首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in Drosophila neuralized (Dneur) result in a variety of developmental defects that closely resemble those of Notch mutants and other Notch pathway mutants. However, mice with disrupted neur1 do not show any aberrant cell fate specifications in neurogenesis and somitogenesis. Thus, we speculated that other vertebrate neur homolog(s) might compensate for loss of the neur gene. Here, we report the paralog of mouse Neur1, named Neuralized-2 (Neur2), which is a ubiquitin-protein isopeptide ligase (E3) that interacts with and ubiquitinates Delta. Both murine Neur1 and Neur2 have similar degrees of homology to DNeur, and neur2 is expressed in patterns similar to those of neur1 in embryos, suggesting potential functional redundancy. Interestingly, two distinct classes of E3 ligases, Mind bomb-1 (Mib1) and Neur2, have cooperative but distinct roles in Delta endocytosis to Hrs-positive vesicles, i.e. Mib1 functions in the initial step of Delta endocytosis, and Neur2 is required for targeting endocytosed Delta to Hrs-positive vesicles. Thus, our study provides a new insight into how distinct E3 ligases work together in the endocytic pathways for Notch signaling.  相似文献   

2.
Notch signaling constitutes an evolutionarily conserved mechanism that mediates cell-cell interactions in various developmental processes. Numerous regulatory proteins interact with the Notch receptor and its ligands and control signaling at multiple levels. Ubiquitination and endocytosis followed by endosomal sorting of both the receptor and its ligands is essential for Notch-mediated signaling. The E3 ubiquitin ligases, Neuralized (Neur) and Mind Bomb (Mib1), are crucial for regulating the activity and stability of Notch ligands in Drosophila; however, biochemical evidence that the Notch ligands are directly targeted for ubiquitination by Neur and/or Mib1 has been lacking. In this report, we explore the function of Neurl1, a mouse ortholog of Drosophila Neur. We show that Neurl1 can function as an E3 ubiquitin ligase to activate monoubiquitination in vitro of Jagged1, but not other mammalian Notch ligands. Neurl1 expression decreases Jagged1 levels in cells and blocks signaling from Jagged1-expressing cells to neighboring Notch-expressing cells. We demonstrate that Neurl1 is myristoylated at its N terminus, and that myristoylation of Neurl1 targets it to the plasma membrane. Point mutations abolishing either Neurl1 myristoylation and plasma membrane localization or Neurl1 ubiquitin ligase activity impair its ability to down-regulate Jagged1 expression and to block signaling. Taken together, our results argue that Neurl1 at the plasma membrane can affect the signaling activity of Jagged1 by directly enhancing its ubiquitination and subsequent turnover.  相似文献   

3.
4.
The Drosophila gene neuralized (neur) has long been recognized to be essential for the proper execution of a wide variety of processes mediated by the Notch (N) pathway, but its role in the pathway has been elusive. In this report, we present genetic and biochemical evidence that Neur is a RING-type, E3 ubiquitin ligase. Next, we show that neur is required for proper internalization of Dl in the developing eye. Finally, we demonstrate that ectopic Neur targets Dl for internalization and degradation in a RING finger-dependent manner, and that the two exist in a physical complex. Collectively, our data indicate that Neur is a ubiquitin ligase that positively regulates the N pathway by promoting the endocytosis and degradation of Dl.  相似文献   

5.
In Caenorhabditis elegans, heterochronic genes constitute a developmental timer that specifies temporal cell fate selection. The heterochronic gene lin-42 is the C. elegans homolog of Drosophila and mammalian period, key regulators of circadian rhythms, which specify changes in behavior and physiology over a 24 hr day/night cycle. We show a role for two other circadian gene homologs, tim-1 and kin-20, in the developmental timer. Along with lin-42, tim-1 and kin-20, the C. elegans homologs of the Drosophila circadian clock genes timeless and doubletime, respectively, are required to maintain late-larval identity and prevent premature expression of adult cell fates. The molecular parallels between circadian and developmental timing pathways suggest the existence of a conserved molecular mechanism that may be used for different types of biological timing.  相似文献   

6.
Precise glycan structures on specific glycoproteins impart functionalities essential for neural development. However, mechanisms controlling embryonic neural-specific glycosylation are unknown. A genetic screen for relevant mutations in Drosophila generated the sugar-free frosting (sff) mutant that reveals a new function for protein kinases in regulating substrate flux through specific Golgi processing pathways. Sff is the Drosophila homolog of SAD kinase, which regulates synaptic vesicle tethering and neuronal polarity in nematodes and vertebrates. Our Drosophila sff mutant phenotype has features in common with SAD kinase mutant phenotypes in these other organisms, but we detect altered neural glycosylation well before the initiation of embryonic synaptogenesis. Characterization of Golgi compartmentation markers indicates altered colocalization that is consistent with the detected shift in glycan complexity in sff mutant embryos. Therefore, in analogy to synaptic vesicle tethering, we propose that Sff regulates vesicle tethering at Golgi membranes in the developing Drosophila embryo. Furthermore, neuronal sff expression is dependent on transcellular signaling through a non-neural toll-like receptor, linking neural-specific glycan expression to a kinase activity that is induced in response to environmental cues.  相似文献   

