首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient procedure has been developed for inducing somatic embryogenesis and regeneration of plants from tissue cultures of oil palm (Elaeis guineensis Jacq.). Thin transverse sections (thin cell layer explants) of different position in the shoot apex and leaf sheath of oil palm were cultivated in Murashige and Skoog (MS) (Physiol Plant 15:473–497, 1962) medium supplemented with 0–450 μM picloram and 2,4-D with 3.0% sucrose, 500 mg L−1 glutamine, and 0.3 g L−1 activated charcoal and gelled with 2.5 g L−1 Phytagel. Embryogenic calluses were evaluated 12 wk after inoculation. Picloram (450 μM) was effective in inducing embryogenic calluses in 41.5% of the basal explants. Embryogenic calluses were maintained on a maturation medium composed of basal media, plus 0.6 μM NAA and 12.30 μM 2iP, 0.3 g L−1 activated charcoal, and 500 mg L−1 glutamine, with subcultures at 4-wk intervals. Somatic embryos were converted to plants on MS medium with macro- and micronutrients at half-strength, 2% sucrose, and 1.0 g L−1 activated charcoal and gelled with 2.5 g L−1 Phytagel.  相似文献   

2.
Protocorm-like bodies (PLBs) of Dendrobium candidum Wall. ex Lindl., orchid, were successfully cryopreserved using an encapsulation vitrification method. PLBs were precultured in liquid Murashige and Skoog (MS) medium containing 0.2 mg l−1 α-naphthalene acetic acid and 0.5 mg l−1 6-benzyladenine enriched with 0.75 M sucrose, and grown under continuous light (36 μmol m−2 s−1) at 25 ± 1°C for 5 days. PLBs were osmoprotected with a mixture of 2 M glycerol and 1 M sucrose for 80 min at 25°C and dripped in a 0.5 M CaCl2 solution containing 0.5 M sucrose at 25 ± 1°C and left for 15 min to form Ca-alginate beads (about 4 mm in diameter). Then, these were dehydrated with a plant vitrification solution 2 (PVS2) consisting of 30% (w/v) glycerol, 15% (w/v) ethylene glycol, and 15% (w/v) dimethyl sulfoxide in 0.5 M sucrose, pH 5.8, for 150 min at 0°C. Encapsulated and dehydrated PLBs were plunged directly into liquid nitrogen for 1 h. Cryopreserved PLBs were then rapidly re-warmed in a water bath at 40°C for 3 min and then washed with MS medium containing 1.2 M sucrose for three times at 10 min intervals. Within 60 days, plantlets with the cryopreserved PLBs developed normal shoots and roots, and without any observed morphological abnormalities, were obtained. The survival rate of encapsulated-vitrified PLBs was above 85%. Thus, this encapsulation-vitrification method was deemed promising for cryopreservation of PLBs of D. candidum.  相似文献   

3.
Miscanthus sinensis (Poaceae) is a typical perennial giant grass of East Asia. Due to its high photosynthetic efficiency, low input requirements, and high biomass production, M. sinensis shows outstanding potential as a biofuel feedstock. However, the lack of an efficient tissue culture system may limit its utilization potential. Different explants of M. sinensis were evaluated to develop an efficient tissue culture system. Shoot apices from in vitro-germinated seedling explants were tested for adventitious bud proliferation. The highest level of proliferation (multiplication coefficient 6.69) was obtained when shoot apices were cultured on Murashige and Skoog (MS) medium supplemented with 1.0 mg L−1 6-benzyladenine (BA), 2.0 mg L−1 kinetin, 0.05 mg L−1 α-naphthalene acetic acid (NAA), 3% sucrose, and 0.8% agar. The highest rooting percentage (95.4%) was obtained when adventitious buds were cultured on half-strength MS medium supplemented with 0.2 mg L−1 NAA, 3% sucrose, and 0.8% agar. Significant differences were found in the formation of embryogenic callus among different explant types. The embryogenic callus derived from epicotyls had the highest regeneration capacity when cultured on a medium supplemented with 2.0 mg L−1 2,4-dichlorophenoxyacetic acid, 0.5 mg L−1 BA, and 0.1 mg L−1 thiamine. Under these conditions, the callus induction percentage was 82%.  相似文献   

