首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of [3H]dexamethasone (DEX) to rat liver nuclei in vitro and in vivo have been compared. In vitro, purified nuclei displayed a single class of specific glucocorticoid binding sites with a dissociation constant (Kd) of approximately 10(-7) M for [3H]DEX at 4 degrees C. The glucocorticoid agonists prednisolone, cortisol, and corticosterone and the antagonists progesterone and cortexolone competed avidly for this site, but the potent glucocorticoid triamcinolone acetonide (TA) competed poorly in vitro. Nuclei isolated from the livers of intact rats contained 1-2 X 10(4) [3H]DEX binding sites/nucleus. Up to 85% of the binding sites were recovered in the nuclear envelope (NE) fraction when NE were prepared either before or after labeling with [3H]DEX in vitro. After adrenalectomy, the specific [3H]DEX binding capacity of both nuclei and NE decreased to 15-20% of control values, indicating sensitivity of the binding sites to hormonal status of the animals. Efforts to restore the binding capacity by administration of exogenous glucocorticoids, however, were unsuccessful. After labeling of rat liver nuclei in vivo by intraperitoneal injection of [3H]DEX or [3H]TA into living animals, the steroid specificity and subnuclear localization of radiolabel were different. Both [3H]TA (which did not bind in vitro) and [3H]DEX became localized to nuclei in a saturable fashion in vivo. With either of these ligands, approximately 20% of the total nuclear radiolabel was recovered in the NE fraction. These results suggest the presence of two separate and distinct binding sites in rat liver nuclei, one which is localized to the NE and binds [3H]DEX (but not [3H]TA) in vitro, and another which is not localized to the NE but binds [3H]DEX and [3H]TA in vivo.  相似文献   

2.
[3H]Triamcinolone acetonide glucocorticoid receptor complexes from human salivary gland adenocarcinoma cells (HSG cells) were shown to be activated with an accompanying decrease in molecular weight in intact cells, as analyzed by gel filtration, DEAE chromatography, the mini-column method and glycerol gradient centrifugation. Glucocorticoid receptor complexes consist of steroid-binding protein (or glucocorticoid receptor) and non-steroid-binding factors such as the heat-shock protein of molecular weight 90,000. To determine whether the steroid-binding protein decreases in molecular weight upon activation, affinity labeling of glucocorticoid receptor in intact cells by incubation with [3H]dexamethasone 21-mesylate, which forms a covalent complex with glucocorticoid receptor, was performed. Analysis by gel filtration and a mini-column method indicated that [3H]dexamethasone 21-mesylate-labeled receptor complexes can be activated under culture conditions at 37 degrees C. SDS-polyacrylamide gel electrophoresis of [3H]dexamethasone 21-mesylate-labeled steroid-binding protein resolved only one specific 92 kDa form. Furthermore, only one specific band at 92 kDa was detected in the nuclear fraction which was extracted from the cells incubated at 37 degrees C. These results suggest that there is no change in the molecular weight of steroid-binding protein of HSG cell glucocorticoid receptor complexes upon activation and that the molecular weight of nuclear-binding receptor does not change, although the molecular weight of activated glucocorticoid receptor complexes does decrease. Triamcinolone acetonide induced an inhibitory effect on DNA synthesis in HSG cells. Dexamethasone 21-mesylate exerted no such effect and blocked the action of triamcinolone acetonide on DNA synthesis. These results suggests that dexamethasone 21-mesylate acts as antagonist of glucocorticoid in HSG cells. The fact that dexamethasone 21-mesylate-labeled receptor complexes could be activated and could bind to DNA or nuclei as well as triamcinolone acetonide-labeled complexes suggests that dexamethasone 21-mesylate-labeled complexes can not induce specific gene expression after their binding to DNA.  相似文献   

