1. This indicates that consumption of rice from these fields will likely induce adverse health effects arising largely from Pb and Cd exposure.  相似文献   

2.
In this study, paddy soil and rice grain samples were collected from the vicinity around the Xinqiao mine in Tongling, China to test for the presence of heavy metals (Cd, Ni, Cr, Cu, Zn, and Pb) in soil-rice system. Results indicated that the soil samples were primarily contaminated with Cd and Cu and followed with Zn and Pb. In rice grains, Cd, Cu, and Cr concentrations exceeded recommended guidelines. However, the regional distribution of heavy metals in rice grains and soil was inconsistent. The bioaccumulation factor of heavy metals in rice grains decreased in the order of Cd > Zn > Cu > Ni > Cr > Pb. The BAF was significantly positively correlated with TCLP-extractable metals and significantly negatively correlated with soil pH. However, the relationship between soil organic matter and the BAF in rice grains was complex. Health risk assessment through rice intake showed that hazard quotients of Cu and Cd were greater than 1 and could pose a considerable non-cancer health risk to adults and children; meanwhile, Cr, Ni, and Cd could pose an unacceptable cancer risk. The results indicated that the government must take measures to reduce heavy metal contents in paddy soil and rice.  相似文献   

3.
This investigation was conducted to survey the levels of cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu), zinc (Zn), and manganese (Mn) in polished rice collected at supermarkets located in Hengyang, China. The surveyed rice samples were grouped according to their production areas into four different groups—Hunan, Jiangxi, Jilin, and Thailand. The data showed that the highest means of Cd, Pb, Cr, Cu, Zn, and Mn contents were in rice samples produced from Hunan (0.215 mg/kg), Thailand (0.537 mg/kg), Hunan (0.348 mg/kg), Jiangxi (2.472 mg/kg), Thailand (17.259 mg/kg), and Jinlin (9.326 mg/kg), respectively. Average daily intake dose for the six elements through consumption of rice was lower than the oral reference dose. Although the hazard quotient values for all six elements were <1.0, hazard index values in all the production areas (except Thailand) were >1.0, and cancer risk (CR) and total CR values were >10?4, respectively. Certainly, there are inherent limitations for these health risk values, including actual ingestion rate, exposure duration, and bioavailability of heavy metals. These results indicate that long-term heavy metal exposure by consumption of rice in Hengyang could pose both potential non-carcinogenic and carcinogenic health risks to the local residents.  相似文献   

4.
有机物料对污染土壤上水稻生长和重金属吸收的影响   总被引:10,自引:0,他引:10  
采用盆栽试验,研究了施用有机碳源、菜籽饼和猪粪对污染土壤上水稻生长和重金属吸收特性的影响.结果表明: 施用菜籽饼和猪粪均能缓解重金属对水稻的毒害作用,促进水稻生长,显著增加地上部生物量和籽粒产量,降低糙米中重金属浓度;而有机碳源抑制水稻生长.与施用化肥相比,施用菜籽饼和猪粪处理的水稻籽粒产量分别增加128.3%和67.9%;施用菜籽饼处理的糙米Cd、Cu和Zn浓度分别降低47.6%、35.2%和21.5%,施用猪粪处理分别降低9.5%、21.2%和9.3%.土壤中DTPA提取态重金属浓度与水稻地上部生物量和重金属积累总量呈显著负相关.  相似文献   