4.
We developed a new protocol for highly efficient somatic embryogenesis and plantlet conversion of Schisandra chinensis. Friable embryogenic callus was induced from cotyledonary leaves and hypocotyls of germinated zygotic embryos on Murashige and Skoog (MS) agar medium containing 2,4-dichlorophenoxyacetic acid (2,4-D). Preculture of zygotic embryos on 2,4-D-containing medium increased embryogenic callus induction efficiency. The highest embryogenic callus induction frequency of 56.7% was obtained from shoot apical meristem-containing hypocotyl explants from 1-week-old germinated embryos on MS medium containing 4.0 mg l−1 2,4-D. Embryogenic callus proliferation, somatic embryo (SE) formation, and subsequent plantlet conversion occurred under optimal culture conditions. The effects of MS medium strength, sucrose, gibberellic acid (GA3), and 6-benzyladenine (BA) on SE formation and plantlet conversion were evaluated. Low MS medium strength (1/4 to 1/2) was necessary for SE formation, and the optimal sucrose concentration was 2.0%. Supplementing medium with GA3 negatively impacted SE formation and subsequent development. BA significantly increased the number of SEs and the plantlet conversion capacity. One-third-strength MS medium with 1.0% sucrose and 0.5 mg l−1 BA produced the highest number of SEs (309 embryos from 9 mg embryogenic callus) and the highest frequency of plantlet conversion from germinated SEs (52.6%). When transplanted to soil, 90% of the regenerated plants developed into normal plants.  相似文献   

5.
Plant regeneration was achieved through direct and indirect somatic embryogenesis in Eucalyptus camaldulensis. Callus was induced from mature zygotic embryos and from cotyledon explants collected from 10, 15, 25, and 30-day-old seedlings cultured on Murashige and Skoog (MS) basal medium supplemented with different concentrations of naphthaleneacetic acid (NAA). Maximum callus induction from mature zygotic embryos was obtained on MS basal medium containing 1 mg l−1 NAA. The frequency of callus development varied based on the age of the cotyledon explants 10-day-old explants giving highest percentage on MS basal medium supplemented with 1 mg l−1 NAA. Callus obtained from mature zygotic embryos gave highest frequency of somatic embryogenesis on MS basal medium containing 0.5 mg l−1 benzyladenine (BA) and 0.1 mg l−1 NAA. Separate age wise culture of the calli, obtained from cotyledons of different ages cultured separately, revealed high somatic embryogenic potential on callus from 10-day-old cotyledons. Direct somatic embryogenesis too was obtained from hypocotyl explants without an intervening callus phase on MS basal medium containing 0.5 mg l−1 BA. The effects of abscisic acid (ABA), sucrose, and different strengths of MS medium on somatic embryo maturation and germination were also investigated. Number of mature somatic embryos increased with lower concentrations (0–1 mg l−1) of ABA while no significant differences were observed at higher concentrations (2–5 mg l−1) of ABA. Compared to basal medium containing lower concentrations of sucrose (1%), the MS medium supplemented with higher levels of sucrose (4%) showed significantly lower frequency of mature somatic embryos. Basal medium without any dilution gave the highest number of immature embryos. However, the number of mature embryos was high at higher medium dilutions.  相似文献   