3.
Neoplastic epithelial duct cell line from human salivary gland (HSG cell line) contains the specific glucocorticoid receptor. The time course study on the uptake of [3H]triamcinolone acetonide (TA), a synthetic glucocorticoid, by intact HSG cells in a growing monolayer culture showed that translocation of glucocorticoid receptors into nuclei occurred at 37 degrees C, but not at 0 degrees C. To elucidate the subcellular distribution of glucocorticoid receptor from HSG cells, a scaled-up-culture was employed. When the cells were incubated with [3H]TA at 0 degrees C, 94% of the receptors were found in the cytosol fraction, while only 6% of the receptors existed in the nuclei. When the cells were incubated at 37 degrees C, 49% of the receptor complexes were distributed in the nuclei and 74% of these nuclear receptor complexes were extractable with 5 mM pyridoxal phosphate.  相似文献   

4.
The purpose of this investigation was to establish the properties of [3H]dexamethasone binding sites in cytosol of human placenta at term. Cytosol containing 20 mM sodium molybdate (MoO4Na2) was incubated for 120 min at 20 degrees C with 40 nM [3H]dexamethasone. The following properties were observed: (a) a single population of binding sites of high affinity and low capacity was measured by Scatchard analysis; (b) potent glucocorticoids such as dexamethasone and cortisol displaced the tritiated ligand, progesterone showed an intermediate activity, whereas cortisone, testosterone and 17 beta-estradiol were ineffective competitors; (c) ultracentrifugation on 16-41% glycerol gradients containing 20 mM MoO4Na2 yielded sedimentation values of 10.25 +/- 0.35 S (n = 4 placentas); (d) the binding sites could be differentiated from the enzyme 11 beta-hydroxysteroid dehydrogenase, as the activity of the former, but not that of the latter, was greatly dependent on the presence of MoO4Na2 in the incubation medium. Inactivation of binding sites labelled with [3H]dexamethasone by incubation at 20 degrees C was prevented by phosphatase inhibitors such as 20 mM MoO4Na2 (P less than 0.01), 20 mM sodium tungstate (WO4Na2) (P less than 0.01) and to a lower extent by 5 mM ATP and cAMP (P less than 0.05). 50 mM NaF, 5 mM GTP or cGMP had no effect. The protection afforded by MoO4Na2 and WO4Na2 was correlated with a significant inhibition of the activity of acid phosphatase, but not alkaline phosphatase. Neither ATP nor cAMP modified phosphatase activity. It is suggested that binding sites for [3H]dexamethasone in cytosol of human placenta showed properties similar to those described for glucocorticoid receptors in target cells, and that these binding sites are regulated by phosphorylation and dephosphorylation mechanisms.  相似文献   

5.
The glucocorticoid antagonist 17 alpha-methyltestosterone inhibits binding of the agonist [3H]triamcinolone acetonide ot the glocucorticoid receptor in cytosol prepared from rat pituitary tumor GH1 cells. Competitive binding studies indicate that the dissociation constant for 17 alpha-methyltestosterone is about 1 microM. After incubation of intact GH1 cells with 10 nM [3H]triamcinolone acetonide at 37 C and subsequent cell fractionation at 4 C, three glucocorticoid receptor forms are observed: cytosolic 10 S receptor, cytosolic 4 S receptor, and nuclear receptor. Concurrent incubation with 17 alpha-methyltestosterone reduces the amount of [3H]triamcinolone acetonide bound to each of these receptor forms. Ligand-exchange assays performed at 0 C in intact cells using [3H]triamcinolone acetonide show that the exchangeable antagonist is associated predominantly with cytosolic 10 S receptor. Immunochemical analysis using monoclonal antibody BuGR2 indicates that 17 alpha-methyltestosterone does not cause substantial accumulation of glucocorticoid receptors in GH1 cell nuclei and, when present together with agonist, reduces nuclear accumulation of receptor seen with agonist alone. Results from dense amino acid labeling studies show that unlike [3H]triamcinolone acetonide, 17 alpha-methyltestosterone does not reduce the total amount of cellular glucocorticoid receptor and does not reduce receptor half-life. These results are consistent with a model for glucocorticoid receptor transformation in which binding of agonist promotes the dissociation of an oligomeric 10 S cytosolic receptor protein to its DNA-binding 4 S subunit. The antagonist 17 alpha-methyltestosterone competes with agonist for binding to the 10 S cytosolic receptor but does not appear to promote dissociation of the oligomer, thus inhibiting agonist-mediated nuclear actions of the glucocorticoid receptor.  相似文献   