5.
The present study focused on micronutrients and nonessential toxic heavy metals quantification and their bio-concentration in soil–rice system in Haryana, India. Composite samples of rice grains and paddy fields' soil were collected, processed and analyzed for heavy metals. Nutrient and heavy metals' content of paddy fields' soil varied over a wide range, having highest Fe content followed by Cu > Cr > Pb > Ni > Zn > Co > Cd. Most of the metals viz. Fe, Zn, Cu and Co found profusely in rice grains were essential micronutrients. Bio-concentration factors (BCFs) in rice grains were in the following order: Zn (0.11) > Co (0.10) > Cu (0.08) = Cr (0.08) > Ni (0.02) > Pb (0.011) > Cd (0.009) > Fe (0.003), indicating higher accumulation of micronutrients than non-essential toxic heavy metals. Principal component analysis revealed three factors accounting for 70% of the total variance which supported correlation among electrical conductivity (EC)-Na, EC-cation exchange capacity (CEC), CEC-Na, pH-TOC, and BCFCu-BCFZn. Health risk indices anticipated that the grains are safe for consumption as non-carcinogenic hazard quotients were less than unity for all the studied heavy metals.  相似文献   

6.
 本文研究了北京东郊污灌区重金属在作物—土壤中的迁移、分布、积累规律,证实本区蔬菜中汞含量比粮食作物约大3—15倍,比水果约大6—200倍。麦粒、糙米中的Cu、Hg、Cd、Pb、Ni的含量与土壤含量相关性不显著。架豆中重金属含量与土壤中重金属含量的相关性,只有Zn,Pb达显著水平。白菜土有机质含量与重金属含量相关性达显著水平,而白菜的重金属含量与土壤的重金属含量相关性却不显著。说明除了土壤中重金属的总量外,有效态含量的多少,是影响本区作物吸收积累重金属的主要因素。 本区施污泥的土壤和生长的作物Cd/Zn大部小于1%、盆栽试验证明:施用本区污泥污水对水稻生长发育的影响比施污泥灌清水的影响大些,因此,施用含重金属污泥时,最好不要超过5000斤/亩。大田和室内模拟试验证明:重金属从土壤中迁移到植物,由植物带走输出的量极少,其中以带走输出的Hg、Cd,As相对较多,带走输出的Pb、Cr相对的少些。  相似文献   

7.
In an attempt to know whether highly consumed food might contribute to metal exposure, we analyzed cadmium, lead, and mercury in 27 rice grain samples commonly consumed in Saudi Arabia by atomic absorption spectrometry after acid digestion. The mean concentrations and ranges of cadmium, lead, and mercury in tested rice samples were 20.261 (range <DL-178.026 μg/kg), 134.819 (range 23.1–1529.0 μg/kg), and 3.186 (range <DL-43.573 μg/kg), respectively. The results showed high concentrations of metals and in some cases exceeded the Provisional Tolerance Weekly Intake (PTWI) recommended by FAO/WHO. It was also noted that different rice grain samples had varying concentrations of these metals. Because the bulk of literature warns against the cumulative effects of prolonged heavy metal exposure, regular consumption of rice by local populations might pose potential health problems.  相似文献   

8.
Concentrations and spatial distribution of Zn, Cu, Cd, and Pb along two landscapes including a wastewater-irrigated area and a control area were determined to assess the impact of long-term wastewater irrigation and landscape properties on heavy metal contamination. Some disturbed and undisturbed soil samples were taken from soil trenches and soil cores, located on three main landscape positions (upper slope, midslope, and lower slope) in northwestern Iran. The investigation showed that the mean concentration of the heavy metals followed the order Zn > Cu > Pb > Cd in the wastewater-irrigated soil and Pb > Zn > Cu > Cd in the control soils. On average, compared to similar positions in the control region, the wastewater-irrigated regions contained 3.0 (midslope) to 4.9 (lower slope), 2.7 (midslope) to 4.6 (lower slope), 3.3 (upper slope) to 4.1 (lower slope), and 1.7 (upper slope) to 2.6 (lower slope) times higher amounts of Zn, Cu, Cd, and Pb, respectively. Significant positive relationships (P < 0.05) were recorded between the heavy metals concentration with <0.002 mm particle-size fraction and organic matter content, the fractions linked to runoff and soil erosion. It is believed that the two soil fractions play a crucial role in the distribution of the metals along the wastewater-irrigated landscape. Despite the significant increase of heavy metals (P < 0.05) in the wastewater-irrigated soils compared with control soils, the concentration of all evaluated metals was below the maximum accepted limits (Zn < 300 mg/kg, Cu < 100 mg/kg, Cd < 5 mg/kg, and Pb < 100 mg/kg), and grouped as “not-enriched” to “moderately-enriched” categories regarding the topsoil enrichment index. Overall, the lower slope was shown to be more contaminated with the heavy metals compared to the other positions.  相似文献   

