首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The mechanics of substrate adhesion has recently been intensively studied in insects but less is known about the sensorimotor control of substrate engagement. We characterized the responses and motor effects of tarsal campaniform sensilla in stick insects to understand how sensory signals of force could contribute to substrate grip. The tarsi consist of a chain of segments linked by highly flexible articulations. Morphological studies showed that one to four campaniform sensilla are located on the distal end of each segment. Activities of the receptors were recorded neurographically and sensilla were identified by stimulation and ablation of their cuticular caps. Responses were characterized to bending forces and axial loads, muscle contractions and to forces applied to the retractor apodeme (tendon). The tarsal sensilla effectively encoded both the rate and amplitude of loads and muscle forces, but only when movement was resisted. Mechanical stimulation of the receptors produced activation of motor neurons in the retractor unguis and tibial flexor muscles. These findings indicate that campaniform sensilla can provide information about the effectiveness of the leg muscles in generating substrate adherence. They can also produce positive force feedback that could contribute to the development of substrate grip and stabilization of the tarsal chain.  相似文献   

2.
A survey of pretarsal structures in Reduviidae of 22 higher‐level taxa and several outgroup representatives is conducted using scanning electron microscopy (SEM) and light microscopy. Based on histology and SEM, pretarsal structures are described in detail for Rhodnius prolixus. Structures of the distal tarsomer, which appear to be functionally correlated with the pretarsus, are documented for the first time in Heteroptera. These comprise lateral oval sclerites, two campaniform sensilla and two marginal setae, observed in Reduviidae and other heteropteran taxa. The presence of a peg‐like dorsomedian sensillum medially between the claws in Reduviidae and Nabidae is demonstrated. As a result of its structure and position, homology of this sensillum with the ‘dorsal arolium’ in other heteropteran groups is proposed. Within Reduviidae, the transformation of the peg‐like dorsomedian sensillum to a campaniform sensillum, as seen in most representatives of the harpactoroid complex, is hypothesized. The first record of parempodia other than setiform within Reduviidae is noted in nymphs of Harpactorinae, which may possess lamellate parempodia. Several characters that are possibly useful for clarifying relationships among the harpactoroid groups are described and discussed. The pretarsal structures, including the unguitractor plate and the tarsal marginal setae among reduviid groups are discussed in a phylogenetic context.  相似文献   

3.
Two combined mechanisms on the hornet tarsus are adapted to attachment to the substrate: a friction-based (claws and spines) and an adhesion-based one (arolium). There are two ranges of substrate roughness optimal for attachment, either very smooth or very rough. There is an intermediate range of substrate grains of small but non-zero size, where both of these mechanisms fail. The optimal size of substrate grains for hornet grasping was 50-100 microm. Maximal hold to the substrate was achieved when surface irregularities were clamped between the claws of opposite legs. In such a position, the insect could withstand an external force which was almost 25 times larger than its own weight. The tarsal chain is an important part of the entire attachment mechanism. The articulations in the kinematic chain of tibia-tarsus-pretarsus are monocondylar. Three tarsal muscles and one head of the claw retractor muscle originate in the tibia. On pull to the retractor tendon, the tarsus bends in a plane. All elements of the tarsal kinematic chain have one active degree of freedom. The distance between the intertarsomeric articulation point and the tendon of the claw retractor (75-194 microm) corresponds to an efficiency of 1 degrees per 1-3 mircom of pulling distance travelled by the tendon. The claw turns about 1 degrees per 4.3-5.0 microm of pulling distance travelled by the unguitractor. The arolium turns forward and downward simultaneously with flexion of the claws. The kinematic chain of the arolium lacks real condylar joints except the joint at the base of the manubrium. Other components are tied by flexible transmissions of the membranous cuticle. The walking hornet rests on distal tarsomeres of extended tarsi. If the retractor tendon inside the tarsus is fixed, passive extension of the tarsomeres might be replaced by claw flexion. Tarsal chain rigidity, measured with the force tester, increased when the retractor tendon was tightened. Probably, pull to the tendon compresses the tarsomeres, increasing friction within contacting areas of rippled surfaces surrounding condyles within articulations.  相似文献   