6.
7.
The influence of glucocorticoid treatments on the release of mouse mammary tumor virus (MMTV) envelope antigen (gp52) has been studied in C3H mammary tumor cell cultures and compared to treatment-mediated effects on tumor cell growth. Simultaneous assessment of extracellular viral antigen levels and tumor cell growth has indicated that both are coordinately affected by glucocorticoid treatment. While gp52 release is stimulated by treatment, this effect is accompanied by an inhibition of tumor cell growth. These stimulatory and inhibitory effects are mediated by dexamethasone (DEX) in a dose-dependent fashion, and both effects are more pronounced with the synthetic glucocorticoids DEX or triamcinolone acetonide (TA). Quantitation of media gp52 levels by RIA revealed the following hierarchy of glucocorticoid enhancement: TA greater than DEX greater than prednisolone greater than hydrocortisone greater than triamcinolone. A similar order of activity was observed in terms of inhibition of cell growth. The ability of TA to enhance gp52 release was 2.4-2.7 times greater than DEX, a previously proven stimulator of MMTV expression. Cell density of B9 mammary tumor cells was reduced 73% following 72 h of 10(-8) MTA treatment while C3H Mm5mt/cl mammary tumor cells were reduced by 53%. Hormone-mediated changes in in vitro gp52 release suggest that hormones might also influence plasma levels of MMTV gp52 as a systemic marker for the presence and status of murine mammary tumors. Coordinate stimulatory and inhibitory effects suggest that glucocorticoids may play a complex role in murine mammary tumorigenesis and subsequent mammary disease.  相似文献   

8.
The data reported here demonstrate that the synthetic steroid RU 38486 functions as an optimal antagonist in the glucocorticoid-sensitive human leukemic cell line CEM-C7. This steroid blocks the ability of the potent agonist triamcinolone acetonide (TA) to induce glutamine synthetase activity and to ultimately cause cell lysis, but when given alone does not exhibit partial agonist activity. Both [3H]RU 38486 and [3H]TA bind with high affinity and specificity to cytosolic glucocorticoid receptors in this cell line. However, under a variety of in vitro conditions (elevated temperature and presence of exogenous ATP), [3H]TA promotes receptor activation more effectively than [3H]RU 38486. This difference in the extent of activation was verified by two independent techniques: DEAE-cellulose chromatography and DNA-cellulose binding. [3H]RU 38486 and [3H]TA dissociate at the same rate from the unactivated receptors but at 25 degrees C (not 0 degree C) [3H]RU 38486 dissociates slightly more rapidly from the activated receptors. The defective receptors in the glucocorticoid-resistant subclone 3R7 appear to be "activation labile" (rapid dissociation of ligand from activated form) using either tritiated steroid. Once activated in vivo, the CEM-C7 [3H]TA- and [3H]RU 38486-receptor complexes undergo similar nuclear translocation and those activated complexes generated in vitro appear to bind to nonspecific DNA-cellulose with the same relative affinities. Thus the precise mechanism(s) by which RU 38486 exerts its potent antiglucocorticoid effect in this human cell line cannot be easily explained in terms of a defect in one of the crucial steps (specific high affinity binding, activation, translocation, DNA binding) required to elicit a physiological response. However, the data presented here do suggest that when comparing an antagonist and agonist which both bind to receptors with the same relative high affinity, the agonist may be more effective in facilitating the conformational change associated with in vitro activation.  相似文献   

9.
The association of glucocorticoid-receptor complexes with other components in vivo has been evaluated by chemical crosslinking of hormone-treated cells. When cells were incubated with hormone at 2 degrees C, before being subjected to crosslinking, most glucocorticoid-receptor complexes were found untransformed, as judged by DEAE-cellulose chromatography, and sedimented as 11-6 S oligomers in sucrose gradients containing 0.3 M NaCl. If crosslinking was performed after cells were treated with hormone at 37 degrees C, about 60% of cytosolic glucocorticoid-receptor complexes were found transformed, and sedimented as 4 S monomers.  相似文献   

