首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two experiments were conducted to investigate the effects of equine chorionic gonadotropin (eCG) at progestin removal and gonadotropin-releasing hormone (GnRH) at timed artificial insemination (TAI) on ovarian follicular dynamics (Experiment 1) and pregnancy rates (Experiment 2) in suckled Nelore (Bos indicus) cows. Both experiments were 2 × 2 factorials (eCG or No eCG, and GnRH or No GnRH), with identical treatments. In Experiment 1, 50 anestrous cows, 134.5 ± 2.3 d postpartum, received a 3 mg norgestomet ear implant sc, plus 3 mg norgestomet and 5 mg estradiol valerate im on Day 0. The implant was removed on Day 9, with TAI 54 h later. Cows received 400 IU eCG or no further treatment on Day 9 and GnRH (100 μg gonadorelin) or no further treatment at TAI. Treatment with eCG increased the growth rate of the largest follicle from Days 9 to 11 (means ± SEM, 1.53 ± 0.1 vs. 0.48 ± 0.1 mm/d; P < 0.0001), its diameter on Day 11 (11.4 ± 0.6 vs. 9.3 ± 0.7 mm; P = 0.03), as well as ovulation rate (80.8% vs. 50.0%, P = 0.02), whereas GnRH improved the synchrony of ovulation (72.0 ± 1.1 vs. 71.1 ± 2.0 h). In Experiment 2 (n = 599 cows, 40 to 120 d postpartum), pregnancy rates differed (P = 0.004) among groups (27.6%, 40.1%, 47.7%, and 55.7% for Control, GnRH, eCG, and eCG + GnRH groups). Both eCG and GnRH improved pregnancy rates (51.7% vs. 33.8%, P = 0.002; and 48.0% vs 37.6%, P = 0.02, respectively), although their effects were not additive (no significant interaction). In conclusion, eCG at norgestomet implant removal increased the growth rate of the largest follicle (LF) from implant removal to TAI, the diameter of the LF at TAI, and rates of ovulation and pregnancy rates. Furthermore, GnRH at TAI improved the synchrony of ovulations and pregnancy rates in postpartum Nelore cows treated with a norgestomet-based TAI protocol.  相似文献   

2.
This study evaluated fertility in swamp buffalo after synchronization of ovulation combined with fixed time artificial insemination. At the start of the study, designated day 0, from a group of 98 female Thai swamp buffalo, 55 buffalo (heifers n° = 20 and cows n° = 35) were selected to be synchronized with GnRH (Day 0) followed by PGF2alpha (Day 7) and a second treatment with GnRH (Day 9). All buffalo were inseminated at two fixed times 12 h and 24 h after the second injection of GnRH (Ovsynch+TAI group); a second group of 43 buffalo (heifers n° = 19 and cows n° = 24) were not treated and were artificially inseminated (AI) at natural estrus (AI group). Blood samples were taken 22 days after insemination to evaluate progesterone plasma levels. In the Ovsynch+TAI group, overall conception rate (CR; i.e. the number of cows with progesterone >4.0 ng/ml on day 22 after AI divided by the number of animals inseminated), was 38.1% and overall pregnancy rate (PR; i.e. the number of cows that were pregnant at day 50-60 after insemination divided by the number of animals inseminated), was 32.7%. In the AI group overall CR and PR was 34.9%.Within the Ovsynch+TAI group, CR and PR were reduced (P < 0.05) in heifers compared with cows (CR 15.0% vs. 51.4% for heifers and cows, respectively; PR 15.0% vs. 42.9% for heifers and cows, respectively). Within the AI group the efficacy of treatment was similar between heifers and cows (CR and PR 31.6% for heifers and 37.5% for cows).In conclusion, this study indicates that in swamp buffalo it is possible to synchronize ovulation and use timed artificial insemination with the Ovsynch+TAI protocol.  相似文献   

