首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Neurodegenerative diseases, a subset of age-driven diseases, have been known to exhibit increased oxidative stress. The resultant increase in reactive oxygen species (ROS) has long been viewed as a detrimental byproduct of many cellular processes. Despite this, therapeutic approaches using antioxidants were deemed unsuccessful in circumventing neurodegenerative diseases. In recent times, it is widely accepted that these toxic by-products could act as secondary messengers, such as hydrogen peroxide (H2O2), to drive important signaling pathways. Notably, mitochondria are considered one of the major producers of ROS, especially in the production of mitochondrial H2O2. As a secondary messenger, cellular H2O2 can initiate redox signaling through oxidative post-translational modifications (oxPTMs) on the thiol group of the amino acid cysteine. With the current consensus that cellular ROS could drive important biological signaling pathways through redox signaling, researchers have started to investigate the role of cellular ROS in the pathogenesis of neurodegenerative diseases. Moreover, mitochondrial dysfunction has been linked to various neurodegenerative diseases, and recent studies have started to focus on the implications of mitochondrial ROS from dysfunctional mitochondria on the dysregulation of redox signaling. Henceforth, in this review, we will focus our attention on the redox signaling of mitochondrial ROS, particularly on mitochondrial H2O2, and its potential implications with neurodegenerative diseases.Subject terms: Post-translational modifications, Neurodegenerative diseases  相似文献   

2.
Neurodegenerative diseases share various pathological features, such as accumulation of aberrant protein aggregates, microglial activation, and mitochondrial dysfunction. These pathological processes are associated with generation of reactive oxygen species (ROS), which cause oxidative stress and subsequent damage to essential molecules, such as lipids, proteins, and DNA. Hence, enhanced ROS production and oxidative injury play a cardinal role in the onset and progression of neurodegenerative disorders. To maintain a proper redox balance, the central nervous system is endowed with an antioxidant defense mechanism consisting of endogenous antioxidant enzymes. Expression of most antioxidant enzymes is tightly controlled by the antioxidant response element (ARE) and is activated by nuclear factor E2-related factor 2 (Nrf2). In past years reports have highlighted the protective effects of Nrf2 activation in reducing oxidative stress in both in vitro and in vivo models of neurodegenerative disorders. Here we provide an overview of the involvement of ROS-induced oxidative damage in Alzheimer's disease, Parkinson's disease, and Huntington's disease and we discuss the potential therapeutic effects of antioxidant enzymes and compounds that activate the Nrf2-ARE pathway.  相似文献   

3.
4.
The production and scavenging of chemically reactive species, such as ROS/RNS, are central to a broad range of biotic and abiotic stress and physiological responses in plants. Among the techniques developed for the identification of oxidative stress-induced modifications on proteins, the so-called 'redox proteome', proteomics appears to be the best-suited approach. Oxidative or nitrosative stress leaves different footprints in the cell in the form of different oxidatively modified components and, using the redox proteome, it will be possible to decipher the potential roles played by ROS/RNS-induced modifications in stressed cells. The purpose of this review is to present an overview of the latest research endeavours in the field of plant redox proteomics to identify the role of post-translational modifications of proteins in developmental cell stress. All the strategies set up to analyse the different oxidized/nitrosated amino acids, as well as the different reactivities of ROS and RNS for different amino acids are revised and discussed. A growing body of evidence indicates that ROS/RNS-induced protein modifications may be of physiological significance, and that in some cellular stresses they may act causatively and not arise as a secondary consequence of cell damage. Thus, although previously the oxidative modification of proteins was thought to represent a detrimental process in which the modified proteins were irreversibly inactivated, it is now clear that, in plants, oxidatively/nitrosatively modified proteins can be specific and reversible, playing a key role in normal cell physiology. In this sense, redox proteomics will have a central role in the definition of redox molecular mechanisms associated with cellular stresses.  相似文献   

5.
Recently, mounting evidence implicating reactive oxygen species (ROS) generated by NADPH oxidase (NOX) enzymes in the pathogenesis of several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Alzheimer’s (AD), Parkinson’s (PD) and polyglutamine disease, have arisen. NOX enzymes are transmembrane proteins and generate reactive oxygen species by transporting electrons across lipid membranes. Under normal healthy conditions, low levels of ROS produced by NOX enzymes have been shown to play a role in neuronal differentiation and synaptic plasticity. However, in chronic neurodegenerative diseases over-activation of NOX in neurons, as well as in astrocytes and microglia, has been linked to pathogenic processes such as oxidative stress, exitotoxicity and neuroinflammation. In this review, we summarize the current knowledge about NOX functions in the healthy central nervous system and especially the role of NOX enzymes in neurodegenerative disease processes.  相似文献   

