首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In neurons, Presenilin 1(PS1)/γ-secretase is located at the synapses, bound to N-cadherin. We have previously reported that N-cadherin-mediated cell–cell contact promotes cell-surface expression of PS1/γ-secretase. We postulated that N-cadherin-mediated trafficking of PS1 might impact synaptic PS1-amyloid precursor protein interactions and Aβ generation. In the present report, we evaluate the effect of N-cadherin-based contacts on Aβ production. We demonstrate that stable expression of N-cadherin in Chinese hamster ovary cells, expressing the Swedish mutant of human amyloid precursor protein leads to enhanced secretion of Aβ in the medium. Moreover, N-cadherin expression decreased Aβ42/40 ratio. The effect of N-cadherin expression on Aβ production was accompanied by the enhanced accessibility of PS1/γ-secretase to amyloid precursor protein as well as a conformational change of PS1, as demonstrated by the fluorescence lifetime imaging technique. These results indicate that N-cadherin-mediated synaptic adhesion may modulate Aβ secretion as well as the Aβ42/40 ratio via PS1/N-cadherin interactions.  相似文献   

2.
Abstract: There is mounting evidence that at least some of the neurotoxicity associated with Alzheimer's disease (AD) is due to proteolytic fragments of the β-amyloid precursor protein (βAPP). Most research has focused on the amyloid β protein (Aβ), which has been shown to possess ion channel activity. However, the possible role of other cleaved products of the βAPP is less clear. We have investigated the ability of various products of βAPP to induce membrane ion currents by applying them to Xenopus oocytes, a model system used extensively for investigating electrophysiological aspects of cellular, including neuronal, signalling. We focussed on the 105-amino-acid C-terminal fragment (CT105) (containing the full sequence Aβ), which has previously been found to be toxic to cells, although little is known about its mode of action. We have found that CT105 is exceedingly potent, with a threshold concentration of 100–200 n M , in inducing nonselective ion currents when applied from either outside or inside the oocyte and is more effective than either βAPP or the Aβ fragments, β25–35 or β1–40. The ion channel activity of CT105 was concentration dependent and blocked by a monoclonal antibody to Aβ. These results suggest the possible involvement of CT105 in inducing the neural toxicity characteristic of AD.  相似文献   

3.
Pharmacological modulation of the GABAA receptor has gained increasing attention as a potential treatment for central processes affected in Alzheimer disease (AD), including neuronal survival and cognition. The proteolytic cleavage of the amyloid precursor protein (APP) through the α-secretase pathway decreases in AD, concurrent with cognitive impairment. This APP cleavage occurs within the β-amyloid peptide (Aβ) sequence, precluding formation of amyloidogenic peptides and leading to the release of the soluble N-terminal APP fragment (sAPPα) which is neurotrophic and procognitive. In this study, we show that at nanomolar-low micromolar concentrations, etazolate, a selective GABAA receptor modulator, stimulates sAPPα production in rat cortical neurons and in guinea pig brains. Etazolate (20 nM–2 μM) dose-dependently protected rat cortical neurons against Aβ-induced toxicity. The neuroprotective effects of etazolate were fully blocked by GABAA receptor antagonists indicating that this neuroprotection was due to GABAA receptor signalling. Baclofen, a GABAB receptor agonist failed to inhibit the Aβ-induced neuronal death. Furthermore, both pharmacological α-secretase pathway inhibition and sAPPα immunoneutralization approaches prevented etazolate neuroprotection against Aβ, indicating that etazolate exerts its neuroprotective effect via sAPPα induction. Our findings therefore indicate a relationship between GABAA receptor signalling, the α-secretase pathway and neuroprotection, documenting a new therapeutic approach for AD treatment.  相似文献   