3.
Anestrus is common during the postpartum period in high-producing dairy cows. In a previous investigation, we were able to diagnose persistent follicles of 8 to 12 mm in anestrous cows. This report describes 2 consecutive studies. The objectives of the first were to 1) assess the association of persistent follicles with anestrus; and 2) evaluate 2 therapeutic treatments. In the second study, we compared the effectiveness of the best treatment established in Study 1 with the Ovsynch protocol. For Study 1, anestrous cows were considered to have a persistent follicle if it was possible to observe a single follicular structure > 8 mm in the absence of a corpus luteum or a cyst in 2 ultrasonographic examinations performed at an interval of 7 d. At diagnosis (Day 0), cows were assigned to 1 of 3 treatment groups. Cows in Group GnRH/PGF (n=17) were treated with 100 microg GnRH i.m., and 25 mg PGF2alpha i.m. on Day 14. Cows in Group PRID (n=18) were fitted with a progesterone releasing intravaginal device (PRID, containing 1.55 g of progesterone) for 9 d and were given 100 microg GnRH i.m. at the time of PRID insertion, and 25 mg PGF2alpha i.m. on Day 7. Cows in Group Control (n=18) received no treatment. The animals were inseminated at observed estrus and were monitored weekly by ultrasonography until AI or 5 weeks from diagnosis. Blood samples were also collected on a weekly basis for progesterone determination. The mean size of persistent follicles on Day 0 was 9.4 +/- 0.04 mm. Progesterone levels were < 0.2 ng/mL during the first 35 d in 16 of 18 Control cows. Cows in the PRID group showed a lower persistent follicle rate (16.7% < 70.6% < 88.9%; P < 0.0001; PRID vs GnRH/PGF vs Control, respectively); a higher estrus detection rate (83.3% > 29.4% > 11.1%; P < 0.0001) and a higher pregnancy rate (27.8% > 5.9% > 0%; P = 0.02). For the second study, 145 cows with persistent follicles were randomly assigned to 1 of 2 treatment groups: cows in Group Ovsynch (n=73) were treated with 100 microg GnRH i.m. on Day 0, 25 mg PGF2alpha i.m. on Day 7, and 100 microm GnRH i.m. 32 h later. Cows in this group were inseminated 16 to 20 h after the second GnRH dose (Ovsynch protocol). Cows in Group PRID (n=72) were treated as those in the PRID group of Study 1, and were inseminated 56 h after PRID removal. Cows in the PRID group showed a higher ovulation rate (84.8% > 8.2%: P < 0.0001); a higher pregnancy rate (34.2% > 4.1%; P < 0.0001) and lower follicular persistence rate (22.2% < 63%; P < 0.0001) than those in Ovsynch. Our results indicate that persistent follicles affect cyclic ovarian function in lactating dairy cows. Cows with persistent follicles can be successfully synchronized and time inseminated using progesterone, GnRH and PGF2alpha but show a limited response to treatment with GnRH plus PGF2alpha.  相似文献   

4.
Our objective was to determine whether rates of luteolysis or pregnancy differed in lactating dairy cows of known progesterone status and either known or unknown luteal status after either cloprostenol or dinoprost was injected as part of a timed-insemination program. In Experiment 1, 2358 lactating dairy cows in six herds were given two injections of PGF 14 d apart (Presynch), with the second injection given 12 to 14 d before the onset of a timed AI protocol (Ovsynch). Cows (n = 1094) were inseminated when detected in estrus after the Presynch PGF injections. Cows not inseminated (n = 1264) were enrolled in the Ovsynch protocol and assigned randomly to be treated with either cloprostenol or dinoprost as part of the timed-AI protocol. In cows having pretreatment concentrations of progesterone ≥ 1 ng/mL and potentially having a functional corpus luteum (CL) responsive to cloprostenol (n = 558) or dinoprost (n = 519), dinoprost increased (P < 0.05) luteal regression from 86.6 to 91.3%. Despite a significant increase in luteolysis, pregnancies per AI did not differ between luteolytic agents (dinoprost = 37.8% and cloprostenol = 36.7%). Fertility was improved in cows of both treatments having reduced concentrations of progesterone at 72 h and in cows showing signs of estrus. In Experiment 2, an ovulation-resynchronization program was initiated with GnRH or saline in 427 previously inseminated lactating dairy cows of unknown pregnancy status in one herd. Seven days later, pregnancy was diagnosed and nonpregnant cows were blocked by number of CL and assigned randomly to be treated with cloprostenol or dinoprost. Compared with cloprostenol, dinoprost increased (P < 0.05) luteal regression from 69.1 to 78.5%, regardless of the number of CL present or the total luteal volume per cow. Pregnancies per AI did not differ between dinoprost (32.8%) and cloprostenol (31.3%). Although dinoprost was more effective than cloprostenol at inducing luteolysis in lactating dairy cows exposed to an Ovsynch or ovulation-resynchronization protocol, resulting fertility did not differ between products.  相似文献   

5.
We hypothesized that pregnancy outcomes may be improved by inducing luteal regression, ovulation, or both (i.e., altering progesterone status) before initiating a timed–artificial insemination (TAI) program in suckled beef cows. This hypothesis was tested in two experiments in which cows were treated with either PGF (PG) or PG + GnRH before initiating a TAI program to increase the proportion of cows starting the program in a theoretical marginal (<1 ng/mL; experiment 1) or elevated (≥1 ng/mL; experiment 2) progesterone environment, respectively. The control was a standard CO-Synch + controlled internal drug release (CIDR) program employed in suckled beef cows (100 μg GnRH intramuscularly [IM] [GnRH-1] and insertion of a progesterone-impregnated intravaginal CIDR insert on study Day −10, 25 mg PG and CIDR insert removal on study Day −3, and 100 μg GnRH IM [GnRH-2] and TAI on study Day 0). In both experiments, blood was collected before each injection for later progesterone analyses. In experiment 1, cows at nine locations (n = 1537) were assigned to either: (1) control or (2) PrePG (same as control with a PG injection on study Day −13). The PrePG cows had larger (P < 0.05) follicles on study Day −10 and more (P < 0.05) ovulated after GnRH-1 compared with control cows (60.6% vs. 36.5%), but pregnancy per TAI was not altered (55.5% vs. 52.2%, respectively). In experiment 2, cows (n = 803) at four locations were assigned to: (1) control or (2) PrePGG (same as control with PG injection on study Day −20 and GnRH injection on study Day −17). Although pregnancy per TAI did not differ between control and PrePGG cows (44.0% vs. 44.4%, respectively), cows with body condition score greater than 5.0 or 77 or more days postpartum at TAI were more (P < 0.05) likely to become pregnant than thinner cows or those with fewer days postpartum. Presynchronized cows in both experiments were more (P < 0.05) likely than controls to have luteolysis after initial PG injections and reduced (P < 0.05) serum progesterone; moreover, treatments altered the proportion of cows and pregnancy per TAI of cows in various progesterone categories before the onset of the TAI protocol. In combined data from both experiments, cows classified as anestrous before the study but with elevated progesterone on Day −10 had increased (P < 0.05) pregnancy outcomes compared with anestrous cows with low progesterone concentrations. Progesterone concentration had no effect on pregnancy outcome of cycling cows. In summary, luteal regression and ovulation were enhanced and progesterone concentrations were altered by presynchronization treatments before the 7-day CO-Synch + CIDR program, but pregnancy per TAI was not improved.  相似文献   