6.
The factors affecting the induction and development of somatic embryos and plantlet acclimatization of peach palm (Bactris gasipaes Kunth) were evaluated to establish an efficient regenerative protocol based on somatic embryogenesis. Mature zygotic embryos were cultured in Murashige and Skoog (MS) medium supplemented with 0–40 μM of picloram (4-amino-3,5,6-trichloropicolinic acid) and 0 or 5 μM of 2-isopentyladenine (6-dimethylaminopurine) (2-iP). After 5 mo. in culture embryogenic callus arose from primary calli. Picloram (10 μM) was effective in inducing embryogenic calli in 9.8% of the explants. The use of 1 μM of AgNO3 enhanced embryogenic competence. Embryogenic calli showed an organized structure, a globular aspect, and were white to yellowish in color. Histological analyses showed that cell proliferation arose from subepidermal cells adjacent to vascular bundles, resulting in primary callus formed by a meristematic zone from which somatic embryos arose. Protein profile analyses revealed two high molecular mass bands in these embryogenic calli, but not in other tissues. Embryogenic calli were transferred to a culture medium containing 40 μM of 2,4-dichlorophenoxyacetic acid, 10 μM of 2-iP, plus 1 g l−1 of glutamine, hydrolyzed 0.5 g l−1 casein, and activated 1.5 g l−1 of charcoal. Morphogenetic responses achieved in this medium were the development of somatic embryos, rooting, and loss of embryogenic capacity. Somatic embryos were converted to plantlets on MS medium plus 24.6 μM of 2-iP and 0.44 μM of naphthalene acetic acid. Plantlets were maintained in MS medium with activated charcoal (1.5 g l−1) until they were 6 cm tall, and then acclimatized. After 16 wk, 84.2 ± 6.4% survival was observed. M. P. Guerra and C. R. Clement are Fellows of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, DF.  相似文献   

7.
In vitro-grown shoot tips of Emmenopterys henryi Oliv. were successfully cryopreserved by vitrification. Shoot tips excised from 3-month old plantlets were precultured in a liquid hormone-free Murashige and Skoog (MS) medium supplemented with 0.5 M sucrose for 3 days at 25°C and then treated with a mixture of 2 M glycerol plus 0.4 M sucrose (LS solution) for 40 min at 25°C. Osmo-protected shoot tips were first dehydrated with 60% vitrification solution (PVS2) for 30 min at 0°C and followed by 100% PVS2 for 40 min at 0°C. After changing the solution with fresh 100% PVS2, the shoot tips were directly plunged into liquid nitrogen. After rapid warming in a water-bath at 40°C for 2 min, the shoot tips were washed for 20 min at 25°C with liquid MS medium containing 1.2 M sucrose and then transferred onto solid MS medium supplemented with kinetin 2 mg l−1, α-naphthaleneacetic acid 0.1 mg l−1, 3% (w/v) sucrose and 0.75% (w/v) agar. The shoot tips were kept in the dark for 7 days prior to exposure to the light (12 h photoperiod cycle). Direct shoot elongation was observed in approximately 12 days. The regeneration rate was approximately 75–85%. This method appears to be a promising technique for cryopreserving shoot tips of Emmenopterys henryi Oliv. germplasm.  相似文献   

8.
The present study describes a protocol for plant regeneration via somatic embryogenesis in temporary immersion system (TIS) for Camptotheca acuminata. Somatic embryos were induced by culturing hypocotyl segments from 14-day-old in vitro grown C. acuminata seedlings in TIS. Hypocotyl segments were placed in culture vessels modified with a mechanical device to support the fixation of explants. Cultures were maintained under a 16 h photoperiod with a light intensity of 60 μmol m−2 s−1 PPF at 25 ± 1°C. After 16 weeks of incubation embryogenic calli were formed above the edge of the mechanical device in the basal Murashige and Skoog (MS) medium containing 35 g l−1 sucrose and without hormonal supplementation. For plantlet regeneration, somatic embryos at cotyledonary stage were cultured in three different concentrations of 6-benzylamino-purine (0.5, 1.0 and 1.5 mg l−1 BAP) and in plant growth regulator (PGR) free medium. In general, 0.5 mg l−1 BAP was found to be the most effective concentration for growth and development of Camptotheca embryos in TIS. Conversion of somatic embryos into plantlets was also successfully achieved on sterile substrates moistened with 0.5 mg l−1 BAP. Plantlets derived from cotyledonary embryos were rooted in vitro with 0.5 mg l−1 indole-3-butyric acid (IBA) before transfer to ex vitro conditions.  相似文献   

