首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
We have recently shown that the platelet integrin alpha(IIb)beta(3) is activated by von Willebrand factor (vWF) binding to its platelet receptor, glycoprotein Ib-IX (GPIb-IX), via the protein kinase G (PKG) signaling pathway. Here we show that GPIb-IX-mediated activation of integrin alpha(IIb)beta(3) is inhibited by dominant negative mutants of Raf-1 and MEK1 in a reconstituted integrin activation model in Chinese hamster ovary (CHO) cells and that the integrin-dependent platelet aggregation induced by either vWF or low dose thrombin is inhibited by MEK inhibitors PD98059 and U0126. Thus, mitogen-activated protein kinase (MAPK) pathway is important in GPIb-IX-dependent activation of platelet integrin alpha(IIb)beta(3). Furthermore, vWF binding to GPIb-IX induces phosphorylation of Thr-202/Tyr-204 of extracellular signal-regulated kinase 2 (ERK2). GPIb-IX-induced ERK2 phosphorylation is inhibited by PKG inhibitors and enhanced by overexpression of recombinant PKG. PKG activators also induce ERK phosphorylation, indicating that activation of MAPK pathway is downstream from PKG. Thus, our data delineate a novel integrin activation pathway in which ligand binding to GPIb-IX activates PKG that stimulates MAPK pathway, leading to integrin activation.  相似文献   

2.
In platelets, alpha(IIb)beta(3) exists in a form that cannot bind adhesive proteins in the plasma; although it can interact with immobilized fibrinogen it cannot interact with immobilized von Willebrand factor in the vessel wall. Soluble agonists such as thrombin convert alpha(IIb)beta(3) to a form that recognizes soluble and immobilized ligands. Attempts to reconstitute alpha(IIb)beta(3) activation in a non-hematopoietic, nucleated cell system have been unsuccessful. In the present study, we have developed a transfected Chinese hamster ovary cell model in which alpha(IIb)beta(3) activation is induced by signaling across glycoprotein (GP) Ib-IX by its ligand, von Willebrand factor. GPIb-IX activates not only the transfected alpha(IIb)beta(3) but also endogenous alpha(v)beta(3). Activation of the pathways leading to integrin activation occurred even in cells transfected with GPIb-IX lacking the domain on GPIbalpha that binds 14-3-3 or that which binds actin-binding protein. These studies demonstrate that signals induced by interaction of GPIb-IX with von Willebrand factor lead to alpha(IIb)beta(3) activation and suggest that the signaling pathways by which GPIb-IX induces alpha(IIb)beta(3) activation are different to those used by thrombin. Elucidation of these differences may provide insights into therapeutic ways in which to inhibit integrin activation in selective clinical settings.  相似文献   

3.
The functional regulation of integrins is a major determinant of cell adhesion, migration and tissue maintenance. The binding of cytoskeletal proteins to various sites of integrin cytoplasmic domains is a key mechanism of this functional regulation. Expression of recombinant integrin alpha(IIb)beta(3) and alpha(M)beta(2) lacking the GFFKR-region in CHO cells results in constitutively activated integrins. In contrast, CHO cells stably expressing either a GFFKR-deleted alpha(V(del))beta(3) or a FF to AA-substituted alpha(V(AA))beta(3) do not reveal a constitutively activated integrin. Adhesion to immobilized fibrinogen is strongly impaired in alpha(V(del))beta(3) or alpha(V(AA))beta(3)-expressing cells, whereas it is not impaired in alpha(IIb)beta(3) and alpha(M)beta(2), both lacking the GFFKR-region. In a parallel plate flow chamber assay, alpha(V)beta(3)-expressing cells adhere firmly to fibrinogen and spread even at shear rates of 15 to 20 dyn/cm(2), whereas alpha(V(del))beta(3) or alpha(V(AA))beta(3) cells are detached at 15 dyn/cm(2). Actin stress fiber formation and focal adhesion plaques containing alpha(V)beta(3) are observed in alpha(V)beta(3) cells but not in alpha(V(del))beta(3) or alpha(V(AA))beta(3)-expressing cells. As an additional manifestation of impaired outside-in signaling, phosphorylation of pp125(FAK) was reduced in these cells. In summary, we report that the GFFKR-region of the alpha(V)-cytoplasmic domain and in particular two phenylalanines are essential for integrin alpha(V)beta(3) function, especially for outside-in signaling. Our results suggest that the two beta(3)-integrins alpha(IIb)beta(3) and alpha(V)beta(3) are differentially regulated via their GFFKR-region.  相似文献   