6.
Ovsynch protocols are used to increase service rate and decrease days open and cullings for infertility. Recent reports have indicated better results after Ovsynch in primiparous than in older cows. However, this was not observed in all investigations on the subject. The objective of the study was to evaluate differences between primiparous and multiparous cows after synchronization of ovulation with an Ovsynch protocol in six trials. A total of 1584 cows (583 primiparous and 1001 multiparous cows, respectively) on three dairy farms were synchronized with an Ovsynch protocol consisting of a GnRH-analogue at Days 0 and 9, and a prostaglandin F(2alpha) analogue on Day 7. AI was carried out in all cows 16-20 h after the last treatment. Cows were categorized into primiparous and multiparous cows for analysis. Conception rate (CR) to timed AI, to further AI, overall conception rate and proportion of cows pregnant by 200 days in milk were compared between the age groups. Finally, two logistic regression models were calculated with conception to first service and conception by 200 DIM as the outcome variables. Independent variables were trial (categorical) and age group (primiparous versus multiparous). Conception rates to TAI were higher in primiparous than in older cows (37.9% versus 31.6%, P=0.015). Likewise pregnancy rates by 200 DIM were higher in primiparous cows (81.8% versus 75.4%, P=0.003). However, the extent of the difference varied between trials. Results indicate that Ovsynch protocols are more effective in primiparous than in older cows.  相似文献   

7.
The aim of this study was to evaluate the effect of presynchronization with or without the detection of estrus on first service pregnancy per artificial insemination (P/AI) and on Ovsynch outcome in lactating dairy cows. A total of 511 cows were divided randomly but unevenly into 3 treatment groups at 44 to 50 days in milk (DIM). Ovsynch was started at the same time (69 to 75 DIM) in all three groups. Cows in the Ovsynch group (CON, N = 126) received no presynchronization before Ovsynch, and all cows were bred by timed AI (TAI). Cows in the presynchronization with estrus detection (PED) and the presynchronization with only TAI (PTAI) groups received two doses of prostaglandin F (PGF) 14 days apart, starting at 44 to 50 DIM. Ovsynch was initiated 11 days after the second PGF treatment. Cows in the PED group (N = 267) received AI if estrus was detected after either PGF injection. Cows that were not determined to be in estrus after PGF injection received Ovsynch and TAI. Cows in the PTAI group (N = 118) were not inseminated to estrus, with all cows receiving TAI after Ovsynch. The ovulatory response to the first GnRH injection administered as part of Ovsynch differed (P = 0.002) among treatment groups (83.1% in PTAI, 72.6% in PED, and 62.7% in CON). However, the ovulatory response to the second injection of GnRH during Ovsynch did not differ among treatment groups. Of the 267 PED cows, a total of 132 (49.4%) exhibited estrus and were inseminated. The P/AI at the 31-day pregnancy diagnosis was similar between the cows in the PED group with AI after estrus detection (37.9%; 50/132) and those bred with TAI (34.1%; 46/135). The P/AI in the CON group (46.8%; 59/126) was greater (P < 0.05) than that in the PED group (36.0%; 96/267). In addition, the P/AI in the CON group was greater (P = 0.04) than that in the PED cows receiving TAI (34.1%; 46/135) but less than that in the PED cows bred to estrus (37.9%; 50/132) (P = 0.16). At the 31-day pregnancy diagnosis, the cows in the PTAI group had greater P/AI (55.9%; 66/118) than both those in the PED group (P < 0.01; either estrus or TAI) and those in the CON group (P = 0.08). Thus, presynchronization with PGF (PTAI) increased the ovulatory response to Ovsynch and improved P/AI in dairy cows. Interestingly, the breeding of cows to estrus during presynchronization reduced fertility to the TAI and overall fertility, including cows bred to estrus and TAI. These results indicate that maximal fertility is obtained when all cows receive TAI after the presynchronization protocol.  相似文献   