9.
中微量元素和有益元素对水稻生长和吸收镉的影响   总被引:11,自引:0,他引:11  
采用盆栽试验,研究了中微量元素和有益元素对水稻生长和吸收镉的影响。结果表明,在所有测试的元素和施用方法中,硅酸钠叶面喷施显著增加稻谷产量,而碳酸钙、硼酸、硅酸钠土施和亚硒酸钠显著降低了稻谷产量。镁、锌、铁的盐酸盐形态对水稻籽粒的增产效果优于硫酸盐形态,而钙、铜的硫酸盐形态增产效果略高于盐酸盐形态。在钙、镁、硫三种中量元素中,钙增加了水稻籽粒中的Cd浓度和吸收量,而镁和硫则降低了籽粒中的Cd浓度和吸收量,以硫磺粉处理为最低。稻草中的Cd浓度和总量均以氯化镁处理为最高,硫磺粉处理最低。镁能有效抑制Cd从秸秆向籽粒的转移,其盐酸盐优于硫酸盐。在微量元素中,锌对水稻Cd的吸收抑制作用最为显著,其次是铜,而有益元素肥料硅酸钠叶面喷施则显著增加了稻谷中的Cd浓度和吸收量。硫酸亚铁、氯化锰、氯化铜、硼酸和硼砂处理都能有效地抑制Cd从秸秆向籽粒的转移,而硅酸钠叶面喷施和锌处理则促进了Cd的转移,表明硅酸钠抑制水稻吸收Cd的机制很可能发生在土壤中,而非在植株体内或地上部分。在Cd污染土壤上选用适宜的中微量和有益元素肥料及其施用方法,能有效降低水稻对镉的吸收和稻米中的Cd含量。  相似文献   

10.
Biological samples were collected simultaneously with environmental quality investigations. Studies of metal levels in biological (hair and teeth) and environmental (soil and air) samples were performed in Zwardoń during 1991/1992. Zwardoń is a small mountain resort village, situated on the border pass of Zwardoń, in the close proximity of the southwestern border of Poland. Heavy metal levels in soil, air, and chemical metals forms in the soil were examined. Pearson’s product correlation in soil (for total concentration of heavy metals and each chemical form) in hair and in teeth was calculated to investigate bioavailability of heavy metals in human organism. We received essential correlations simultaneously between: Pb vs Mn in exchangeable form of metal in soil, in teeth and in soil (total); Cd vs Zn and Mn vs Co in organically bound form in soil and in teeth and soil (total); and Cu vs Zn in all investigated samples (teeth, hair, soil total, and organically bound form in soil); Mn vs Co and Cr vs Mn in residual form in soil, in teeth, and in soil (total) and between Co vs Ni for hair, soil (total), and residual form in soil.  相似文献   

11.
The relationships between metal contents in soil, road dust, and rice, and in human hair from a rural area of China were observed for Cr, Cu, Mn, Ni, Pb, and Zn. The results showed that the mean concentrations of Mn in human hair were higher than the highest reference value. The concentrations of Cr, Cu, Ni, and Zn in soil and road dust were usually higher than their background values. The enrichment factors indicated that the determined metals in soil and road dust were usually derived from natural sources. Chromium, Pb, and Zn in soils and road dusts from several sites were slightly influenced by anthropogenic sources. The regression analyses showed that positive relationships usually exist between the concentrations of the determined metals in rice and in human hair as well as in soil and in human hair. However, relationships between metal concentrations in road dust and in human hair were less obvious. The study demonstrated that human hair was an applicable biomonitor of metal concentrations in rice, soil, and road dust from a rural area in China. Metal concentrations in local human hair could be used to predict contamination levels of metals in rice and soil.  相似文献   