4.
The Anatomy of the Tarsi of Schistocerca gregaria Forskål   总被引:1,自引:0,他引:1  
Summary The tarsus of S. gregaria is divided into three units (here called segments) and an arolium set between a pair of claws. The first segment bears three pairs of pulvilli in the fore and middle legs, and one pair and two single pulvilli in the hind legs. Segment two bears a pair of pulvilli, segment three one long pulvillus and the arolium a similar pad on the undersurface. The outer layers of the arolium pad differ from those of the pulvilli in possibly lacking an epicuticle and in having a layer of cuticle which, unlike the corresponding layer in the pulvilli, does not stain with protein stains. The claws and dorsal surfaces bear trichoid sensilla, basiconic sensilla and campaniform sensilla. Smaller basiconic sensilla and canal sensilla occur on the proximal part of the pulvilli, and basiconic sensilla on the arolium undersurface. Internally the cuticle is modified in the arolium and pulvilli so that rods of probably chitin and resilin are formed. This would impart flexibility to the undersurfaces whilst retaining some degree of rigidity which might prevent damage to the small and delicate sense organs on the pulvilli. The tip of the arolium is specialised for adhesion, and there are two large neurones internally which could conceivably monitor attachment or detachment of the tip. There are chordotonal organs in segment three, and several other large neurones throughout the tarsus, some of which are associated with the slings of tissue holding the apodeme in a ventral position. Gland cells occurring in the dorsal epidermis of the adult mature male are also briefly described.  相似文献   

5.
Many insects have a pair of claws on each leg. The distribution of mechanoreceptors that monitor claw actions was examined in the tenebrionid beetle Zophobas atratus. Each claw has 25–45 campaniform sensilla (CS) that detect the claw’s deformation due to substrate engagement. Five CS clusters are observed around the end of the 5th tarsomere (Ta5) in a concave, socket-like structure. The 1st cluster, containing 2–5 CS, is embedded in the unguifer to which the claws are articulated. The symmetrical 2nd and 3rd clusters, each containing two CS, are located bilaterally in the ventrolateral grooves of the sidewall of the socket, into which the unguis retractor plate slides. The 4th and 5th clusters, containing 1–2 CS with two hair sensilla, are localized near the ventrolateral ridges of the socket into which the basal portion of the claw is pressed during maximal claw flexion. In addition, Ta5 has a chordotonal organ of six sensory cells to monitor claw extension. These results suggest that the mechanoreceptor system may directly monitor the precise mechanical states of individual claws and provide the central nervous system with the sensory information required for fine feedback control of movements of the pretarsus and other leg segments for locomotion and other purposes.  相似文献   

6.
Elasticity and movements of the cockroach tarsus in walking   总被引:5,自引:2,他引:3  
Anatomical, kinematic and ablation studies were performed to evaluate the contribution of elasticity in use of the cockroach tarsus (foot) in walking. The distal tarsus (claws and arolium) engages the substrate during the stance phase of walking by the action of a single muscle, the retractor unguis. Kinematic and ablation studies demonstrated that tarsal disengagement occurs at the end of stance, in part via the action of elastic elements at the penultimate tarsal joint. In isolated legs, this joint exhibits very rapid (less than 20 ms duration) recoil to extension when released from the engaged position, and recoil is even more rapid (less than 10 ms) after removal of the retractor tendon (apodeme). The joint also possesses an enlarged cuticular condyle which is the attachment for ligaments and articular membranes, some of which fulfill morphological criteria consistent with the presence of the elastic protein resilin. Measurements of restoring forces generated by joint displacement indicate that they are graded but could readily lift the mass of the distal tarsus. This biomechanical design can facilitate efficient use of the tarsus in walking while under active control by only a single muscle and may also be highly advantageous when cockroaches very rapidly traverse irregular terrain. Accepted: 16 September 1998  相似文献   

7.
Sense organs that monitor forces in legs can contribute to activation of muscles as synergist groups. Previous studies in cockroaches and stick insects showed that campaniform sensilla, receptors that encode forces via exoskeletal strains, enhance muscle synergies in substrate grip. However synergist activation was mediated by different groups of receptors in cockroaches (trochanteral sensilla) and stick insects (femoral sensilla). The factors underlying the differential effects are unclear as the responses of femoral campaniform sensilla have not previously been characterized. The present study characterized the structure and response properties (via extracellular recording) of the femoral sensilla in both insects. The cockroach trochantero-femoral (TrF) joint is mobile and the joint membrane acts as an elastic antagonist to the reductor muscle. Cockroach femoral campaniform sensilla show weak discharges to forces in the coxo-trochanteral (CTr) joint plane (in which forces are generated by coxal muscles) but instead encode forces directed posteriorly (TrF joint plane). In stick insects, the TrF joint is fused and femoral campaniform sensilla discharge both to forces directed posteriorly and forces in the CTr joint plane. These findings support the idea that receptors that enhance synergies encode forces in the plane of action of leg muscles used in support and propulsion.  相似文献   