9.
We describe culture conditions for a high-efficiency in vitro regeneration system of Papaver nudicaule through somatic embryogenesis and secondary somatic embryogenesis. The embryogenic callus induction rate was highest when petiole explants were cultured on Murashige and Skoog (MS) medium containing 1.0 mg l−1 α-naphthaleneacetic acid (NAA) and 0.1 mg l−1 6-benzyladenine (BA) (36.7%). When transferred to plant growth regulator (PGR)-free medium, 430 somatic embryos formed asynchronously from 90 mg of embryogenic callus in each 100-ml flask. Early-stage somatic embryos were transferred to MS medium containing 1.0 mg l−1 BA and 1.0 mg l−1 NAA to germinate at high frequency (97.6%). One-third-strength MS medium with 1.0% sucrose and 1.0 mg l−1 GA3 had the highest frequency of plantlet conversion from somatic embryos (91.2%). Over 90% of regenerated plantlets were successfully acclimated in the greenhouse. Secondary somatic embryos were frequently induced directly when the excised hypocotyls of the primary somatic embryos were cultured on MS medium without PGRs. Sucrose concentration significantly affected the induction of secondary embryos. The highest induction rate (89.5) and number of secondary somatic embryos per explant (9.3) were obtained by 1% sucrose. Most secondary embryos (87.2–94.3%) developed into the cotyledonary stage on induction medium. All cotyledonary secondary embryos were converted into plantlets both in liquid and on semisolid 1/3-strength MS medium with 1.0% sucrose.  相似文献   

10.
11.
Crocus heuffelianus belongs to the C. vernus (Iridaceae) species aggregate. In the Carpathian Basin and particularly in Hungary it is considered an endangered species. Therefore our aim was to establish a tissue culture system with potential of germplasm preservation of this taxon. For in vitro culture experiments, shoot primordia from corms were the most suitable. We induced an embryogenic callus line from those explants on basal Murashige-Skoog (MS) medium supplemented with Gamborg’s vitamins, 2% (w/v) sucrose, 10 mg l−1 (53.7 μM) α-naphthaleneacetic acid (NAA) and 1 mg l−1 (4.44 μM) 6-benzyladenine (BA). Globular stage embryos developed on this medium and several culture conditions were used in an attempt to obtain mature embryos and plant regeneration. Firstly a decrease of auxin/cytokinin concentration and ratio, then secondly a decrease in the strength of culture medium and the concentration of carbon source was used, which was effective in embryogenesis and the production of plants. Regeneration medium used in the second step was fourfold diluted MS medium and Gamborg’s vitamins supplemented with 1% (w/v) sucrose, 0.05 mg l−1 (0.26 μM) NAA and 0.5 mg l−1 (2.22 μM) BA, with a 14/10 h photoperiod. Under these conditions we could detect all the stages of somatic embryo development characteristic for Iridaceae. This is the first report demonstrating the production of stable tissue culture of C. heuffelianus with potential use in germplasm preservation via plant regeneration. This study could also contribute to a better understanding of somatic embryogenesis in the Crocus genus.  相似文献   

12.
Zoysia tenuifolia Willd. ex Trin. is one of the most popularly cultivated turfgrass. This is the first report of successful plant regeneration and genetic transformation protocols for Z. tenuifolia using Agrobacterium tumefaciens. Initial calli was induced from stem nodes incubated on a Murashige and Skoog (1962) (MS) medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg l−1 6-benzyladenine (BA), with a frequency of 53%. Compact calli were selected and subcultured monthly on the fresh medium. Sixty-nine percent of the calli could be induced to regenerate plantlets when the calli incubated on a MS medium supplemented with 0.2 mg l−1 BA under darkness. For genetic transformation, calli were incubated with A. tumefaciens strain EHA105 harboring the binary vector pCAMBIA 1301 which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene (gus-int) as a reporter gene. Following co-cultivation, about 12% of the callus explants produced hygromycin resistant calli on MS medium supplemented with 2 mg l−1 2,4-D, 1 mg l−1 BA, 50 mg l−1 hygromycin, 500 mg l−1 cefotaxime after 8 weeks. Shoots were regenerated following transfer of the resistant calli to shoot induction medium containing 0.2 mg l−1 BA, 50 mg l−1 hygromycin, and 250 mg l−1 cefotaxime, and about 46% of the resistant calli differentiated into shoots. Finally, all the resistant shoots were rooted on 1/2 MS media supplemented with 50 mg l−1 hygromycin, 250 mg l−1 cefotaxime. The transgenic nature of the transformants was demonstrated by the detection of β-glucuronidase activity in the primary transformants and by PCR and Southern hybridization analysis. About 5% of the total inoculated callus explants produced transgenic plants after approximately 5 months. The procedure described will be useful for both, the introduction of desired genes into Z. tenuifolia and the molecular analysis of gene function.  相似文献   