8.
We compared the effects of porcine luteinizing hormone (pLH) versus gonadotropin-releasing hormone (GnRH) on ovulatory response and pregnancy rate after timed artificial insemination (TAI) in 605 lactating dairy cows. Cows (mean ± SEM: 2.4 ± 0.08 lactations, 109.0 ± 2.5 d in milk, and 2.8 ± 0.02 body condition score) at three locations were assigned to receive, in a 2 × 2 factorial design, either 100 μg GnRH or 25 mg pLH im on Day 0, 500 μg cloprostenol (PGF) on Day 7, and GnRH or pLH on Day 9, with TAI 14 to 18 h later. Ultrasonographic examinations were performed in a subset of cows on Days 0, 7, 10, and 11 to determine ovulations, presence of corpus luteum, and follicle diameter and in all cows 32 d after TAI for pregnancy determination. In 35 cows, plasma progesterone concentrations were determined 0, 3, 4, 5, 6, 7, and 12 d after ovulation. The proportion of noncyclic cows and cows with ovarian cysts on Day 0 were 12% and 6%, respectively. Ovulatory response to first treatment was 62% versus 44% for pLH and GnRH and 78% versus 50% for noncyclic and cyclic cows (P < 0.01). Location, ovulatory response to first pLH or GnRH, cyclic status, presence of an ovarian cyst, and preovulatory follicle size did not affect pregnancy rate. Plasma progesterone concentrations after TAI did not differ among treatments. Pregnancy rate to TAI was greater (P < 0.01) in the GnRH/PGF/pLH group (42%) than in the other three groups (28%, 30%, and 26% for GnRH/PGF/GnRH, pLH/PGF/GnRH, and pLH/PGF/pLH, respectively). Although only 3% of cows given pLH in lieu of GnRH on Day 9 lost their embryo versus 7% in those subjected to a conventional TAI using two GnRH treatments, the difference was not statistically significant. In summary, pLH treatment on Day 0 increased ovulatory response but not pregnancy rate. Cows treated with GnRH/PGF/pLH had the highest pregnancy rate to TAI, but progesterone concentrations after TAI were not increased. In addition, preovulatory follicle diameter did not affect pregnancy rate.  相似文献   

9.
The objective was to compare pregnancy rates and pregnancy losses in lactating dairy cows that were diagnosed not pregnant and re-inseminated following either the Ovsynch or Heatsynch protocols. Also evaluated were the effects of stages of the estrous cycle, ovarian cysts and anestrus on pregnancy rates for both treatments. Non-pregnant cows (n = 332) as determined by ultrasonography on day 27 post-AI (study day 0) were divided into two groups. Cows in the Ovsynch group (n = 166) received GnRH on day 0, PGF2alpha on day 7, GnRH on day 9, and timed AI (TAI) 16 h later (day 10). Cows in the Heatsynch group (n = 166) received GnRH on day 0, PGF2alpha on day 7, estradiol cypionate (ECP) on day 8, and TAI 48 h later (day 10). Cows detected in estrus on days 8 and 9 were inseminated and included in the study. On day 0, cows were classified according to different stages of the estrous cycle, or presence of ovarian cysts or anestrus. Pregnancy rates were evaluated 27, 45 and 90 days after resynchronized AI. Overall, there was no difference in pregnancy rates on days 27, 45 and 90 between cows in the Ovsynch (25.2, 17.5, and 13.9%) and Heatsynch (25.8, 19.9, and 16.1%) groups. There was no difference in pregnancy losses from days 27 to 45 and days 45 to 90 for cows in the Ovsynch (25.0 and 17.9%) and Heatsynch (14.7 and 10.3%) groups. However, pregnancy rates were increased when cows in metestrus were subjected to the Heatsynch protocol and cows with ovarian cysts were subjected to the Ovsynch protocol.  相似文献   