7.
8.
The Drosophila neuralized gene shows genetic interactions with Notch, Enhancer of split, and other neurogenic genes and is thought to be involved in cell fate specification in the central nervous system and the mesoderm. In addition, a human homologue of the Drosophila neuralized gene has been described as a potential tumor suppressor gene in malignant astrocytomas. We have isolated a murine homologue of the Drosophila and human Neuralized genes and, in an effort to understand its physiological function, derived mice with a targeted deletion of this gene. Surprisingly, mice homozygous for the introduced mutation do not show aberrant cell fate specifications in the central nervous system or in the developing mesoderm. This is in contrast to mice with targeted deletions in other vertebrate homologues of neurogenic genes such as Notch, Delta, and Cbf-1. Male Neuralized null mice, however, are sterile due to a defect in axoneme organization in the spermatozoa that leads to highly compromised tail movement and sperm immotility. In addition, female Neuralized null animals are defective in the final stages of mammary gland maturation during pregnancy.  相似文献   

9.
Yeh E  Zhou L  Rudzik N  Boulianne GL 《The EMBO journal》2000,19(17):4827-4837
Neurogenic genes, including NOTCH: and DELTA:, are thought to play important roles in regulating cell-cell interactions required for DROSOPHILA: sense organ development. To define the requirement of the neurogenic gene neuralized (neu) in this process, two independent neu alleles were used to generate mutant clones. We find that neu is required for determination of cell fates within the proneural cluster and that cells mutant for neu autonomously adopt neural fates when adjacent to wild-type cells. Furthermore, neu is required within the sense organ lineage to determine the fates of daughter cells and accessory cells. To gain insight into the mechanism by which neu functions, we used the GAL4/UAS system to express wild-type and epitope-tagged neu constructs. We show that Neu protein is localized primarily at the plasma membrane. We propose that the function of neu in sense organ development is to affect the ability of cells to receive Notch-Delta signals and thus modulate neurogenic activity that allows for the specification of non-neuronal cell fates in the sense organ.  相似文献   

10.
11.
neuralized (neu) represents one of the strong neurogenic mutants in Drosophila. Mutants of this class display, among other phenotypes, a strong overcommitment to neural fates at the expense of epidermal fates. We analyzed the role of neu during adult development by using mutant clonal analysis, misexpression of wild-type and truncated forms of Neu, and examination of genetic interactions with N-pathway mutations. We find that neu is required cell-autonomously for lateral inhibition during peripheral neurogenesis and for multiple asymmetric cell divisions in the sensory lineage. In contrast, neu is apparently dispensable for other N-mediated processes, including lateral inhibition during wing vein development and wing margin induction. Misexpression of wild-type Neu causes defects in both peripheral neurogenesis and wing vein development, while a truncated form lacking the RING finger is further capable of inhibiting formation of the wing margin. In addition, the phenotypes produced by misexpression of wild-type and truncated Neu proteins are sensitive to the dosage of several N-pathway components. Finally, using epitope-tagged Neu proteins, we localize Neu to the plasma membrane and reveal a novel morphology to the sensory organ precursor cells of wing imaginal discs. Collectively, these data indicate a key role for neu in the reception of the lateral inhibitory signal during peripheral neurogenesis.  相似文献   

12.
A role for the Drosophila neurogenic genes in mesoderm differentiation   总被引:9,自引:0,他引:9  
The neurogenic genes of Drosophila have long been known to regulate cell fate decisions in the developing ectoderm. In this paper we show that these genes also control mesoderm development. Embryonic cells that express the muscle-specific gene nautilus are overproduced in each of seven neurogenic mutants (Notch, Delta, Enhancer of split, big brain, mastermind, neuralized, and almondex), at the apparent expense of neighboring, nonexpressing mesodermal cells. The mesodermal defect does not appear to be a simple consequence of associated neural hypertrophy, suggesting that the neurogenic genes may function similarly and independently in establishing cell fates in both ectoderm and mesoderm. Altered patterns of beta 3-tubulin and myosin heavy chain gene expression in the mutants indicate a role for the neurogenic genes in development of most visceral and somatic muscles. We propose that the signal produced by the neurogenic genes is a general one, effective in both ectoderm and mesoderm.  相似文献   

13.
14.
15.
The Drosophila gene runt was initially identified on the basis of its role during segmentation. Recent molecular and genetic studies have demonstrated that the runt gene encodes a novel nuclear protein whose developmental importance is not exclusive to segmentation. This report addresses the functional relevance of runt expression in the developmental pathway of neurogenesis. Antibodies against the runt protein reveal that it is expressed in a subset of neuroblasts, ganglion-mother cells and neurons. A subset of these neurons also co-express the segmentation gene even-skipped (eve). Using eve as a marker, we show that runt is required for the normal development of these neurons. A runt P-transposon that lacks neural cis-regulatory elements is used to show that these neurons require runt activity independent of its activity during segmentation. These results are confirmed using a temperature-sensitive runt allele. Further temperature-shift experiments indicate that the requirement for runt is during an early stage of neurogenesis. Based on its pattern of expression and its temporal requirements, runt is distinguished as one of the earliest acting genes involved in the generation of diverse cell fates in the developing Drosophila nervous system.  相似文献   