4.
Abstract: Proteolytic cleavage of β-amyloid precursor protein (βAPP) by α-secretase results in release of one secreted form (sAPP) of APP (sAPPα), whereas cleavage by β-secretase releases a C-terminally truncated sAPP (sAPPβ) plus amyloid β-peptide (Aβ). βAPP mutations linked to some inherited forms of Alzheimer's disease may alter its processing such that levels of sAPPα are reduced and levels of sAPPβ increased. sAPPαs may play important roles in neuronal plasticity and survival, whereas Aβ can be neurotoxic. sAPPα was ∼100-fold more potent than sAPPβ in protecting hippocampal neurons against excitotoxicity, Aβ toxicity, and glucose deprivation. Whole-cell patch clamp and calcium imaging analyses showed that sAPPβ was less effective than sAPPα in suppressing synaptic activity, activating K+ channels, and attenuating calcium responses to glutamate. Using various truncated sAPPα and sAPPβ APP695 products generated by eukaryotic and prokaryotic expression systems, and synthetic sAPP peptides, the activity of sAPPα was localized to amino acids 591–612 at the C-terminus. Heparinases greatly reduced the actions of sAPPαs, indicating a role for a heparin-binding domain at the C-terminus of sAPPα in receptor activation. These findings indicate that alternative processing of βAPP has profound effects on the bioactivity of the resultant sAPP products and suggest that reduced levels of sAPPα could contribute to neuronal degeneration in Alzhiemer's disease.  相似文献   

5.
Abstract: The frequency of the ε4 allele of apolipoprotein E(apoE) is increased in late-onset and sporadic forms of Alzheimer's disease (AD). ApoE also binds to β-amyloid (Aβ) and both proteins are found in AD plaques. To further investigate the potential interaction of apoE and Aβ in the pathogenesis of AD, we have determined the binding, internalization, and degradation of human apoE isoforms in the presence and absence of Aβ peptides to rat primary hippocampal neurons. We demonstrate that the lipophilic Aβ peptides, in particular Aβ1–42, Aβ1–40, and Aβ25–35, increase significantly apoE-liposome binding to hippocampal neurons. For each Aβ peptide, the increase was significantly greater for the apoE4 isoform than for the apoE3 isoform. The most effective of the Aβ peptides to increase apoE binding, Aβ25–35, was further shown to increase significantly the internalization of both apoE3- and apoE4-liposomes, without affecting apoE degradation. Conversely, Aβ1–40 uptake by hippocampal neurons was shown to be increased in the presence of apoE-liposomes, more so in the presence of the apoE4 than the apoE3 isoform. These results provide evidence that Aβ peptides interact directly with apoE lipoproteins, which may then be transported together into neuronal cells through apoE receptors.  相似文献   

6.
It has been suggested that cellular cholesterol levels can modulate the metabolism of the amyloid precursor protein (APP) but the underlying mechanism remains controversial. In the current study, we investigate in detail the relationship between cholesterol reduction, APP processing and γ-secretase function in cell culture studies. We found that mild membrane cholesterol reduction led to a decrease in Aβ40 and Aβ42 in different cell types. We did not detect changes in APP intracellular domain or Notch intracellular domain generation. Western blot analyses showed a cholesterol-dependent decrease in the APP C-terminal fragments and cell surface APP. Finally, we applied a fluorescence resonance energy transfer (FRET)-based technique to study APP–Presenilin 1 (PS1) interactions and lipid rafts in intact cells. Our data indicate that cholesterol depletion reduces association of APP into lipid rafts and disrupts APP–PS1 interaction. Taken together, our results suggest that mild membrane cholesterol reduction impacts the cleavage of APP upstream of γ-secretase and appears to be mediated by changes in APP trafficking and partitioning into lipid rafts.  相似文献   