13.
Plant regeneration through somatic embryogenesis from young leaf explants (5–10 mm long) adjacent to the apex of 5–6 year old offshoots of Tunisian date palm (Phœnix dactylifera L.), cultivar Boufeggous was successfully achieved. Factors affecting embryogenic callus initiation, including plant growth regulators and explant size, were investigated. The highest induction frequencies of embryogenic calli occurred after 6–7 months on MS medium supplemented with 10 mg l−1 2,4-D and 0.3 mg l−1 activated charcoal. The subculture of these calli onto maintenance medium resulted in the formation of proembryos. Fine chopping and partial desiccation (6 and 12 h) of embryogenic calli with proembryos prior to transfer to MS medium supplemented with 1 mg l−1 ABA stimulated the rapid maturation of somatic embryos. Maturated somatic embryo yield per 0.5 g FW of embryogenic callus was 51 embryos with an average maturation time of 55 days. This was increased to 422 with finely chopped callus, and 124 and 306 embryos following 6 and 12 h desiccation treatments, respectively. The average time to maturation for these 3 treatments was 35, 43 and 38 days, respectively. Subsequent substitution of ABA in MS medium with 1 mg l−1 NAA resulted in the germination and conversion of 81% of the somatic embryos into plantlets with normal roots and shoots. The growth of regenerated somatic plants was also monitored in the field.  相似文献   

14.
The halophyte Leymus chinensis (Trin.) is a perennial rhizome grass (tribe Gramineae) that is widely distributed in China, Mongolia and Siberia, where it is produced as a forage product. In this report, we establish a highly reproducible plant regeneration system through somatic embryogenesis. Two explants, mature seeds and leaf base segments were used; these parts displayed different responses to combinations of growth factors that affect embryogenic callus induction, callus type optimization and plant regeneration. The highest callus induction frequency was obtained on Murashige and Skoog (MS) medium supplemented with 2.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of 5.0 mg l−1 l-glutamic acid. The inclusion of 5.0 mg l−1 l-glutamic acid was found to significantly promote primary callus induction, embryogenic callus formation and callus status improvement. Subculturing on maintenance medium for 1–2 months before plant regeneration was found to be essential for the optimization of callus type and the maturation of embryogenic callus. Callus relative water content and growth rate were simultaneously investigated during callus maintenance, and found to possibly be related to callus type. Shoots were differentiated from the embryogenic callus on the optimal medium with MS salts containing 0.2–0.5 mg l−1 α-naphthalene acetic acid (NAA), 2.0 mg l−1 kinetin (Kn) and 2.0 g l−1 casamino acids in 71.0 and 69.2% of wild-type (WT) and Jisheng No.1 (JS) plants, respectively. Plant regeneration was variable depending on NAA levels, and the addition of casamino acids stimulated the maturation of embryogenic callus and plant regeneration. Transferring callus with shoots onto half-strength MS medium resulted in rooting within 1 week. The growth of regenerated plants was also surveyed in the field. This is the first report of plant regeneration through somatic embryogenesis from mature seeds and leaf base segments of L. chinensis.  相似文献   