8.
We studied the external and internal pretarsus structure of the ants Brachyponera sennaarensis and Daceton armigerum in relation to their very different climbing ability. B. sennaarensis is a ground-dwelling species that is not able to climb vertical smooth walls. They have a pair of straight pretarsal claws with an average claw tip angle of 56 degrees, while the ventral tarsal surface lacks fine hairs that touch the substrate. They have no adhesive pad on the vestigial arolium, while the arolium gland is very small. D. armigerum, on the other hand, is an arboreal and thus well-climbing species with a very strong grip on the substrate. Their pretarsal claws are very hooked, with a claw tip angle around 75 degrees. They have dense arrays of fine hairs on the ventral tarsal surface, a well-developed arolium and arolium gland. These clearly different morphological characteristics are in line with the opposite climbing performance of both species.  相似文献   

9.
Sense organs in the legs that detect body weight are an important component in the regulation of posture and locomotion. We tested the abilities of tibial campaniform sensilla, receptors that can monitor forces in the cockroach leg, to encode variations in body load in freely standing animals. Small magnets were attached to the thorax and currents were applied to a coil below the substrate. Sensory and motor activities were monitored neurographically. The tibial sensilla could show vigorous discharges to changing forces when animals stood upon their legs and actively supported the body weight. Firing of individual afferents depended upon the orientation of the receptors cuticular cap: proximal sensilla (oriented perpendicular to the leg axis) discharged to force increases while distal receptors (parallel to the leg) fired to decreasing forces. Proximal sensillum discharges were prolonged and could encode the level of load when increases were sustained. Firing of the trochanteral extensor motoneuron was also strongly modulated by changing load. In some postures, sensillum discharges paralleled changes in motor frequency consistent with a known interjoint reflex. These findings demonstrate that tibial campaniform sensilla can monitor the effects of body weight upon the legs and may aid in generating support of body load.  相似文献   

10.
In many systems, loads are detected as the resistance to muscle contractions. We studied responses to loads and muscle forces in stick insect tibial campaniform sensilla, including a subgroup of receptors (Group 6B) with unusual round cuticular caps in oval-shaped collars. Loads were applied in different directions and muscle contractions were emulated by applying forces to the tibial flexor muscle tendon (apodeme). All sensilla 1) were maximally sensitive to loads applied in the plane of joint movement and 2) encoded muscle forces but did not discharge to unresisted movements. Identification of 6B sensilla by stimulation of cuticular caps demonstrated that receptor responses were correlated with their morphology. Sensilla with small cuticular collars produced small extracellular potentials, had low thresholds and strong tonic sensitivities that saturated at moderate levels. These receptors could effectively signal sustained loads. The largest spikes, derived from sensilla with large cuticular collars, had strong dynamic sensitivities and signaled a wide range of muscle forces and loads. Tibial sensilla are apparently tuned to produce no responses to inertial forces, as occur in the swing phase of walking. This conclusion is supported by tests in which animals 'stepped' on a compliant surface and sensory discharges only occurred in stance.  相似文献   

11.
松褐天牛触角感器的扫描电镜观察   总被引:2,自引:0,他引:2  
韩颖  张青文  路大光 《昆虫知识》2005,42(6):681-685
利用扫描电镜对松褐天牛Monochamus alternatusHope触角上的感器进行了观察和研究。结果表明:松褐天牛触角上共存在着6种感器,即毛形感器(Ⅰ型和Ⅱ型)、B hm氏鬃毛、锥形感器、耳形感器、钟形感器、角形感器。并对松褐天牛触角不同种类感器的形态、分布以及雌雄感器在分布和数量上的差别进行了描述。  相似文献   

12.
We measured ground reaction forces in fore–aft and normal directions of single hind and front legs in vertically ascending Sagra femorata beetles (Coleoptera, Chrysomelidae) on a smooth and a rough substrate. Simultaneously, we performed electromyographic recordings (EMGs) of the hind leg claw retractor muscle that partly controls the attachment structures. On both substrates, hind legs produced upward- as well as downward-directed forces during one stance phase. Forces were equivalent in both directions. Front legs generated only upward-directed forces. The main function of hind legs in ascending beetles in the second half of the stance thus probably prevented the animals from tilting away from the substrate. The EMGs of hind legs showed an early spike during stance with large amplitude. It was mostly followed by few additional spikes with large amplitude and in some cases of spikes with smaller amplitude distributed throughout the stance phase. We found significantly more spikes on the rough substrate than on the smooth one. This is probably due to the more important role of pretarsal claws than tarsal hairy attachment pads on the rough substrate or to the reduced adhesive forces on the rough substrate that have to be compensated by additional muscle activity.  相似文献   