7.
β-amyloid peptide 1–42 (Aβ1–42) and hyperphosphorylated tau are associated with neurodegeneration in Alzheimer's disease. Emerging evidence indicates that Aβ1–42 can potentiate hyperphosphorylation of tau in cell lines and in transgenic mice, but the underlying mechanism(s) remains unclear. In this study, Aβ1–42-induced tau phosphorylation was investigated in differentiated PC12 cells. Treatment of cells with Aβ1–42 increased phosphorylation of tau at serine-202 as detected by AT8 antibody. This Aβ1–42-induced tau phosphorylation paralleled phosphorylation of glycogen synthase kinase-3β (GSK-3β) at tyrosine-216 (GSK-3β-pY216), which was partially inhibited by the GSK-3β inhibitor, CHIR98023. Aβ1–42-induced tau phosphorylation and increase in GSK-3β-pY216 phosphorylation were also partially attenuated by α7 nicotinic acetylcholine receptor (α7 nAChR) selective ligands including agonist A-582941 and antagonists methyllycaconitine and α-bungarotoxin. The α7 nAChR agonist and the GSK-3β inhibitor had no additive effect. These observations suggest that α7 nAChR modulation can influence Aβ1–42-induced tau phosphorylation, possibly involving GSK-3β. This study provides evidence of nAChR mechanisms underlying Aβ1–42 toxicity and tau phosphorylation, which, if translated in vivo , could provide additional basis for the utility of α7 nAChR ligands in the treatment of Alzheimer's disease.  相似文献   

8.
Abstract: A primary histopathological feature of Alzheimer's disease is the accumulation of β-amyloid (Aβ) in the brain of afflicted individuals. However, Aβ is produced continuously as a soluble protein in healthy individuals where it is detected in serum and CSF, suggesting the existence of cellular clearance mechanisms that normally prevent its accumulation and aggregation. Here, we demonstrate that Aβ forms stable complexes with activated α2-macroglobulin (α2M), a physiological ligand for the low-density lipoprotein receptor-related protein (LRP) that is abundantly expressed in the CNS. These α2M/125I-Aβ complexes are immunoreactive with both anti-Aβ and anti-α2M IgG and are stable under various pH conditions, sodium dodecyl sulfate, reducing agents, and boiling. We demonstrate that α2M/125I-Aβ complexes can be degraded by glioblastoma cells and fibroblasts via LRP, because degradation is partially inhibited by receptor-associated protein (RAP), an antagonist of ligand interactions with LRP. In contrast, the degradation of free 125I-Aβ is not inhibited by RAP and thus must be mediated via an LRP-independent pathway. These results suggest that LRP can function as a clearance receptor for Aβ via a physiological ligand.  相似文献   

9.
Administration of small oligomeric β-amyloid (Aβ)1–42 45 min before one-trial bead discrimination learning in day-old chicks abolishes consolidation of learning 30 min post-training (Gibbs et al. Neurobiol. Aging , in press). Administration of the β3-adrenergic agonist CL316243, which specifically stimulates astrocytic but not neuronal glucose uptake, rescues Aβ impaired memory. Weakly reinforced training can be consolidated by various metabolic substrates and we have demonstrated neuronal dependence on oxidative metabolism of glucose soon after training versus astrocytic glucose dependence 20 min later. Based on these findings we examined whether different metabolic substrates were able to counteract memory inhibition by Aβ1–42. Although lactate, the medium-chain fatty acid octanoate, and the ketone body β-hydroxybutyrate consolidated weakly reinforced training when injected close to learning, none of them were able to salvage Aβ-impaired memory; at this early time. All three metabolites and the astrocytic-specific acetate consolidated weak learning and rescued Aβ-impaired memory when injected 10–20 min post-training. However, neither glucose nor insulin rescued memory when injected at 20 min. Rescue of memory by providing astrocytes with alternative substrates for oxidative metabolism suggests that Aβ1–42 exerts its amnestic effects specifically by impairing astrocytic glycolysis.  相似文献   