10.
We have used a DNA-binding/immunoprecipitation assay to analyze the capacity of human glucocorticoid receptor (hGR), generated in rabbit reticulocyte lysates, to bind DNA. In vitro translated hGR was indistinguishable from native hGR, as determined by migration on sodium dodecyl sulfate-polyacrylamide gels, sedimentation on sucrose density gradients, and reactivity with antipeptide antibodies generated against hGR. In addition, cell-free synthesized hGR was capable of specific binding to glucocorticoid response element (GRE)-containing DNA fragments. Using this assay system, we have evaluated the contributions of ligand binding and heat activation to DNA binding by these glucocorticoid receptors. In vitro translated hGR was capable of selective DNA binding even in the absence of glucocorticoid. Treatment with dexamethasone or the antiglucocorticoid RU486 had no additional effect on the DNA-binding capacity when receptor preparations were maintained at 0 C (no activation). In contrast, addition of either ligand or antagonist in combination with a heat activation step promoted DNA binding by approximately 3-fold over that of heat-activated unliganded receptors. Agonist (dexamethasone) was slightly more effective in supporting specific DNA binding than antagonist (RU486). DNA binding by in vitro synthesized GR was blocked by the addition of sodium molybdate to the receptor preparations before steroid addition and thermal activation. Addition of KCl resulted in less DNA binding either due to blockage of DNA-receptor complex formation or disruption of the complexes. The specificity of DNA binding by cell-free synthesized hGR was analyzed further by examining the abilities of various DNAs to compete for binding to a naturally occurring GRE found in the mouse mammary tumor virus-long terminal repeat. Oligonucleotides containing the consensus GRE were the most efficient competitors, and fragments containing regulatory sequences from glucocorticoid-repressible genes were somewhat competitive, whereas single stranded oligonucleotides were unable to compete for mouse mammary tumor virus-long terminal repeat DNA binding, except when competitor was present at extremely high concentrations. Together these studies indicate that hGR synthesized in rabbit reticulocyte lysates displays many of the same properties, including GRE-specific DNA binding, observed for glucocorticoid receptor present in cytosolic extracts of mammalian cells and tissues. Similarities between the effects of dexamethasone and RU486 suggest that the antiglucocorticoid properties of RU486 do not occur at the level of specific DNA binding.  相似文献   

11.
Parallel changes in the enzyme activities of CA2+ATPase and alkaline phosphatase were observed in HeLa cells. Both enzymes were inhibited to a similar degree by L-phenylalanine, L-tryptophan, and L-leucine, while being relatively resistant to L-homoarginine. Exposure to heat (56 degrees C, 60 degrees C, and 65 degrees C) resulted in a loss of both enzyme activities. Both alkaline phosphatase and Ca2+ ATPase, when treated with EGTA, required Ca2+ for the restoration of activity. Cells grown in the presence of agents that affect alkaline phosphatase (dexamethasone, butyric acid, and hyperosmolar NaCl) showed similar changes in the activities of both enzymes.  相似文献   

12.
RU 38486: a potent antiglucocorticoid in vitro and in vivo   总被引:7,自引:0,他引:7  
The antiglucocorticoid activity of RU 38486, was studied both in vitro and in vivo. In vitro studies, RU 38486 was characterized by a high affinity (3 times higher than that of dexamethasone) for the cytosolic glucocorticoid receptor in rat hepatoma tissue culture (HTC) cells. This high affinity was due to a very low dissociation rate of the complexes formed with the receptor. In whole cells it was a potent full antagonist of dexamethasone-induced tyrosine aminotransferase (TAT) activity: the IC50 was 6-7 times lower than the concentration of the dexamethasone used. It was devoid of any glucocorticoid activity up to a concentration of 10 microM. In in vivo studies using adrenalectomized rats, RU 38486 totally inhibited dexamethasone-induced hepatic tryptophan oxygenase (TO) activity. It is also the first pure antagonist of dexamethasone-induced hepatic TAT. However, doses as high as 5 mg/kg of body weight were required for a 50% inhibition of the effect of dexamethasone at 0.01 mg/kg. RU 38486 did not display any glucocorticoid effect on these two responses up to 50 mg/kg.  相似文献   