6.
Background and Aims Reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as nitric oxide (NO), play crucial roles in the signal transduction pathways that regulate plant growth, development and defence responses, providing a nexus of reduction/oxidation (redox) control that impacts on nearly every aspect of plant biology. Here we summarize current knowledge and concepts that lay the foundations of a new vision for ROS/RNS functions – particularly through signalling hubs – for the next decade.Scope Plants have mastered the art of redox control using ROS and RNS as secondary messengers to regulate a diverse range of protein functions through redox-based, post-translational modifications that act as regulators of molecular master-switches. Much current focus concerns the impact of this regulation on local and systemic signalling pathways, as well as understanding how such reactive molecules can be effectively used in the control of plant growth and stress responses.Conclusions The spectre of oxidative stress still overshadows much of our current philosophy and understanding of ROS and RNS functions. While many questions remain to be addressed – for example regarding inter-organellar regulation and communication, the control of hypoxia and how ROS/RNS signalling is used in plant cells, not only to trigger acclimation responses but also to create molecular memories of stress – it is clear that ROS and RNS function as vital signals of living cells.  相似文献   

7.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS, e.g. nitric oxide, NO(*)) are well recognised for playing a dual role as both deleterious and beneficial species. ROS and RNS are normally generated by tightly regulated enzymes, such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. Overproduction of ROS (arising either from mitochondrial electron-transport chain or excessive stimulation of NAD(P)H) results in oxidative stress, a deleterious process that can be an important mediator of damage to cell structures, including lipids and membranes, proteins, and DNA. In contrast, beneficial effects of ROS/RNS (e.g. superoxide radical and nitric oxide) occur at low/moderate concentrations and involve physiological roles in cellular responses to noxia, as for example in defence against infectious agents, in the function of a number of cellular signalling pathways, and the induction of a mitogenic response. Ironically, various ROS-mediated actions in fact protect cells against ROS-induced oxidative stress and re-establish or maintain "redox balance" termed also "redox homeostasis". The "two-faced" character of ROS is clearly substantiated. For example, a growing body of evidence shows that ROS within cells act as secondary messengers in intracellular signalling cascades which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. This review will describe the: (i) chemistry and biochemistry of ROS/RNS and sources of free radical generation; (ii) damage to DNA, to proteins, and to lipids by free radicals; (iii) role of antioxidants (e.g. glutathione) in the maintenance of cellular "redox homeostasis"; (iv) overview of ROS-induced signaling pathways; (v) role of ROS in redox regulation of normal physiological functions, as well as (vi) role of ROS in pathophysiological implications of altered redox regulation (human diseases and ageing). Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), rheumatoid arthritis, and ageing. Topics of current debate are also reviewed such as the question whether excessive formation of free radicals is a primary cause or a downstream consequence of tissue injury.  相似文献   

8.
The levels of antioxidative enzymes are regulated by gene expressions as well as by post-translational modifications. Although their functions are to scavenge reactive oxygen (ROS) and nitrogen species (RNS), they may also be targets of various oxidants. When ROS and RNS modify the functions of antioxidative enzymes, especially glutathione peroxidase, they may induce apoptotic cell death in susceptible cells. It is conceivable, therefore, that at least a part of the apoptotic pathways mediated by ROS and RNS may be associated with modification of the redox regulation of cellular functions due to elevations of such substances. In this article we review recent findings about the effects of various oxidative conditions associated with alteration of these antioxidative enzymes and the concomitant cellular damage induced.  相似文献   

9.
The levels of antioxidative enzymes are regulated by gene expressions as well as by post-translational modifications. Although their functions are to scavenge reactive oxygen (ROS) and nitrogen species (RNS), they may also be targets of various oxidants. When ROS and RNS modify the functions of antioxidative enzymes, especially glutathione peroxidase, they may induce apoptotic cell death in susceptible cells. It is conceivable, therefore, that at least a part of the apoptotic pathways mediated by ROS and RNS may be associated with modification of the redox regulation of cellular functions due to elevations of such substances. In this article we review recent findings about the effects of various oxidative conditions associated with alteration of these antioxidative enzymes and the concomitant cellular damage induced.  相似文献   

10.
Actin is among the most abundant proteins in eukaryotic cells and assembles into dynamic filamentous networks regulated by many actin binding proteins. The actin cytoskeleton must be finely tuned, both in space and time, to fulfill key cellular functions such as cell division, cell shape changes, phagocytosis and cell migration. While actin oxidation by reactive oxygen species (ROS) at non-physiological levels are known for long to impact on actin polymerization and on the cellular actin cytoskeleton, growing evidence shows that direct and reversible oxidation/reduction of specific actin amino acids plays an important and physiological role in regulating the actin cytoskeleton. In this review, we describe which actin amino acid residues can be selectively oxidized and reduced in many different ways (e.g. disulfide bond formation, glutathionylation, carbonylation, nitration, nitrosylation and other oxidations), the cellular enzymes at the origin of these post-translational modifications, and the impact of actin redox modifications both in vitro and in vivo. We show that the regulated balance of oxidation and reduction of key actin amino acid residues contributes to the control of actin filament polymerization and disassembly at the subcellular scale and highlight how improper redox modifications of actin can lead to pathological conditions.  相似文献   