12.
以205国道淮安段具有5 m和20 m宽林带的路段为研究区域,对国道东西两侧200 m范围内农田水稻(Oryza sativa L.)叶片和糙米中Al、Fe、Cu、Zn、Cd、Cr、Ni和Pb含量及其与路侧距离的相关性进行了分析.结果表明:具5 m宽林带路段两侧稻叶和糙米中大多数重金属元素的含量呈现随路侧距离增加而减少的趋势,且峰值多出现在距路侧5~10m或20 m附近;其中,东侧稻叶中Cu、Cr和Ni含量及糙米中Al、Fe、Cu、Zn和Ni含量以及西侧稻叶中Cu和Pb含量及糙米中Cd和Pb含量与路侧距离呈显著或极显著负相关.具20m宽林带路段两侧稻叶和糙米中大多数重金属元素的含量并没有呈现随路侧距离增加而减少的趋势,且峰值多出现在距路侧20 m以外;只有东侧稻叶中Cr和Ni含量及糙米中Fe和Ni含量以及西侧糙米中Al和Cu含量与路侧距离呈显著或极显著负相关.具5m宽林带路段两侧稻叶和糙米中的重金属含量分布特征与无林带路段十分相似,而具20m宽林带路段两侧稻叶和糙米中的重金属含量较低,说明20 m宽林带对公路大气污染物有较明显的阻滞作用.根据研究结果,建议在公路两侧10~20 m范围内设置乔灌草结构模式的防护林带,并适当提高防护林中灌木的比例,保持乔木疏密适度.  相似文献   

13.
Widespread soil contamination with heavy metals has fostered the need for plant breeders to develop new crops that do not accumulate heavy metals. Metal-transporting transmembrane proteins that transport heavy metals across the plant plasma membrane are key targets for developing these new crops. Oryza sativa heavy metal ATPase 3 (OsHMA3) is known to be a useful gene for limiting cadmium (Cd) accumulation in rice. OsHMA2 is a close homolog of OsHMA3, but the function of OsHMA2 is unknown. To gain insight into the function of OsHMA2, we analyzed three Tos17 insertion mutants. The translocation ratios of zinc (Zn) and Cd were clearly lower in all mutants than in the wild type, suggesting that OsHMA2 is a major transporter of Zn and Cd from roots to shoots. By comparing each allele in the OsHMA2 protein structure and measuring the Cd translocation ratio, we identified the C-terminal region as essential for Cd translocation into shoots. Two alleles were identified as good material for breeding rice that does not contain Cd in the grain but does contain some Zn, and that grows normally.  相似文献   

14.
Ninety soil samples, forty plant samples (Anabasis articulata), and twenty air samples were collected from the scrap yard of discarded vehicles near Zarqa city, Jordan. These samples were analyzed for heavy metals: Cd, Pb, Zn, Cu, Mn, Al, and Fe. Longitudinal and vertical profiles of soil samples were studied. Generally, the levels of all heavy metals studied in the scrap yard area were found to be higher than those of the control samples. The levels of heavy metals decreased with depth until reaching a constant value at 9 cm depth. The levels of heavy metals also decreased at distances farther away from the scrap yard area. A significant difference in heavy metal concentrations was found between washed and unwashed plant samples. On the other hand, no significant differences have been found between plant samples from inside and outside the scrap yard area. Air samples showed wide variations in heavy metal levels among the sampling sites. The enrichment factors for non-crustal elements such as Pb, Cd, Cu, and Zn, in both soil and particulate matter, were found to be more than 10, indicating anthropogenic sources such as dust, rust, and exhaust emissions from the scrap yard area, whereas the crustal elements such as Fe and Mn showed enrichment factors of less than 10.  相似文献   