10.
11.
Abstract: Deposit of β-amyloid protein (Aβ) in Alzheimer's disease brain may contribute to the associated neurodegeneration. We have studied the neurotoxicity of Aβ in primary cultures of murine cortical neurons, with the aim of identifying pharmacologic ways of attenuating the injury. Exposure of cultures to Aβ (25–35 fragment; 3–25 4mU M ) generally triggers slow, concentration-dependent neurodegeneration (over 24–72 h). With submaximal Aβ- (25–35) exposure (10 μ M ), substantial (>40% within 48 h) degeneration often occurs and is markedly attenuated by the presence of the Ca2+ channel blockers nimodipine (1–20 μ M ) and Co2+ (100 μ M ) during the Aβ exposure. However, Aβ neurotoxicity is not affected by the presence of glutamate receptor antagonists. We suggest that Ca2+ influx through voltage-gated Ca2+ channels may contribute to Aβ-induced neuronal injury and that nimodipine and Co2+, by attenuating such influx, are able to attenuate Aβ neurotoxicity.  相似文献   

12.
Abstract: Amyloid β protein (Aβ) deposition in the cerebral arterial and capillary walls is one of the major characteristics of brains from patients with Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). Vascular Aβ deposition is accompanied by degeneration of smooth muscle cells and pericytes. In this study we found that Aβ1–40 carrying the "Dutch" mutation (HCHWA-D Aβ1–40) as well as wild-type Aβ1–42 induced degeneration of cultured human brain pericytes and human leptomeningeal smooth muscle cells, whereas wild-type Aβ1–40 and HCHWA-D Aβ1–42 were inactive. Cultured brain pericytes appeared to be much more vulnerable to Aβ-induced degeneration than leptomeningeal smooth muscle cells, because in brain pericyte cultures cell viability already decreased after 2 days of exposure to HCHWA-D Aβ1–40, whereas in leptomeningeal smooth muscle cell cultures cell death was prominent only after 4–5 days. Moreover, leptomeningeal smooth muscle cell cultures were better able to recover than brain pericyte cultures after short-term treatment with HCHWA-D Aβ1–40. Degeneration of either cell type was preceded by an increased production of cellular amyloid precursor protein. Both cell death and amyloid precursor protein production could be inhibited by the amyloid-binding dye Congo red, suggesting that fibril assembly of Aβ is crucial for initiating its destructive effects. These data imply an important role for Aβ in inducing perivascular cell pathology as observed in the cerebral vasculature of patients with Alzheimer's disease or HCHWA-D.  相似文献   

13.
Aggregation of amyloid-β (Aβ) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Aβ aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Aβ42 fibrillization and initiate formation of non-fibrillar Aβ42 aggregates, and that the inhibitory effect of Zn(II) (IC50 = 1.8 μmol/L) is three times stronger than that of Cu(II). Medium and high-affinity metal chelators including metallothioneins prevented metal-induced Aβ42 aggregation. Moreover, their addition to preformed aggregates initiated fast Aβ42 fibrillization. Upon prolonged incubation the metal-induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Aβ42. H13A and H14A mutations in Aβ42 reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross-β core structure within region 10–23 of the amyloid fibril. Cu(II)-Aβ42 aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)-Aβ42 aggregates were non-toxic. Disturbed metal homeostasis in the vicinity of zinc-enriched neurons might pre-dispose formation of metal-induced Aβ aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal-chelating therapies for Alzheimer's disease is discussed in this light.  相似文献   

14.
Abstract: β-Amyloid peptides (Aβ) are deposited in an aggregated fibrillar form in both diffuse and senile plaques in the brains of patients with Alzheimer's disease. The neurotoxicity of Aβ in cultured neurons is dependent on its aggregation state, but the factors contributing to aggregation and fibril formation are poorly understood. In the present study, we investigated whether α2-macroglobulin (α2M), a protein present in neuritic plaques and elevated in Alzheimer's disease brain, is a potential regulatory factor for Aβ fibril formation. Previous studies in our laboratory have shown that α2M is an Aβ binding protein. We now report that, in contrast to another plaque-associated protein, α1-antichymotrypsin, α2M coincubated with Aβ significantly reduces aggregation and fibril formation in vitro. Additionally, cultured fetal rat cortical neurons are less vulnerable to the toxic actions of aged Aβ following pretreatment with α2M. We postulate that α2M is able to maintain Aβ in a soluble state, preventing fibril formation and associated neurotoxicity.  相似文献   