11.
12.
13.
Oxidative stress is common in many clinically important cardiac disorders, including ischemia/reperfusion, diabetes, and hypertensive heart disease. Oxidative stress leads to derangements in pump function due to changes in the expression or function of proteins that regulate intracellular Ca(2+) homeostasis. There is growing evidence that the cardiodepressant actions of reactive oxygen species (ROS) also are attributable to ROS-dependent signaling events in the sarcomere. This minireview focuses on myofilament protein post-translational modifications induced by ROS or ROS-activated signaling enzymes that regulate cardiac contractility.  相似文献   

14.
Cell signaling entails a host of post-translational modifications of effector-proteins. These modifications control signal transmission by regulating the activity, localization or half-life of the effector-protein. Prominent oxidative modifications induced by cell-signaling reactive oxygen species (ROS) are cysteinyl modifications such as S-nitrosylation, sulfenic acid and disulfide formation. Disulfides protect protein sulfhydryls against oxidative destruction and simultaneously influence cell signaling by engaging redox-regulatory sulfhydryls in effector-proteins. The types of disulfides implicated in signaling span (1) protein S-glutathionylation, e.g. as a novel mode of Ras activation through S-glutathionylation at Cys-118 in response to a hydrogen-peroxide burst, (2) intra-protein disulfides, e.g. in the regulation of the stability of the protein phosphatase Cdc25C by hydrogen-peroxide, (3) inter-protein disulfides, e.g. in the hydrogen peroxide-mediated inactivation of receptor protein-tyrosine phosphatase alpha (RPTPalpha) by dimerization and (4) protein S-cysteaminylation by cystamine. Cystamine is a byproduct of pantetheinase-catalyzed pantothenic acid recycling from pantetheine for biosynthesis of Coenzyme A (CoA), a ubiquitous and metabolically indispensable cofactor. Cystamine inactivates protein kinase C-epsilon (PKCepsilon), gamma-glutamylcysteine synthetase and tissue transglutaminase by S-cysteaminylation-triggered mechanisms. The importance of protein S-cysteaminylation in signal transmission in vivo is evident from the ability of cystamine administration to rescue the intestinal inflammatory-response deficit of pantetheinase knockout mice. These mice lack the predominant epithelial pantetheinase isoform and have sharply reduced levels of cystamine/cysteamine in epithelial tissues. In addition, intraperitoneal administration of cystamine significantly delays neurodegenerative pathogenesis in a Huntington's disease mouse model. Thus, cystamine may serve as a prototype for the development of novel therapeutics that target effector-proteins regulated by S-cysteaminylation.  相似文献   

15.
Transglutaminases are ubiquitous enzymes, which catalyze post-translational modifications of proteins. Recently, transglutaminases and tranglutaminase-catalyzed post-translational modification of proteins have been shown to be involved in the molecular mechanisms responsible for several human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for human neurodegenerative diseases. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, supranuclear palsy, Huntington’s disease and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. In this review, we focus on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity.  相似文献   

16.
衰老是阿尔茨海默病(Alzheimer’s disease,AD)等神经退行性疾病的主要危险因素。氧化应激和自由基具有重要的生物学功能,氧化还原失衡导致氧化应激,与包括AD在内的许多人类疾病的病理生理有关。本文综述了活性氧(ROS)参与神经退行性疾病发病的相关机制,特别是氧化应激与AD其他关键机制的相互作用,并总结了茶多酚、L-茶氨酸、虾青素、EGb761、大豆异黄酮和烟碱在细胞和动物模型中对AD的防护作用以及在临床上对相关疾病的缓解作用。希望该综述能为AD的预防和治疗策略提供一些见解。  相似文献   

17.
18.
Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their implication in signaling pathways is still partial. The crosstalk between NO and ROS during root formation offers new domains to be explored, as it regulates several plant functions. Previous findings indicate that plants utilize these signaling molecules for regulating physiological responses and development. Depending upon cellular concentration, NO either can stimulate or impede root system architecture (RSA) by modulating enzymes through post-translational modifications. Similarly, the ROS signaling molecule network, in association with other hormonal signaling pathways, control the RSA. The spatial regulation of ROS controls cell growth and ROS determine primary root and act in concert with NO to promote lateral root primordia. NO and ROS are two central messenger molecules which act differentially to upregulate or downregulate the expression of genes pertaining to auxin synthesis and to the configuration of root architecture. The investigation concerning the contribution of donors and inhibitors of NO and ROS can further aid in deciphering their role in root development. With this background, this review provides comprehensive details about the effect and function of NO and ROS in the development of RSA.  相似文献   

19.
20.
Parkinson’s disease (PD) is the second most common neurodegenerative disease with gradual loss of dopaminergic neurons. Despite extensive research in the past decades, the etiology of PD remains elusive. Nevertheless, multiple lines of evidence suggest that oxidative stress is one of the common causes in the pathogenesis of PD. It has also been suggested that heavy metal-associated oxidative stress may be implicated in the etiology and pathogenesis of PD. Here we review the roles of redox metals, including iron, copper and cobalt, in PD. Iron is a highly reactive element and deregulation of iron homeostasis is accompanied by concomitant oxidation processes in PD. Copper is a key metal in cell division process, and it has been shown to have an important role in neurodegenerative diseases such as PD. Cobalt induces the generation of reactive oxygen species (ROS) and DNA damage in brain tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号