15.
The P1B-type heavy metal ATPases (HMAs) are diverse in terms of tissue distribution, subcellular localization, and metal specificity. Functional studies of HMAs have shown that these transporters can be divided into two subgroups based on their metal-substrate specificity: a copper (Cu)/silver (Ag) group and a zinc (Zn)/cobalt (Co)/cadmium (Cd)/lead (Pb) group. Studies on Arabidopsis thaliana and metal hyperaccumulator plants indicate that HMAs play an important role in the translocation or detoxification of Zn and Cd in plants. Rice possesses nine HMA genes, of which OsHMA1–OsHMA3 belong to the Zn/Co/Cd/Pb subgroup. OsHMA2 plays an important role in root-to-shoot translocation of Zn and Cd, and participates in Zn and Cd transport to developing seeds in rice. OsHMA3 transports Cd and plays a role in the sequestration of Cd into vacuoles in root cells. Modification of the expression of these genes might be an effective approach for reducing the Cd concentration in rice grains.  相似文献   

16.
为探讨铅锌矿废弃地优势植物在重金属污染土壤植物修复中的应用潜力,利用野外采样分析法,从粤东梅县丙村铅锌尾矿区采集其三种优势植物类芦、黄荆、盐肤木的根、茎、叶和土壤样品,测定和分析Pb、Zn、Cu、Cd四种重金属含量.结果表明:该矿区土壤污染严重,Pb、Zn、Cd含量远超土壤环境质量的三级标准,Cu超出二级标准;根际土壤和非根际土壤重金属含量均为Pb>Zn>Cu>Cd,但根际土壤的重金属含量显著低于非根际土壤;这三种植物对Pb、Zn、Cu的转移系数大于1.0,对Cu的富集系数最高,Pb最小,但对四种重金属的富集系数均小于1.0,均未达到超富集植物临界含量标准.三种植物为该矿区的优势植物,说明它们对土壤的重金属污染有很强的耐性,虽然并非典型的超富集植物,但对污染土壤仍有较好的修复效果.  相似文献   

17.
金属矿区芒草种群对重金属的积累及其与土壤特性的关系   总被引:9,自引:0,他引:9  
通过分析大型综合金属矿区中经历不同污染强度与污染时间胁迫的芒草(Miscanthus sinensis)种群对4种主要重金属的积累状况,初步揭示芒草对这些重金属的积累特性与土壤重金属含量的关系。结果表明,1芒草根茎叶对4种重金属的的积累顺序为:根〉叶〉茎;2芒草对Cd、Pb的积累量与土壤中这两种重金属含量之间存在显著(P〈0.05)正相关关系;对Cu、Zn的积累量与土壤含量之间无显著相关,主要是因为土壤最高Cu与Zn含量已超过芒草对这两种元素积累所需的最大量,成为对芒草构成胁迫的主要因子。在该矿区的酸性条件下,芒草对Pb、Zn、Cu3种重金属的吸收率随pH值升高而升高,pH接近的样地,芒草的吸收率主要受土壤重金属含量的影响。结合各种群对四种重金属的积累状况判断,强度胁迫下的种群可能已发生耐性分化,从而产生较其它种群更强的耐重金属特性。总体上芒草是一种多重金属耐性植物,对这四种重金属的耐性顺序是:Cd〈Cu〈Zn-Pb。  相似文献   