16.
Notch signalling, which is highly conserved from nematodes to mammals, plays crucial roles in many developmental processes. In the Drosophila embryo, deficiency in Notch signalling results in neural hyperplasia, commonly referred to as the neurogenic phenotype. We identify a novel maternal neurogenic gene, neurotic, and show that it is essential for Notch signalling. neurotic encodes a Drosophila homolog of mammalian GDP-fucose protein O-fucosyltransferase, which adds fucose sugar to epidermal growth factor-like repeats and is known to play a crucial role in Notch signalling. neurotic functions in a cell-autonomous manner, and genetic epistasis tests reveal that Neurotic is required for the activity of the full-length but not an activated form of Notch. Further, we show that neurotic is required for Fringe activity, which encodes a fucose-specific beta1, 3 N-acetylglucosaminyltransferase, previously shown to modulate Notch receptor activity. Finally, Neurotic is essential for the physical interaction of Notch with its ligand Delta, and for the ability of Fringe to modulate this interaction in Drosophila cultured cells. We present an unprecedented example of an absolute requirement of a protein glycosylation event for a ligand-receptor interaction. Our results suggest that O-fucosylation catalysed by Neurotic is also involved in the Fringe-independent activities of Notch and may provide a novel on-off mechanism that regulates ligand-receptor interactions.  相似文献   

17.
18.
Keplinger BL  Guo X  Quine J  Feng Y  Cavener DR 《Genetics》2001,157(2):699-716
The Drosophila melanogaster Gld gene has multiple and diverse developmental and physiological functions. We report herein that interactions among proximal promoter elements and a cluster of intronically located enhancers and silencers specify the complex regulation of Gld that underlies its diverse functions. Gld expression in nonreproductive tissues is largely determined by proximal promoter elements with the exception of the embryonic labium where Gld is activated by an enhancer within the first intron. A nuclear protein, GPAL, has been identified that binds the Gpal elements in the proximal promoter region. Regulation of Gld in the reproductive organs is particularly complex, involving interactions among the Gpal proximal promoter elements, a unique TATA box, three distinct enhancer types, and one or more silencer elements. The three somatic reproductive organ enhancers each activate expression in male and female pairs of reproductive organs. One of these pairs, the male ejaculatory duct and female oviduct, are known to be developmentally homologous. We report evidence that the other two pairs of organs are developmentally homologous as well. A comprehensive model to explain the full developmental regulation of Gld and its evolution is presented.  相似文献   

19.
Zaffran S 《Gene》2000,246(1-2):103-109
A Drosophila cDNA encoding a structural homolog of mammalian FKBP59 (also identified as FKBP52), a member of the FK506-binding protein (FKBP) class of immunophilins, was isolated. The gene dFKBP59 corresponding to this cDNA has been characterized and mapped to the 30D3-4 region. The predicted amino acid sequence of this cDNA shows that the dFKBP59 protein contains one highly conserved FKBP12-like domain followed by two others with less conservation. Northern hybridization reveals that the dFKBP59 mRNA is expressed throughout the Drosophila life-cycle. In contrast to its mammalian homologs, in situ hybridization detected dFKBP59 expression in specific tissues: the lymph glands, Garland cells and oenocyte cells, which are all specialized tissues in which intensive exocytic/endocytic cycling takes place. Garland cells and oenocytes (also called Drosophila nephrocytes) function in taking up waste material from the hemolymph. Finally, I have mapped an enhancer trap element within the 5' region of dFKBP59 which may help in future studies to address the question of its function during Drosophila development.  相似文献   

20.
During Drosophila development networks of genes control the developmental pathways that specify cell fates. The Notch gene is a well characterized member of some cell fate pathways, and several other genes belonging to these same pathways have been identified because they share a neurogenic null phenotype with Notch. However, it is unlikely that the neurogenic genes represent all of the genes in these pathways. The goal of this research was to use a genetic approach to identify and characterize one of the other genes that acts with Notch to specify cell fate. Mutant alleles of genes in the same pathway should have phenotypes similar to Notch alleles and should show phenotypic interactions with Notch alleles. With this approach we identified the deltex gene as a potential cell fate gene. An extensive phenotypic characterization of loss-of-function deltex phenotypes showed abnormalities (such as thick wing veins, double bristles and extra cone cells) that suggest that deltex is involved in cell fate decision processes. Phenotypic interactions between deltex and Notch as seen in double mutants showed that Notch and deltex do not code for duplicate functions and that the two genes function together in many different developing tissues. The results of these investigations lead to the conclusion that the deltex gene functions with the Notch gene in one or more developmental pathways to specify cell fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号