15.
Key factors influencing the efficiency of transformation of embryogenic cultures, induced from immature zygotic embryos, of avocado cv. ‘Duke 7’ were evaluated. Initially, the sensitivity of somatic embryos to the antibiotics kanamycin, used for selection, carbenicillin, cefotaxime and timentin, all used for elimination of Agrobacterium cells, were evaluated. Isolated globular somatic embryos were more sensitive to kanamycin than embryogenic masses, and 25 mg l−1 kanamycin completely restricted callus proliferation. Cefotaxime at 500 mg l−1 partially inhibited proliferation of embryogenic cultures, while both carbenicillin and timentin did not affect callus growth. For genetic transformation, somatic embryos were infected with A. tumefaciens containing the pBINUbiGUSint plasmid. After 2 days, the embryos were transferred to selection medium supplemented with 50 mg l−1 kanamycin and 250 mg l−1 timentin for 2 months. Then, kanamycin level was increased to 100 mg l−1 for two additional months. The A. tumefaciens strain AGL1 yielded higher transformation rates, 6%, than EHA105 or LBA4404, 1.2%. The percentage of kanamycin resistant calli obtained was significantly influenced by the embryogenic line used as source of explants. Genetic transformation was confirmed by PCR and Southern blot analysis. A significant improvement in the germination rate was obtained when transgenic embryos were cultured in liquid MS medium with 4.44 μM BA and 2.89 μM GA3 for 3 days in a roller drum and later transferred to the same medium gelled with 7 g l−1 agar. Plants from five independent transgenic lines were acclimated and grown in the greenhouse, being phenotipically similar to control plants.  相似文献   

16.
An efficient protocol of callus induction, plant regeneration and long-term maintenance of embryogenic cultures for manilagrass was developed. Callus induction and embryogenic callus formation were influenced by cytokinins and nodal positions. Murashige and Skoog (MS) medium with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D), 0.02 mg l−1 kinetin (KT) or 6-benzyladenine (BA) gave the highest frequency for both callus induction and embryogenic callus formation compared with 0.02 mg l−1 thidiazuron (TDZ) or N6-(2-isopenteny) adenine (2iP). The frequency of callus induction of different nodes (from the first to the sixth node) varied from 22.5 to 92.1%, and the embryogenic callus formation frequencies ranged from 13.3 to 25.7%. The highest frequencies of callus induction and embryogenic callus formation (92.1 and 25.7%, respectively) were observed in the fourth node group. During subculture on callus induction and maintenance medium, somatic embryos formed on the surface of the embryogenic callus. On regeneration medium, the regeneration rates of embryogenic callus varied from 96.8 to 100% during the 4-year period of subculture. The results also indicate that preservation of manilagrass callus is stable at low-temperature (4°C) over a period of 11 months. No significant differences were found in the activities of superoxide dismutase (SOD), peroxidase (POD) and proline content of the plants regenerated from the 4-year subcultured callus on different regeneration media.  相似文献   

17.
Eight cultivars and two accessions of Physalis ixocarpa Brot. were tested for their capacity to regenerate embryos and plants from anther cultures. Anthers were pretreated at 4°C for 2 days and then at 35°C for 8 days in the dark while cultured on MS medium supplemented with 0.045 μM 2,4-D + 0.03 mg l−1 vitamin B12 (MS1) or with 2.26 μM 2,4-D + 0.1 mg l−1 vitamin B12 (MS3). Anther incubation proceeded under a 16 h photoperiod at 25 ± 2°C. Embryo formation occurred after 6 weeks of incubation in these conditions. Androgenetic responses were cultivar- and culture medium-dependent, with the greatest embryo yields recorded for cv. Chapingo (36.3%) on MS1 medium, and with wild-type 2 (21.8%) on MS3. Further development of regenerated embryos was promoted on MS medium supplemented with 0.54 μM NAA, 8.88 μM BA and 50 mg l−1 casein hydrolysate. The regenerated plants were cultured on half-strength mineral salts MS medium with 2.85 μM IAA to enhance root formation. Rooted plantlets were transferred to pots and acclimatized to the greenhouse. Ploidy analysis of regenerated plants using flow cytometry revealed 72% diploids, 15% haploids and 7% triploids. AFLP analysis of regenerated plants from anthers of a single parental plant showed different polymorphic patterns indicating their gametophytic origin.  相似文献   