10.
Pregnancy rates were compared in lactating dairy cows (n = 1083) assigned to protocols for resynchronization of ovulation based on stages of the estrous cycle, or presence of ovarian cysts or anestrus. Cows were detected not pregnant by ultrasonography 30 d after a previous AI (study day 0) and classified as diestrus, metestrus, proestrus, with ovarian cysts or anestrus. Cows in diestrus (January-May) were assigned to either Ovsynch (GnRH day 0, PGF2alpha day 7, GnRH day 9, and timed-AI [TAI] 16 h later; n = 96), or Quicksynch (PGF2alpha day 0, estradiol cypionate [ECP] day 1, AI at detected estrus [AIDE] on day 2, or TAI on day 3; n = 96). Cows in diestrus (June-December) were assigned to either Ovsynch (n = 156) or Modified Quicksynch (PGF2alpha day 0, ECP day 1, AIDE days 2 and 3, and to Ovsynch on day 4 if not detected in estrus; n = 142). Cows in metestrus were assigned either to Ovsynch (n = 68), Heatsynch (GnRH day 0, PGF2alpha day 7, ECP day 8, AIDE day 9, or TAI day 10; n = 62), or GnRH + Ovsynch (GnRH on day 0, followed by Ovsynch on day 8; n = 64). Cows in proestrus, with ovarian cysts, or anestrus were assigned to either Ovsynch (proestrus n = 89, ovarian cysts n = 97, anestrus n = 8) or GnRH + Ovsynch (proestrus n = 87, ovarian cysts n = 109, anestrus n = 9). Pregnancy rate was evaluated 30, 55 and 90 d after resynchronized AI. For cows in diestrus (January-May), pregnancy rates were higher for Ovsynch (35.9, 29.2 and 26.0%) than for Quicksynch (21.7, 16.7 and 15.6%). For cows in diestrus (June-December), pregnancy rates were similar for Ovsynch (34.4, 24.0 and 23.6%) and Modified Quicksynch (27.1, 26.2 and 21.6%). For cows in metestrus, pregnancy rates were higher for GnRH + Ovsynch (33.3, 24.5 and 20.3%) than for Heatsynch (20.3, 12.9 and 9.8%). For cows with ovarian cysts, pregnancy rates were higher for GnRH + Ovsynch (30.3, 26.6 and 22.9%) than for Ovsynch (20.2, 18.5 and 14.7%). Assignment to resynchronization protocols based on the stages of the estrous cycle, or presence of ovarian cysts improved pregnancy rates.  相似文献   

11.
Our objectives were to compare: (1) conception rates (in early postpartum Japanese Black beef cows) to timed-artificial insemination (timed-AI) among Ovsynch and Ovsynch plus CIDR protocols, and a protocol that used estradiol benzoate (EB) in lieu of the first GnRH of the Ovsynch plus CIDR; and (2) the effects of these protocols on blood concentrations of ovarian steroids. Cows in the control group (Ovsynch; n=35) underwent a standard Ovsynch protocol (GnRH analogue on Day 0, PGF(2 alpha) analogue on Day 7 and GnRH analogue on Day 9), with timed-AI on Day 10, approximately 20 h after the second GnRH treatment. Cows in the Ovsynch+CIDR group (n=31) received a standard Ovsynch protocol plus a CIDR for 7 days (starting on Day 0). Cows in the third treatment group (EB+CIDR+GnRH; n=41) received 2mg of EB on Day 0 in lieu of the first GnRH treatment, followed by the same treatment as in the Ovsynch+CIDR protocol. The conception rate tended to be greater in the Ovsynch+CIDR group (67.7%, P<0.15) and was greater in the EB+CIDR+GnRH (73.2%, P<0.05) and CIDR-combined (both CIDR-treated groups were combined) groups (70.8%, P<0.05) than in the Ovsynch group (48.6%). Plasma progesterone concentrations were higher on Day 7 (P<0.01) and lower on Days 14, 17 and 21 (P<0.001) in the CIDR-combined group than in the Ovsynch group. Plasma estradiol-17beta concentrations were higher on Day 7 in the Ovsynch group of non-pregnant cows than in the CIDR-combined group of non-pregnant cows and in an all-combined group (all treatment groups combined) of pregnant cows (P<0.01). Furthermore, estradiol-17beta concentrations were lower on Day 9 in the Ovsynch and CIDR-combined groups of non-pregnant cows than in the all-combined group of pregnant cows (P<0.05). In conclusion, both protocols using CIDR improved conception rates following timed-AI in early postpartum suckled Japanese Black beef cows relative to the Ovsynch protocol. Treatment with a CIDR may prevent early maturation of follicles observed in non-pregnant cows treated with the Ovsynch protocol, by maintaining elevated blood progesterone concentrations until PGF(2 alpha) treatment.  相似文献   

12.
The objective of this study was to compare the effectiveness of the Ovsynch and controlled internal drug releasing (CIDR) protocols under commercial conditions for the treatment of cystic ovarian disease in dairy cattle. A total of 401 lactating dairy cows with ovarian cysts were alternatively allocated to two treatment groups on the day of diagnosis. Cows in the Ovsynch group were treated with GnRH on Day 0, PGF2alpha on Day 7, GnRH on Day 9, with timed insemination 16-20 h later. Cows in the CIDR group were treated with a CIDR insert on Day 0 for 7 days; on Day 7, the CIDR was removed, and cows were treated with PGF2alpha. All cows in the CIDR group were observed for estrus and cows exhibiting estrus within 7 days following removal of the CIDR and PGF2alpha administration were inseminated. The outcomes of interest for this experiment were the likelihood to be inseminated, return to cyclicity (determined by a CL on Day 21), conception and pregnancy rates. Data for these variables were analyzed using logistic regression. The percentage of cows inseminated in the Ovsynch and CIDR groups were 82 and 44%, respectively. Cows in the Ovsynch group were 5.8 times more likely to be inseminated than cows in the CIDR group. Cows with a low BCS were 0.48 times less likely to be inseminated than cows with a high BCS. The percentage of cows with a CL on Day 21 for the Ovsynch and CIDR groups was 83 and 79%, respectively (P > 0.05). Cows with a low BCS were 0.49 times less likely to have CL on Day 21 than cows with a high BCS. Conception and pregnancy rates for cows in the Ovsynch group were 18.3 and 14.4%, respectively. Conception and pregnancy rates for cows in the CIDR group were 23.1 and 9.5%, respectively. There was no significant differences between conception or pregnancy rates in cows in both groups. Primiparous cows were 2.6 times more likely to conceive than multiparous cows. In conclusion, the results of this study suggested that fertility was not different between cows with ovarian cysts treated with either the Ovsynch or the CIDR protocols in this dairy herd. In addition, primiparous cows had an increased likelihood for conception compared to multiparous cows, and cows with a low BCS were less likely to be inseminated or have a CL on Day 21, regardless of treatment.  相似文献   