13.
In order to determine the ratio of phosphates to hormone-binding sites on nonactivated (non-DNA-binding) glucocorticoid receptors in WEHI-7 mouse thymoma cells, we have extracted these receptors from cells grown to a steady state with 32P, labeled them with a saturating concentration of [3H]dexamethasone 21-mesylate, purified them using a monoclonal antibody, and analyzed them by polyacrylamide gel electrophoresis under denaturing and reducing conditions. The complexes contained approximately 5 mol of phosphate/mol of bound steroid. Only half of the phosphates were associated with the approximately 100-kDa protein which is labeled with [3H]dexamethasone 21-mesylate. The remaining phosphates were associated with the approximately 90-kDa non-steroid-binding component of the nonactivated complex. Dual label studies, using [35S]methionine to measure receptor protein and 32P to measure receptor phosphates, have enabled us to determine the phosphate content, relative to receptor protein, of both nonactivated and activated cytosolic complexes generated in intact WEHI-7 cells exposed to triamcinolone acetonide at 37 degrees C. The total amount of phosphate associated with the activated complex is roughly half of that associated with the nonactivated complex, the decrease being accounted for by dissociation of the approximately 90-kDa phosphoprotein which accompanies activation. However, the ratio of 32P to 35S counts associated with the approximately 100-kDa steroid-binding protein is the same for the activated and nonactivated complexes. These results indicate that there is no net change in the phosphorylation of the approximately 100-kDa steroid-binding component of the cytosolic glucocorticoid-receptor complex upon activation in the intact cell.  相似文献   

14.
The physicochemical properties of size, shape and surface charge have been determined for the soluble fraction of cytoplasmic glucocorticoid receptors which are located in the HeLa S3 cell cytoplasm after incubation of whole cells with glucocorticoid at 37 degrees C. Under hypotonic buffer conditions approximately 80% of the total recovered [3H]triamcinolone acetonide receptor complexes sedimented through a 5-20% density gradients to the tube bottom, and approximately 90% eluted from a Sephacryl S-300 gel exclusion column in the void volume. Increasing the [KCl] of the buffer in the sucrose density gradients, and gel exclusion columns to 0.15 M caused a reduction in the percentage of this large aggregate to approximately 64% and approximately 75%, respectively. Further increases in the [KCl] during analysis to 0.4 M reduced the percentage of rapidly sedimenting receptors to approximately 62%, and shifted the sedimentation coefficient of the slower sedimenting receptors from approximately 5.2 S to 3.9 S. These conditions also decreased the fraction of receptor in the void volume of gel exclusion columns to 67%. Ion exchange analysis of receptor binding to DEAE cellulose, hydroxylapatite, phosphocellulose, and DNA cellulose revealed heterogenous populations of receptor species; comprising both "unactivated" and "activated" receptor forms. The ratios of unactivated/activated receptors was highly dependent on the matrix employed and differed substantially among those evaluated. For example, by the criteria of DEAE cellulose and phosphocellulose chromatography approximately 60% of the total 37 degrees C cytoplasmic receptors were in the "activated" state. A large fraction of these receptors, however, failed to bind to DNA cellulose. These results demonstrate that the glucocorticoid receptors which remain in the HeLa S3 cytoplasm at 37 degrees C do not bind to ion exchange materials, which are used as indexes of receptor "activation," in a uniform manner. We hypothesize that the diminished DNA binding capability of these receptors accounts for their cellular localization in the HeLa S3 cell cytoplasm at 37 degrees C.  相似文献   

15.
We studied the glucocorticoid response to the synthetic steroid pregna-1,4-diene-11beta-ol-3,20-dione (DeltaHOP) in several cell types and correlated its biological effect with the ability of the glucocorticoid receptor (GR) to be retained in the nuclear compartment. We observed that the DeltaHOP-transformed GR was diffusely distributed in the nucleus compared to the discrete structures observed for the dexamethasone (DEX)-transformed GR. Despite the fact that the receptor was entirely nuclear upon binding of each steroid and exhibited identical nuclear export rates, a greater amount of DeltaHOP-transformed GR was recovered in the cytoplasmic fraction after hypotonic cell lysis. Furthermore, accelerated nuclear export of GR was evidenced in digitonin-permeabilized cells treated with ATP and molybdate. Inasmuch as limited trypsinization of DEX-GR and DeltaHOP-GR complexes yielded different proteolytic products, we conclude that GR undergoes a differential conformational change upon binding of each ligand. We propose that these conformational differences may consequently lead to changes of stability in the interaction of the GR with chromatin. Therefore, the dynamic exchange of liganded GR with chromatin is likely to have significant consequences for the observed pleiotropic physiological responses triggered by glucocorticoid ligands, not only in different tissues but also in the same cell type.  相似文献   