15.
Abstract: The two pathological lesions found in the brains of Alzheimer's disease patients, neurofibrillary tangles and neuritic plaques, are likely to be formed through a common pathway. Neurofibrillary tangles are intracellular aggregates of paired helical filaments, the main component of which is hyperphosphorylated forms of the microtubule-associated protein τ. Extracellular neuritic plaques and diffuse and vascular amyloid deposits are aggregates of β-amyloid protein, a 4-kDa protein derived from the amyloid precursor protein (APP). Using conditions in vitro under which two proline-directed protein kinases, glycogen synthase kinase-3β (GSK-3β) and mitogen-activated protein kinase (MAPK), were able to hyperphosphorylate τ, GSK-3β but not MAPK phosphorylated recombinant APPcyt. The sole site of phosphorylation in APPcyt by GSK-3β was determined by phosphoamino acid analysis and phosphorylation of APPcyt mutant peptides to be Thr743 (numbering as for APP770). This site was confirmed by endoproteinase Glu-C digestion of APPcyt and peptide sequencing. The ability of GSK-3β to phosphorylate APPcyt and τ provides a putative link between the two lesions and indicates a critical role of GSK-3β in the pathogenesis of Alzheimer's disease.  相似文献   

16.
Extracellular-signal regulated kinase (ERK) signaling is critical for memory and tightly regulated by acute environmental stimuli. In Alzheimer disease transgenic models, active ERK is shown to first be increased, then later reduced, but whether these baseline changes reflect disruptions in ERK signaling is less clear. We investigated the influence of the familial Alzheimer's disease transgene APP sw and β-amyloid peptide (Aβ) immunoneutralization on cannulation injury-associated (i.c.v. infusion) ERK activation. At both 12 and 22 months of age, the trauma-associated activation of ERK observed in Tg mice was dramatically attenuated in Tg+. In cortices of 22-month-old non-infused mice, a reduction in ERK activation was observed in Tg+, relative to Tg mice. Intracerebroventricular (i.c.v.) anti-Aβ infusion significantly increased phosphorylated ERK, its substrate cAMP-response element-binding protein (CREB) and a downstream target, the NMDA receptor subunit. We also demonstrated that Aβ oligomer decreased active ERK and subsequently active CREB in human neuroblastoma cells, which could be prevented by oligomer immunoneutralization. Aβ oligomers also inhibited active ERK and CREB in primary neurons, in addition to reducing the downstream post-synaptic protein NMDA receptor subunit. These effects were reversed by anti-oligomer. Our data strongly support the existence of an APP sw transgene-dependent and Aβ oligomer-mediated defect in regulation of ERK activation.  相似文献   

17.
Abstract: β-Amyloid peptide (Aβ), a proteolytic fragment of the β-amyloid precursor protein, is a major component of senile plaques in the brain of Alzheimer's disease patients. This neuropathological feature is accompanied by increased neuronal cell loss in the brain and there is evidence that Aβ is directly neurotoxic. In the present study reduced cell viability in four different neuroblastoma cell types was observed after treatment with human Aβ1–42 for 1 day. Of the cell types tested rat PC12 and human IMR32 cells were most susceptible to Aβ toxicity. Chromosomal condensation and fragmentation of nuclei were seen in PC12, NB2a, and B104 cells but not in IMR32 cells irrespective of their high sensitivity to Aβ. Electrophoretic analysis of cellular DNA confirmed internucleosomal DNA fragmentation typical for apoptosis in all cell types except IMR32. These findings suggest that the form of Aβ-induced cell death (necrosis or apoptosis) may depend on the cell type.  相似文献   