4.
Platelet adhesion to fibrinogen through integrin alpha(IIb)beta(3) triggers actin rearrangements and cell spreading. Mice deficient in the SLP-76 adapter molecule bleed excessively, and their platelets spread poorly on fibrinogen. Here we used human platelets and a Chinese hamster ovary (CHO) cell expression system to better define the role of SLP-76 in alpha(IIb)beta(3) signaling. CHO cell adhesion to fibrinogen required alpha(IIb)beta(3) and stimulated tyrosine phosphorylation of SLP-76. SLP-76 phosphorylation required coexpression of Syk tyrosine kinase and stimulated association of SLP-76 with the adapter, Nck, and with the Rac exchange factor, Vav1. SLP-76 expression increased lamellipodia formation induced by Syk and Vav1 in adherent CHO cells (p < 0.001). Although lamellipodia formation requires Rac, SLP-76 functioned downstream of Rac by potentiating adhesion-dependent activation of PAK kinase (p < 0.001), a Rac effector that associates with Nck. In platelets, adhesion to fibrinogen stimulated the association of SLP-76 with the SLAP-130 adapter and with VASP, a SLAP-130 binding partner implicated in actin reorganization. Furthermore, SLAP-130 colocalized with VASP at the periphery of spread platelets. Thus, SLP-76 functions to relay signals from alpha(IIb)beta(3) to effectors of cytoskeletal reorganization. Therefore, deficient recruitment of specific adapters and effectors to sites of adhesion may explain the integrin phenotype of SLP-76(-/-) platelets.  相似文献   

5.
Integrin alpha(IIb)beta(3) activation is critical for platelet physiology and is controlled by signal transduction through kinases and phosphatases. Compared with kinases, a role for phosphatases in platelet integrin alpha(IIb)beta(3) signaling is less understood. We report that the catalytic subunit of protein phosphatase 2A (PP2Ac) associates constitutively with the integrin alpha(IIb)beta(3) in resting platelets and in human embryonal kidney 293 cells expressing alpha(IIb)beta(3). The membrane proximal KVGFFKR sequence within the cytoplasmic domain of integrin alpha(IIb) is sufficient to support a direct interaction with PP2Ac. Fibrinogen binding to alpha(IIb)beta(3) during platelet adhesion decreased integrin-associated PP2A activity and increased the phosphorylation of a PP2A substrate, vasodilator associated phosphoprotein. Overexpression of PP2Ac(alpha) in 293 cells decreased alpha(IIb)beta(3)-mediated adhesion to immobilized fibrinogen. Conversely, small interference RNA mediated knockdown of endogenous PP2Ac(alpha) expression in 293 cells, enhanced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and accelerated alpha(IIb)beta(3) adhesion to fibrinogen and von Willebrand factor. Inhibition of ERK1/2, but not p38 activation, abolished the increased adhesiveness of PP2Ac (alpha)-depleted 293 cells to fibrinogen. Furthermore, knockdown of PP2A(calpha) expression in bone marrow-derived murine megakaryocytes increased soluble fibrinogen binding induced by protease-activated receptor 4-activating peptide. These studies demonstrate that PP2Ac (alpha) can negatively regulate integrin alpha(IIb)beta(3) signaling by suppressing the ERK1/2 signaling pathway.  相似文献   

6.
Integrin-mediated cell adhesion often results in cell spreading and the formation of focal adhesions. We exploited the capacity of recombinant human alpha IIb beta 3 integrin to endow heterologous cells with the ability to adhere and spread on fibrinogen to study the role of integrin cytoplasmic domains in initiation of cell spreading and focal adhesions. The same constructs were also used to analyze the role of the cytoplasmic domains in maintenance of the fidelity of the integrin repertoire at focal adhesions. Truncation mutants of the cytoplasmic domain of alpha IIb did not interfere with the ability of alpha IIb beta 3 to initiate cell spreading and form focal adhesions. Nevertheless, deletion of the alpha IIb cytoplasmic domain allowed indiscriminate recruitment of alpha IIb beta 3 to focal adhesions formed by other integrins. Truncation of the beta 3 subunit cytoplasmic domain abolished cell spreading mediated by alpha IIb beta 3 and also abrogated recruitment of alpha IIb beta 3 to focal adhesions. This truncation also dramatically impaired the ability of alpha IIb beta 3 to mediate the contraction of fibrin gels. In contrast, the beta 3 subunit cytoplasmic truncation did not reduce the fibrinogen binding affinity of alpha IIb beta 3. Thus, the integrin beta 3 subunit cytoplasmic domain is necessary and sufficient for initiation of cell spreading and focal adhesion formation. Further, the beta 3 cytoplasmic domain is required for the transmission of intracellular contractile forces to fibrin gels. The alpha subunit cytoplasmic domain maintains the fidelity of recruitment of the integrins to focal adhesions and thus regulates their repertoire of integrins.  相似文献   