18.
Joint effects of Cd and other heavy metals (Pb, Cu, Zn and As) on the growth and development of rice plants and the uptake of these heavy metals by rice were studied using the pot-culture method combined with chemical and statistical analyses. The results showed that the growth and development of rice plants were strongly influenced by the double-element combined pollution. There was an average decrease in the height of rice plants of 4.0–5.0 cm, and grain yield was decreased by 20.0–30.0%, compared with the control. The uptake of Cd by rice plants was promoted due to the interactions between Cd and the other heavy metals added to the soil. The Cd concentration in roots, stems/leaves and seeds increased 31.6–47.7, 16.7–61.5 and 19.6–78.6%, respectively. Due to interactions, uptake of Pb, Cu and Zn by roots and stems/leaves was inhibited, accumulation of Pb, Cu and Zn in seeds was increased, uptake of As by roots was promoted and uptake of As by stems/leaves was inhibited. In particular, the upward transporting ability of the heavy metals absorbed by rice plants was significantly increased.  相似文献   

19.
In a pot culture experiment, five different species of Brassica (Brassica juncea, Brassica campestris, Brassica carinata, Brassica napus, and Brassica nigra) were grown for screening possible accumulators of heavy metals, viz. Zn, Cu, Ni, and Pb. The plants were grown to maturity in a soil irrigated with sewage effluents for more than two decades in West Delhi, India. The soil analysis showed enhanced accumulation of Zn, Cu, Ni, and Pb in this sewage-irrigated soil. Among all species, B. carinata showed the highest concentration (mg kg(-1)) as well as uptake (microg pot(-1)) of Ni and Pb at maturity. Although B. campestris showed a higher concentration of Zn in its shoots (stem plus leaf), B. carinata extracted the largest amount of this metal due to greater biomass production. However, B. juncea phytoextracted the largest amount of Cu from the soil. In general, the highest concentration and uptake of metal was observed in shoots compared to roots or seeds of the different species. Among the Brassica spp., B. carinata cv. DLSC1 emerged as the most promising, showing greater uptake of Zn, Ni, and Pb, while B. juncea cv. Pusa Bold showed the highest uptake of Cu. The B. napus also showed promise, as it ranked second with respect to total uptake of Pb, Zn, and Ni, and third for Cu. Total uptake of metals by Brassica spp. correlated negatively with available as well as the total soil metal concentrations. Among the root parameters, root length emerged as the powerful parameter to dictate the uptake of metals by Brassica spp. Probably for the first time, B. carinata was reported as a promising phytoextractor for Zn, Ni, and Pb, which performed better than B. juncea.  相似文献   

20.
Soil heavy metal pollution is becoming more and more serious. Biomass charcoal application can play an important role in alleviating the toxicity of heavy metals in soils. Compared with other biochar, bamboo charcoal has more unique properties and may have a unique effect on heavy metal pollution. Zhejiang Province of Southeastern China is rich in bamboo resources. However, few studies related to bamboo charcoal application for heavy metal remediation in farmland were reported. In this study, four treatments with different amounts of bamboo charcoal application were set up through a field experiment, namely BC0 (no bamboo charcoal application), BC1 (2500 kg⋅ha−1), BC2 (5000 kg⋅ha−1), and BC3 (10000 kg⋅ha−1), and each treatment was replicated three times. The results showed that (1) The application of bamboo charcoal significantly increased the soil pH and organic matter content. Compared with BC0, the pH and organic content of BC3 increased by 7.4% and 17.4% (P < 0.05) respectively. (2) The HCl-extractable Cd content of paddy soil in the BC1 treatment was significantly lower than other treatments (P < 0.05), and decreased by 15.3%, compared with BC0. The soil HCl-extractable Zn and Cu content did not differ significantly between treatments (P > 0.05). (3) With the increase of bamboo charcoal application, the Cd content in rice gradually decreased, the BC3 treatment significantly decreased by 39.0% (P < 0.05), and the Zn and Cu contents in rice did not differ significantly between treatments (P > 0.05), compared with BC0. (4) Soil pH, organic matter and Cd in rice seeds were significantly negatively correlated (P < 0.01). The heavy metal content in rice does not change with the change of heavy metal content with HCl-extractable state in soil. It means bamboo charcoal does not reduce heavy metal content in rice by simply declining the heavy metal content with HCl-extractable state. The mechanism of action is relatively complicated, and further study is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号