13.
The primary objective was to determine the effect of supplemental progesterone, administered via an intravaginal device (CIDR), on conception rates to timed-artificial insemination (timed-AI) in postpartum suckled Japanese Black beef cows treated with the Ovsynch protocol. A secondary objective was to compare the effects of treatments on plasma concentrations of progesterone and estradiol. Cows in the control group (Ovsynch, n=38) received a standard Ovsynch protocol (100 microg GnRH analogue on Day 0, 500 microg PGF2alpha analogue on Day 7, and 100 microg GnRH analogue on Day 9), with AI on Day 10, approximately 20 h after the second GnRH treatment. Cows in the treatment group (Ovsynch+CIDR; n=40) received a standard Ovsynch protocol plus a CIDR for 7 days (starting on Day 0). Plasma progesterone concentrations were determined on Days 0, 1, 7, 9, 10, and 17 and plasma estradiol-17beta concentrations were determined on Days 7, 9, 10, and 17. The odds ratio for likelihood of conception was 3.29 times greater (P=0.02) in the Ovsynch+CIDR group compared to Ovsynch group. The conception rate was greater (P=0.03) in the Ovsynch+CIDR group than in the Ovsynch group (72.5% versus 47.7%). Insertion of a CIDR device significantly increased plasma progesterone concentrations only on Days 1 and 7 (P<0.001 and P=0.05, respectively), but had no significant effect on plasma estradiol-17beta concentrations. Including a CIDR with the Ovsynch protocol significantly improved conception rates in postpartum suckled Japanese Black beef cows.  相似文献   

14.
Kim IH  Suh GH  Son DS 《Theriogenology》2003,60(5):809-817
The objective of this study was to evaluate pregnancy rates in lactating Holstein cows treated with an Ovsynch protocol (GnRH-PGF(2alpha)-GnRH) or a progesterone-based timed AI (TAI) protocol, and to determine the factors that may influence pregnancy rate following protocol treatment. In experiment 1, lactating Holstein cows were randomly assigned to three treatments: (1) an injection of GnRH (Day 0), an injection of PGF(2alpha) on Day 7, a second injection of GnRH on Day 9, and TAI 16h after the second GnRH injection (GPG group, n = 34); (2) insertion of a CIDR intravaginal progesterone (1.9g) device combined with a capsule containing 10mg estradiol benzoate (Day 0), an injection of PGF(2alpha) and removal of the device on Day 7, an injection of GnRH on Day 9, and TAI 16h after the GnRH injection (CPG group, n = 34); (3) an injection of PGF(2alpha) after confirming the presence of CL by ultrasonographical observation and artificial insemination at estrus (AIE) (P group, n = 75). The pregnancy rate after TAI following the CPG protocol (41.2%) was higher (P<0.05) than that after TAI following the GPG protocol (20.6%) and that after AIE (20.0%). In experiment 2, lactating Holstein cows were randomly assigned to two treatments: a GPG group (n = 31) and a CPG group (n = 31). The GPG and CPG protocols were identical to those used in experiment 1. The proportion of cows with premature estrus prior to injection of PGF(2alpha) and with incomplete luteal regression tended (P = 0.056) to be or were greater (P<0.05) in the GPG group (4/31, 8/31) than in the CPG group (0/31, 2/31), respectively. Average diameters of dominant follicles (1.5+/-0.1mm versus 1.4+/-0.1mm) on Day 7 and preovulatory follicles (1.8+/-0.1mm versus 1.6+/-0.1mm) on Day 9, and the proportion of cows with synchronized ovulation by 40h after the second GnRH injection were not different (81.5% versus 87.1%, P>0.05) between groups, respectively. We conclude that the pregnancy rate after TAI following the CPG protocol was higher than that after TAI following the GPG protocol, probably due to a decreased incidence of premature estrus and incomplete luteal regression.  相似文献   