13.
The hymenopteran tarsus is equipped with claws and a movable adhesive pad (arolium). Even though both organs are specialised for substrates of different roughness, they are moved by the same muscle, the claw flexor. Here we show that despite this seemingly unfavourable design, the use of arolium and claws can be adjusted according to surface roughness by mechanical control. Tendon pull experiments in ants (Oecophylla smaragdina) revealed that the claw flexor elicits rotary movements around several (pre-) tarsal joints. However, maximum angular change of claws, arolium and fifth tarsomere occurred at different pulling amplitudes, with arolium extension always being the last movement. This effect indicates that arolium use is regulated non-neuronally. Arolium unfolding can be suppressed on rough surfaces, when claw tips interlock and inhibit further contraction of the claw flexor or prevent legs from sliding towards the body. To test whether this hypothesised passive control operates in walking ants, we manipulated ants by clipping claw tips. Consistent with the proposed control mechanism, claw pruning resulted in stronger arolium extension on rough but not on smooth substrates. The control of attachment by the insect claw flexor system demonstrates how mechanical systems in the body periphery can simplify centralised, neuro-muscular feedback control.  相似文献   

14.
Campaniform sensilla monitor the forces generated by the leg muscles during the co-contraction phase of locust (Schistocerca gregaria) kicking and jumping and re-excite the fast extensor (FETi) and flexor tibiae motor neurones, which innervate the leg muscles. Sensory signals from a campaniform sensillum on the proximal tibia were compared in newly moulted locusts, which do not kick and jump, and mature locusts which readily kick and jump. The activity pattern of FETi during co-contraction was mimicked by stimulating the extensor tibiae muscle. Less force was generated and the spike frequency of the sensory neurone from the sensillum was significantly lower in newly moulted compared to mature locusts. Depolarisation of both FETi and flexor motor neurones as a result of sensory feedback was consequently less in newly moulted than in mature locusts. The difference in the depolarisation was greater than the decrease in the afferent spike frequency suggesting that the central connections of the afferents are modulated. The depolarisation could generate spikes in FETi and maintain flexor spikes in mature but not in newly moulted locusts. This indicates that feedback from the anterior campaniform sensillum comprises a significant component of the drive to both FETi and flexor activity during co-contraction in mature animals and that the changes in this feedback contribute to the developmental change in behaviour.Abbreviations aCS anterior campaniform sensillum - ETi extensor tibiae - FETi fast extensor tibiae motor neurone - FlTi flexor tibiae - pCS posterior campaniform sensillum  相似文献   

15.
This paper describes the ultrastructural modifications that cockroach campaniform sensilla undergo at three major stages in the molting cycle and finds that the sensilla are physiological functional at all developmental stages leading to ecdysis. Late stage animals on the verge of ecdysis have two completely separate cuticles. The campaniform sensillum sends a 220-mum extension of the sensory process through a hole in its cap in the new (inner) cuticle across a fluid-filled molting space to its functional insertion in the cap in the old (outer) cuticle. Mechanical stimulation of the old cap excites the sensillum. The ultrastructural geometry of late stage sensilla, coupled with the observation they are physiolgically functional, supports the hypotheses (a) that sensory transduction occurs at the tip of the sensory process, and (b) that cap identation causes the cap cuticle to pinch the tip of the sensory process, thereby stimulating the sensillum.  相似文献   

16.
A hitherto unknown sensillum type, the “intracuticular sensillum” was identified on the dactyls of the walking legs of the shore crab, Carcinus maenas. Each sensillum is innervated by two sensory cells with dendrites of “scolopidial” (type I) organization. The ciliary segment of the dendrite is 5–6 μm long and contains A-tubules with an electron-dense core and dynein arm-like protuberances; the terminal segment is characterized by densely packed microtubules. The outer dendritic segments pass through the endo- and exocuticle enclosed in a dendritic sheath and a cuticulax tube (canal), which is suspended inside a slit-shaped cavity by cuticular lamellae. The dendrites and the cavity terminate in a cupola-shaped invagination of the epicuticle. External cuticular structures are lacking. Three inner and four to six outer enveloping cells are associated with each intracuticular sensillum. The innermost enveloping cell contains a large scolopale that is connected to the ciliary rootlets inside the inner dendritic segments by desmosomes. Scolopale rods are present in enveloping cell 2. Since type I dendrites and a scolopale are regarded as modality-specific structures of mechanoreceptors, and since no supracuticular endorgan is present, the intracuticular sensilla likely are sensitive to cuticular strains. The intracuticular sensilla should be regarded as analogous to insect campaniform sensilla and arachnid slit sense organs.  相似文献   