16.
Hung SH  Yeh CH  Huang HT  Wu P  Ho ML  Chen CH  Wang C  Chao D  Wang GJ 《Life sciences》2008,82(11-12):561-569
Osteoblasts and adipocytes share a common progenitor in bone marrow. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a critical role in adipogenesis. Using a mouse pluripotent mesenchymal cell, D1, as a model, several reports have demonstrated that dexamethasone, a glucocorticoid, can induce adipogenesis. We first examined whether adipogenesis induction in D1 cells is initiated by activation of PPAR-gamma. The results revealed that pioglitazone induces adipogenesis in D1 cells in a dose-dependent manner and decreases alkaline phosphatase activity in D1 cells. Interestingly, this adipogenesis was not blocked by bisphenol A diglycidyl ether, a PPAR-gamma antagonist. A PPAR-gamma-mediated reporter gene assay showed no response to pioglitazone. We then asked whether dexamethasone-induced adipogenesis can be repressed by mifepristone (RU486), an antagonist of glucocorticoid receptor. The results disclosed that mifepristone cannot counteract dexamethasone-induced adipogenesis, and mifepristone itself induced adipogenesis in D1 cells. Moreover, glucocorticoid receptor-mediated reporter gene assay was not responsive to dexamethasone or mifepristone. We concluded that the adipogenesis induced by pioglitazone and dexamethasone in D1 cells may not occur via a PPAR-gamma and glucocorticoid receptor pathway. Finally, we analyzed the gene expression profile of D1 by cDNA microarray after treatment with dexamethasone. We found that the expression of several adipogenesis-related genes is highly provoked by this agent.  相似文献   

17.
G P Rossini  C Malaguti 《Life sciences》1992,51(19):1517-1525
When HeLa cells were incubated with tritiated dexamethasone mesylate at 2 degrees C, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cytosolic and nuclear extracts revealed the presence of two monomeric receptor complex forms with estimated molecular masses of about 98 and 87 kDa. If cells were subjected to crosslinking with glutaraldehyde, a third form consisting of a 250 kDa oligomer was also detected. When HeLa cells were treated with dexamethasone mesylate at 37 degrees C, and were subjected to crosslinking, electrophoresis of cytosolic glucocorticoid-receptor complexes was drastically reduced, whereas their levels in nuclear extracts were not appreciably altered.  相似文献   

18.
[3H]Triamcinolone acetonide glucocorticoid receptor complexes from human salivary gland adenocarcinoma cells (HSG cells) were shown to be activated with an accompanying decrease in molecular weight in intact cells, as analyzed by gel filtration, DEAE chromatography, the mini-column method and glycerol gradient centrifugation. Glucocorticoid receptor complexes consist of steroid-binding protein (or glucocorticoid receptor) and non-steroid-binding factors such as the heat-shock protein of molecular weight 90 000. To determine whether the steroid-binding protein decreases in molecular weight upon activation, affinity labeling of glucocorticoid receptor in intact cells by incubation with [3H]dexamethasone 21-mesylate, which forms a covalent complex with glucocorticoid receptor, was performed. Analysis by gel filtration and a mini-column method indicated that [3H]dexamethasone 21-mesylate-labeled receptor complexes can be activated under culture conditions at 37°C. SDS-polyacrylamide gel electrophoresis of [3H]dexamethasone 21-mesylate-labeled steroid-binding protein resolved only one specific 92 kDa form. Furthermore, only one specific band at 92 kDa was detected in the nuclear fraction which was extracted from the cells incubated at 37°C. These results suggest that there is no change in the molecular weight of steroid-binding protein of HSG cell glucocorticoid receptor complexes upon activation and that the molecular weight of nuclear-binding receptor does not change, although the molecular weight of activated glucocorticoid receptor complexes does decrease. Triamcinolone acetonide induced an inhibitory effect on DNA synthesis in HSG cells. Dexamethasone 21-mesylate exerted no such effect and blocked the action of triamcinolone acetonide on DNA synthesis. These results suggests that dexamethasone 21-mesylate acts as antagonist of glucocorticoid in HSG cells. The fact that dexamethasone 21-mesylate-labeled receptor complexes could be activated and could bind to DNA or nuclei aas well as triamcinolone acetonide-labeled complexes suggests that dexamethasone 21-mesylate-labeled complexes can not induce specific gene expression after their binding to DNA.  相似文献   