18.
Abstract: Steroid hormones, particularly estrogens and glucocorticoids, may play roles in the pathogenesis of neurodegenerative disorders, but their mechanisms of action are not known. We report that estrogens protect cultured hippocampal neurons against glutamate toxicity, glucose deprivation, FeSO4 toxicity, and amyloid β-peptide (Aβ) toxicity. The toxicity of each insult was significantly attenuated in cultures pretreated for 2 h with 100 n M -10 µ M 17β-estradiol, estriol, or progesterone. In contrast, corticosterone exacerbated neuronal injury induced by glutamate, FeSO4, and Aβ. Several other steroids, including testosterone, aldosterone, and vitamin D, had no effect on neuronal vulnerability to the different insults. The protective actions of estrogens and progesterone were not blocked by actinomycin D or cycloheximide. Lipid peroxidation induced by FeSO4 and Aβ was significantly attenuated in neurons and isolated membranes pretreated with estrogens and progesterone, suggesting that these steroids possess antioxidant activities. Estrogens and progesterone also attenuated Aβ- and glutamate-induced elevation of intracellular free Ca2+ concentrations. We conclude that estrogens, progesterone, and corticosterone can directly affect neuronal vulnerability to excitotoxic, metabolic, and oxidative insults, suggesting roles for these steroids in several different neurodegenerative disorders.  相似文献   

19.
Abstract— Amyloid plaque cores were purified from Alzheimer disease brain tissue. Plaque core proteins were solubilized in formic acid which upon dialysis against guan-idinium hydrochloride (GuHCI) partitioned into soluble (∼15%) and insoluble (∼85%) components. The GuHCI-soluble fraction contained β-amyloid1-40, whereas the GuHCI-insoluble fraction was fractionated into six components by size exclusion HPLC: S1 (>200 kDa), S2 (200 kDa), S3 (45 kDa), S4 (15 kDa), S5 (10 kDa), and S6 (5 kDa). Removal of the GuHCI reconstituted 10-nm filaments composed of two intertwined 5-nm strands. Fractions S5 and S6 also yielded filamentous structures when treated similarly, whereas fractions S1–S4 yielded amorphous aggregates. Chemical analysis identified S4–S6 as multimeric and monomeric β-amyloid. Immunochemical analyses revealed α1-antichymotrypsin and non-β-amyloid segments of the β-amyloid precursor protein within fractions S1 and S2. Several saccharide components were identified within plaque core protein preparations by fluorescence and electron microscopy, as seen with fluores-cein isothiocyanate-and colloidal gold-conjugated lectins. We have shown previously that this plaque core protein complex is more toxic to neuronal cultures than β-amyloid. The non-β-amyloid components likely mediate this additional toxicity, imposing a significant influence on the pathophysiology of Alzheimer disease.  相似文献   

20.
We have shown previously that β-catenin and cyclin D1 are up-regulated in cortical neurons from homozygous mice carrying the familial Alzheimer's disease (FAD) presenilin-1 M146V mutation in a knock-in model (PS1 KIM146V mice), leading to cell cycle-associated apoptosis. Here, we have aimed to determine (i) whether this phenotype is present in heterozygous PS1 KIM146V mice, which reflects more accurately the PS1 FAD condition in humans and (ii) whether Aβ1–42, which is invariably present in the PS1 FAD brain and is thought to affect neuronal cell cycle kinetics, may contribute to the abnormal cell cycle/cell death phenotype seen in PS1 KIM146V mice. We demonstrate that cell cycle-linked apoptosis occurs in heterozygous PS1 KIM146V post-mitotic neurons. In addition, there is a significant Aβ-associated increase in cell cycle and cell death that is not further modified by the PS1 KIM146V mutation. Our results are consistent with a cell cycle-associated neurodegeneration model in the PS1 FAD brain in which the loss of PS1-dependent β-catenin regulatory function is sufficient to commit susceptible neurons to an abortive cell cycle, and may act synergistically with the Aβ cytotoxic challenge present in the PS1 FAD brain to expand the neuronal population susceptible to cell cycle-driven apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号