17.
ABSTRACT. Four groups of campaniform sensilla are found on the trochanter of Cuniculina impigra Tedtenbacher (Phasmidae). One of these groups can be divided into two sub-groups. The sensilla are approximately parallel within each group or sub-group. As sensilla with parallel orientation will respond to the same direction of shear force, each group or sub-group of campaniform sensilla should act as one unit. When the coxa is fixed, activity in the nerve supplying the campaniform sensilla can be released by bending the femur forwards and backwards. The sensilla are sensitive to movement only in one direction. The investigated sensilla react to the stimulus with phasic-tonic discharge patterns. The dependence of the phasic component upon the velocity of the stimulus can be described by a power function. The tonic component depends on the amplitude of the stimulus. By mechanical stimulation of individual groups of sensilla it can be shown that at least two groups of campaniform sensilla contain units which respond to bending the femur backwards. The activity of some motor neurones can be influenced by slightly bending the leg in the horizontal plane. The levator trochanteris muscle is activated when the femur is bent forwards, and the frequency of the slow extensor tibiae motor neurone is increased when the femur is bent backwards. The reaction of both muscles is phasic. There is no detectable reaction in the protractor or the retractor of the coxa or the depressor trochanteris.  相似文献   

18.
While chemical communication has been investigated intensively in vertebrates and insects, relatively little is known about the sensory world of spiders despite the fact that chemical cues play a key role in natural and sexual selection in this group. In insects, olfaction is performed with wall–pore and gustation with tip-pore sensilla. Since spiders possess tip-pore sensilla only, it is unclear how they accomplish olfaction. We scrutinized the ultrastructure of the trichoid tip-pore sensilla of the orb weaving spider Argiope bruennichi—a common Palearctic species the males of which are known to be attracted by female sex pheromone. We also investigated the congener Argiope blanda. We examined whether the tip-pore sensilla differ in ultrastructure depending on sex and their position on the tarsi of walking legs of which only the distal parts are in contact with the substrate. We hypothesized as yet undetected differences in ultrastructure that suggest gustatory versus olfactory functions. All tarsal tip-pore sensilla of both species exhibit characters typical of contact-chemoreceptors, such as (a) the presence of a pore at the tip of the sensillum shaft, (b) 2–22 uniciliated chemoreceptive cells with elongated and unbranched dendrites reaching up to the tip-pore, (c) two integrated mechanoreceptive cells with short dendrites and large tubular bodies attached to the sensillum shaft's base, and (d) a socket structure with suspension fibres that render the sensillum shaft flexible. The newly found third mechanoreceptive cell attached to the proximal end of the peridendritic shaft cylinder by a small tubular body was likely overlooked in previous studies. The organization of tarsal tip-pore sensilla did not differ depending on the position on the tarsus nor between the sexes. As no wall-pore sensilla were detected, we discuss the probability that a single type of sensillum performs both gustation and olfaction in spiders.  相似文献   

19.
The structure of the sensory organs situated on palps and chelicerae of the quill mite Syringophilopsis fringilla (Fritsch, 1958) was examined with the use of scanning and transmitting electron microscopy. The tarsal segment of the palps bears 8 sensilla of three types: two contact chemo-mechanoreceptor sensilla, a single chemoreceptor (olfactory) sensillum, and five tactile mechanoreceptor sensilla. All other sensilla situated on basal palpal segments and on cheliceral stylets are represented exclusively by tactile mechanoreceptors. A proprioceptor sensillum was revealed in the movable digit of chelicerae; the modified cilia of dendrites of 5 sensory neurons of this sensillum run inside the inner non-sclerotized core of the stylet and end at different levels in its apical part, attaching to electron-dense rods connected with a sclerotized sheath of the stylet. The authors assume that the proprioceptor sensillum of the stylet detects the strength of the pressure of the stylet of the movable digit on the quill wall during its piercing, and palpal sensilla determine the optimal place for this process.  相似文献   

20.
吴婧  王佳  董鹏  王进军 《昆虫知识》2007,44(2):244-248
利用扫描电子显微镜观察了黑胸大蠊Periplanetafuliginosa(Serville)成虫下颚须和下唇须上的感器形态。结果发现,在黑胸大蠊下颚须和下庸须末节顶端何感器密集区,尤其是下颚须第5节内侧顶端,有一狭长沟壑,内有大量的带槽锥形感器。通过重点观察感器密集区,发现主要有5~6种类型感器,分别为带槽锥形、毛形、刺形、钟形、齿状、针形感器,其中有些感器又可分为几种亚类型。比较研究发现下颚须和下唇须上感器类型除了带槽锥形感器以外基本相似,只是数量上有区别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号