15.
This study was designed to compare two timed insemination protocols, in which progesterone, GnRH and PGF2alpha were combined, with the Ovsynch protocol in presynchronized, early postpartum dairy cows. Reproductive performance was also evaluated according to whether cows showed high or low plasma progesterone concentration, at the onset of treatment. One hundred and six early postpartum dairy cows were presynchronized with two cloprostenol treatments given 14 days apart, and then assigned to one of the three treatment groups. Treatments for the synchronization of estrus in all three groups started 7 days after the second cloprostenol injection, which was considered Day 0 of the actual treatment regime. Cows in the control group (Ovsynch, n=30) were treated with GnRH on Day 0, PGF2alpha on Day 7, and were given a second dose of GnRH 32 h later. Cows in group PRID (n=45) were fitted with a progesterone releasing intravaginal device (PRID) for 9 days, and were given GnRH at the time of PRID insertion and PGF2alpha on Day 7. In group PRID/GnRH (n=31), cows received the same treatment as in the PRID group, but were given an additional GnRH injection 36 h after PRID removal. Cows were inseminated 16-20 h after the administration of the second GnRH dose in the Ovsynch group, and 56 h after PRID removal in the PRID and PRID/GnRH groups. Ovulation rate was determined on Day 11 postinsemination by detecting the presence of a corpus luteum in the ovaries. Lactation number, milk production, body condition at the onset of treatment and treatment regime were included as potential factors influencing ovulation and pregnancy after synchronization. Logistic regression analysis for cows with high and low progesterone concentration on treatment Day 0 revealed that none of the factors included in the models, except the interaction between progesterone and treatment regime, influenced the risk of ovulation and pregnancy significantly. In cows with high progesterone concentration at treatment onset, Ovsynch treatment resulted in a significantly improved pregnancy rate over values obtained following PRID or PRID/GnRH treatment. In cows with low progesterone concentration, PRID or PRID/GnRH treatment led to markedly increased ovulation and pregnancy rates with respect to Ovsynch treatment. These findings suggest the importance of establishing ovarian status in early postpartum dairy cows before starting a timed AI protocol, in terms of luteal activity assessed by blood progesterone.  相似文献   

16.
In dairy cows, subjected to a G6G protocol, objectives were to determine effects of (1) extending the interval from prostaglandin F2α (PGF2α) to gonadotropin-releasing hormone (GnRH) during presynchronization; and (2) adding a second PGF2α treatment before artificial insemination (AI), on ovarian response, plasma progesterone (P4) concentrations and pregnancy per AI (P/AI). In a 2×2 factorial design, lactating cows were randomly assigned to one of four timed AI (TAI) protocols: (1) G6G (n=149), one injection of PGF2α, GnRH 2 days later and a 7-day Ovsynch (GnRH, 7 days, PGF2α, 56 h, GnRH, 16 h, TAI) was initiated 6 days later; (2) G6GP (n=144), an additional PGF2α treatment (24 h after the first) during Ovsynch of the G6G protocol; (3) MG6G, one injection of PGF2α, GnRH 4 days later before initiation of the G6G protocol; and (4) MG6GP, an additional PGF2α treatment (24 h after the first) during Ovsynch of the MG6G protocol. Blood samples were collected (subset of 200 cows) at first GnRH and PGF2α of the Ovsynch, and at TAI to measure P4. Ultrasound examinations were performed in a subset of 406 cows to evaluate ovarian response at various times of Ovsynch, and in all cattle to determine pregnancy status at 32 and 60 days after TAI. Extending the interval by 2 days between PGF2α and GnRH during presynchronization increased (P<0.01) ovulatory response to first GnRH of Ovsynch, circulating P4 during Ovsynch, and P/AI at 32 and 60 days after TAI. Adding a second PGF2α treatment before AI increased the proportion of cows with luteal regression (P=0.04), improved P/AI at 60 days after TAI (P=0.05), and reduced pregnancy loss between 30 and 60 days after TAI (P=0.04). In summary, extending the interval from PGF2α to GnRH during presynchronization increased response to first GnRH of Ovsynch and P4 concentrations during Ovsynch, whereas adding a second PGF2α treatment before AI enhanced luteal regression. Both modifications of the G6G protocol improved fertility in lactating dairy cows.  相似文献   

17.
Kim UH  Suh GH  Nam HW  Kang HG  Kim IH 《Theriogenology》2005,63(1):260-268
This study evaluated the effect of GnRH or estradiol benzoate (EB) on follicular wave emergence and progesterone concentrations, and following a second injection of GnRH, synchrony of ovulation, and pregnancy rates in a controlled internal drug release (CIDR)-based timed AI (TAI) protocol in lactating Holstein cows. Cows received a CIDR device without hormone (controls), with an injection of 100 microg GnRH or with an injection of 4 mg EB. Thereafter, all received PGF(2 alpha) at the time of CIDR removal on Day 7, GnRH on Day 9, and TAI 16 h later. Follicular wave emergence occurred within 7 days in 19/20 GnRH-treated, 14/20 EB-treated and 5/20 control cows (P < 0.05). The interval to wave emergence was the shorter and less variable (P < 0.01) in the GnRH group (2.9 +/- 0.2 days) than in the EB (4.7 +/- 0.5 days) or control (4.8 +/- 1.0 days) groups. Serum progesterone concentrations from Days 4 to 7 were higher (P < 0.01) in the GnRH-treated cows that ovulated than in those that did not ovulate, or in control and EB-treated cows. The diameters of dominant follicle on Day 7 differed among groups (P < 0.01), and the diameters of the preovulatory follicle on Day 9 were larger (P < 0.01) in the control and GnRH groups than in the EB group. The proportion of cows with synchronized ovulations did not differ among groups, but pregnancy rate to TAI was higher (P < 0.05) in the GnRH group (65%; 13/20) than in the control (30%; 6/20) or EB (35%; 7/20) groups. Results suggest that GnRH treatment of CIDR-treated lactating Holstein cows will result in synchronous follicular wave emergence, large preovulatory follicles and synchronous ovulation, resulting in an acceptable pregnancy rates to TAI.  相似文献   