19.
The activity of RU38486 has been studied in Burkitt's lymphoma cells which are Epstein-Barr virus (EBV) positive. The early antigens (EA) of the virus are induced by dexamethasone (DXM) in Daudi but not in Raji cells, whereas a growth factor (transforming growth factor-beta, TGF-beta) induces the EA in both cell lines. RU38486 blocks the EA induction obtained by DXM or by TGF-beta in either cell line. In order to understand the interaction of RU38486, we considered its binding to specific receptors. We first investigated the binding of the antagonist in whole cells at 22 degrees C. A number of specific binding sites higher for RU38486 than for DXM was found, suggesting that RU38486 may bind to the glucocorticoid receptor and also to other cellular structures which we called the antiglucocorticoid binding sites ("AGBS"). To support this hypothesis, competition experiments have been conducted between RU38486 and other steroid hormones (progesterone and testosterone) since it is known that RU38486 is also able to interact with their cognate receptors. Binding studies of RU38486 in vitro at 4 degrees C in the presence of cytosolic extracts from Daudi and Raji cells led to conclusions similar to those drawn from the whole cell experiments: more complexes were formed with RU38486 than with DXM. Finally, the steroid-receptor complexes were incubated with DNA-cellulose. Since the binding measured for RU38486 was higher than for DXM, we suspect that sites different from the classical glucocorticoid receptor sites are also able to interact with DNA. The blockage exerted by RU38486 on the EA induced by glucocorticoids or by non-steroidal molecules and the lack of responsiveness to glucocorticoids in Raji cells are discussed in the light of the present findings.  相似文献   

20.
The brain tissues of the rat and mouse express two types of corticosteroid binding proteins, the glucocorticoid (GR) and aldosterone (MR) receptors. Unlike the type II (GR) receptor, type I receptor has a high affinity for aldosterone (ALDO) and corticosterone and is structurally similar to the kidney mineralocorticoid receptor (MR). The results reported in this study provide direct evidence for the interaction of dexamethasone (DEX), triamcinolone acetonide (TA), dexamethasone-21-mesylate (DXM) and 11-deoxycorticosterone (DOC) with human MR expressed in cells by transient co-transfection of a hMR expression vector. The interactions of hMR with DEX, TA, DXM, DOC, promegestone (R5020) and methyltrienelone (R1881) were measured by trans-activation of mouse mammary tumor virus long terminal repeat fused to bacterial chloramphenicol acetyltransferase (MMTV-tk-CAT) in gene co-transfection experiments and by cell free hormone binding assay. The incubation of various steroid hormones in the presence of [3H]ALDO in a competition assay with extracts prepared from HeLa cells co-transfected with hMR expression vector, showed that hMR expressed under these conditions has a high relative affinity for DEX which is similar to ALDO, TA and DOC. Incubation with DXM under these conditions showed very little competition, as was observed with R1881 and R5020. Incubation of the co-transfected cells with DEX, ALDO, DOC, R5020, TA, R1881 and DXM demonstrated that the level of trans-activation did not reflect the previously observed order of binding affinity for the hMR. The level of transactivation was always higher with DEX and TA compared to ALDO and DOC. Analysis of the binding of labeled glucocorticoid regulatory element (GRE) and hMR incubated with DEX, ALDO and DXM by gel shift analysis demonstrated that the trans-activation of MMTV-tk-CAT by hMR is a result of the interaction of hMR with GRE in the MMTV-LTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号