18.
Somatic embryogenesis and whole plant regeneration was achieved in callus cultures derived from immature zygotic embryos of Prosopis laevigata (Humb. & Bonpl. ex Willd.) M.C. Johnst., recently identified as chromium (Cr), cadmium (Cd), lead (Pb) and nickel (Ni) accumulator. Embryogenic calli were induced on Murashige and Skoog (MS) medium added with a mixture of organic components plus N-6 benzyladenine (BA) (6.62 μM) and 2,4-dichlorophenoxyacetic acid (2,4-D) (2.26 μM) or thidiazuron (4.54–9.08 μM) and indole-3-acetic acid (1.42 μM). Embryogenic calli transferred onto half-strength MS medium without plant growth regulators developed globular embryos, of which 20% matured when treated with 3.75% (w/v) polyethylene glycol (PEG), and of these 50% fully differentiated into plantlet embryo. Regenerated plants were successfully acclimatized (90%), while in vitro seedlings transferred to MS medium containing 0.5 mM Cd, Cr, Ni or Pb, exhibited high heavy metals accumulation (627 mg Cr kg−1, 5,688 mg Cd kg−1, 1,148 mg Ni kg−1, and 3,037 mg Pb kg−1 dry weight) and efficient roots to shoots translocation (42–73%).  相似文献   

19.
A procedure is described to regenerate plants from embryogenic suspension-derived protoplasts of ginger (Zingiber officinale Rosc.). Somatic embryogenic calli were induced from ginger shoot tips on solid MS medium with half the concentration of NH4NO3 and supplemented with 1.0 mg l−1 2,4-Dichloroacetic acid (2, 4-D) and 0.2 mg l−1 Kin. Rapid-growing and well-dispersed suspension cultures were established by subculturing the embryogenic calli in the same liquid medium. Protoplasts were isolated from embryogenic suspensions with an enzyme solution composed of 4.0 mg l−1 cellulase, 1.0 mg l−1 macerozyme, 0.1 mg l−1 pectolyase, 11% mannitol, 0.5% CaCl2 and 0.1% 2-(N-morpholino) ethane sulphonic acid (MES) for 12–14 h at 27°C with a yield of 6.27 × 106 protoplasts g−1 fresh weight. The protoplasts were cultured initially in liquid MS medium with 1.0 mg l−1 2, 4-D and 0.2 mg l−1 Kin. Then the protoplast-derived calli (1.5 cm2) were transferred to a basal MS medium containing 0.2 mg l−1 2, 4-D, 5.0 mg l−1 benzyladenine (BA), 3% sucrose and 0.7% agar. The white somatic embryos were transferred to MS medium lacking growth regulators for shoot development. Shoots developed into complete plantlets on a solid MS medium supplemented with 2.0 mg l−1 BA and 0.6 mg l−1 α-Naphthaleneacetic acid (NAA). In addition, the effects of AgNO3, activated charcoal (AC) and ascorbic acid (AA) on browning of protoplast-derived calli are discussed.  相似文献   

20.
Embryogenic cultures were induced from immature avocado zygotic embryos representing different botanical races and complex hybrids. The optimum induction medium consisted of B5 major salts, MS minor salts, 0.4 mg l−1 thiamine HCl, 100 mg l−1 myo-inositol, 30 g l−1 sucrose, 0.41 μM picloram and 8 g l−1 TC agar. Somatic embryogenesis occurred directly from the explants on induction medium, and secondary embryos and proembryonic masses proliferated in liquid and on semisolid maintenance medium. Embryogenic culture maintainance was optimized in liquid, filter-sterilized MS medium, supplemented with 30–50 mg l−1 sucrose, 4 mg l−1 thiamine HCl and 0.41 μM picloram. Two types of embryogenic cultures were recognized: –genotypes that proliferated as proembryonic masses in the presence of auxin (PEM-type) and; –genotypes in which the heart stage and later stages of somatic embryos developed in the presence of auxin(SE-type). Embryogenic suspension cultures became increasingly disorganized over time, and this was associated with progressive loss of embryogenic potential. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号