18.
Five experiments were conducted on commercial farms in Brazil aiming to develop a fixed-time artificial insemination (TAI) protocol that achieved pregnancy rates between 40% and 55% in Bos indicus cows. These studies resulted in the development of the following protocol: insertion of an intravaginal device containing 1.9 g of progesterone (CIDR) plus 2.0 mg im estradiol benzoate on Day 0; 12.5 mg im dinoprost tromethamine on Day 7 in cycling cows or on Day 9 in anestrous cows; CIDR withdrawal plus 0.5 mg im estradiol cypionate plus temporary calf removal on Day 9; TAI (48 h after CIDR withdrawal) plus reuniting of calves with their dams on Day 11. Reduced dose of prostaglandin F (PGF; 12.5 mg im dinoprost tromethamine) effectively caused luteolysis. In cycling cows, fertility was greater when the treatment with PGF was administered on Day 7 than on Day 9, but in anestrous cows, no effects of time of the PGF treatment were found. Estradiol cypionate effectively replaced estradiol benzoate or gonadotropin-releasing hormone as the ovulatory stimulus, reducing labor and cost. In this protocol, CIDR inserts were successfully used four times (9 d each use) with no detrimental effects on fertility.  相似文献   

19.
Two modifications of the Ovsynch protocol, GnRH + TAI after PGF 48 h (CO-48) or 72 h (CO-72), were compared with the original protocol (OVS: GnRH–7 d–PGF–2 d–GnRH–16 h–TAI) to study their effects on reproductive performance in 785 lactating dairy cows (Holstein Friesian, Bos Taurus). Results showed that more cows (P < 0.001) returned to estrus within a week after TAI with CO-48 treatment compared with that in OVS and CO-72 treatments. Pregnancy rates were greater (P < 0.001) for the CO-72 cows than those for both OVS and CO-48 treatments and for primiparous cows compared with multiparous cows. Moreover, pregnancy rates were lower in summer compared with those in winter. Pregnancy losses for cows in both CO-48 and CO-72 were greater (P < 0.05) than that for cows in OVS treatment. Pregnancy losses were greater in summer (P < 0.001) than in winter and for multiparous cows (P < 0.001) than for primiparous cows. In conclusion, primiparous and winter-bred cows had greater pregnancy rates and fewer pregnancy losses than those of multiparous cows and summer-bred cows, respectively. Because of the presence of significant treatment, parity, and season interactions, TAI with ovulation synchronization protocols should be tailored according to the season and parity. CO-72 is recommended for primiparous cows but not for multiparous cows, and CO-48 is not recommended for synchronization. Furthermore, cows that exhibited estrus at any time were inseminated to improve pregnancy rates in ovulation synchronization protocols.  相似文献   

20.
Two experiments were conducted to test the hypothesis that the 5 d Co-Synch + CIDR (Controlled Internal Drug Release insert containing progesterone) protocol could be applied as an efficient timed AI (TAI) protocol in dairy heifers, and that treatment with flunixin meglumine (FM) during the period of CL maintenance would increase pregnancy per TAI (P/TAI) and late survival of embryos. Objectives were: 1) in Experiment 1, to compare P/TAI with the 5 d Co-Synch + CIDR protocol to a PGF/GnRH protocol; and 2) in Experiment 2, to determine if FM administered 15.5 and 16 d after first TAI would increase P/TAI, using the 5 d Co-Synch + CIDR protocol with a new or previously used (5 d) CIDR insert.In Experiment 1, 248 heifers were assigned randomly to either the PGF/GnRH protocol (n = 120) or the 5 d Co-Synch + CIDR protocol (n = 128). Pregnancy per TAI did not differ between the 5 d Co-Synch + CIDR protocol (53.1%) and the PGF/GnRH protocol (45.8%; P = 0.22). In Experiment 2, 325 heifers synchronized with the 5 d Co-Synch + CIDR protocol were assigned randomly to receive two injections of FM (FM group; n = 158) at 15.5 and 16 d after TAI, or to remain as untreated controls (n = 165). Pregnancy per TAI in Experiment 2 was 59.4 and 59.5% at 45 d for control and FM groups, respectively, with no differences between groups (P = 0.83). The 5 d Co-Synch + CIDR protocol resulted in an acceptable P/TAI in dairy heifers. However, FM did not improve P/TAI in dairy heifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号