7.
The alpha chain of the platelet von Willebrand factor receptor, glycoprotein (GP) Ib, is not known to be phosphorylated. Here, we report that the cytoplasmic domain of GPIbalpha is phosphorylated at Ser(609); this was detected by immunoblotting with an anti-phosphopeptide antibody, anti-pS609, that specifically recognizes the GPIbalpha C-terminal sequence S(606)GHSL(610) only when Ser(609) is phosphorylated. Immunoabsorption with anti-pS609 removed almost all of the GPIbalpha from platelet lysates, indicating a high proportion of GPIbalpha phosphorylation. Anti-pS609 inhibited GPIb-IX binding to the intracellular signaling molecule, 14-3-3zeta. Dephosphorylation of GPIb-IX with potato acid phosphatase inhibited anti-pS609 binding and also 14-3-3zeta binding. A synthetic phosphopeptide corresponding to the GPIbalpha C-terminal sequence (SIRYSGHpSL), but not a nonphosphorylated identical peptide, abolished GPIb-IX binding to 14-3-3zeta. Thus, phosphorylation at Ser(609) of GPIbalpha is important for 14-3-3zeta binding to GPIb-IX. In certain regions of spreading platelets, particularly at the periphery, there was a reduction in GPIbalpha staining by anti-pS609 as observed under a confocal microscope, indicating that a subpopulation of GPIbalpha molecules in these regions is dephosphorylated. These data suggest that phosphorylation and dephosphorylation at Ser(609) of GPIbalpha regulates GPIb-IX interaction with 14-3-3 and may play important roles in the process of platelet adhesion and spreading.  相似文献   

8.
In platelets, bidirectional signaling across integrin alpha(IIb)beta(3) regulates fibrinogen binding, cytoskeletal reorganization, cell aggregation, and spreading. Because these responses may be influenced by the clustering of alpha(IIb)beta(3) heterodimers into larger oligomers, we established two independent methods to detect integrin clustering and evaluate factors that regulate this process. In the first, weakly complementing beta-galactosidase mutants were fused to the C terminus of individual alpha(IIb) subunits, and the chimeras were stably expressed with beta(3) in Chinese hamster ovary cells. Clustering of alpha(IIb)beta(3) should bring the mutants into proximity and reconstitute beta-galactosidase activity. In the second method, alpha(IIb) was fused to either a green fluorescent protein (GFP) or Renilla luciferase and transiently expressed with beta(3). Here, integrin clustering should stimulate bioluminescence resonance energy transfer between a cell-permeable luciferase substrate and GFP. These methods successfully detected integrin clustering induced by anti-alpha(IIb)beta(3) antibodies. Significantly, they also detected clustering upon soluble fibrinogen binding to alpha(IIb)beta(3). In contrast, no clustering was observed following direct activation of alpha(IIb)beta(3) by MnCl(2) or an anti-alpha(IIb)beta(3)-activating antibody Fab in the absence of fibrinogen. Intracellular events also influenced alpha(IIb)beta(3) clustering. For example, a cell-permeable, bivalent FK506-binding protein (FKBP) ligand stimulated clustering when added to cells expressing an alpha(IIb)(FKBP)(2) chimera complexed with beta(3). Furthermore, alpha(IIb)beta(3) clustering occurred in the presence of latrunculin A or cytochalasin D, inhibitors of actin polymerization. These effects were enhanced by fibrinogen, suggesting that actin-regulated clustering modulates alpha(IIb)beta(3) interaction with ligands. These studies in living cells establish that alpha(IIb)beta(3) clustering is modulated by fibrinogen and actin dynamics. More broadly, they should facilitate investigations of the mechanisms and consequences of integrin clustering.  相似文献   

9.
Activation or ligand binding induces conformational changes in alpha IIb beta3, resulting in exposure of neoepitopes named ligand-induced binding sites. We reported here a novel monoclonal antibody developed by using Chinese hamster ovary (CHO) cells expressing an activated alpha IIb beta3 mutant (CHO alpha IIb beta3Delta717) as the immunogen. This IgG 2b kappa named 3C7 was specific for the complex of alpha IIb beta3 as demonstrated by flow cytometry, immunoprecipitation, and EDTA chelating. The binding of 3C7 to platelets increased significantly when platelets were activated by ADP/thrombin or occupied by RGDS peptides, fibrinogen, or PAC-1, suggesting that 3C7 was an anti-ligand-induced binding site antibody. The antibody failed to bind to the CHO cells expressing another alpha IIb beta3 mutant (beta3Y178A) suggesting that the Cys177-Cys184 loop of beta3 was likely the epitope for 3C7. 3C7 inhibited platelet aggregation, which was initiated by ADP or thrombin in a dose-dependent manner (IC50s of 5.6 and 0.05 microg/ml, respectively). The antibody also inhibited platelet adhesion to immobilized fibrinogen but not to fibronectin or collagen. These findings suggested that 3C7 was a potent antagonist of integrin alpha IIb beta3 and a potential anti-thrombotic agent.  相似文献   

10.
alpha(IIb)beta(3), a member of the integrin family of adhesive protein receptors, is the most abundant glycoprotein on platelet plasma-membranes and binds to adhesive proteins via the recognition of short amino acid sequences, for example the ubiquitous RGD motif. However, elucidation of the ligand-binding domains of the receptor remains controversial, mainly owing to the fact that integrins are conformationally labile during purification and storage. In this study, a detailed mapping of the extracellular region of the alpha(IIb) subunit is presented, using overlapping 20-peptides, in order to identify the binding sites of alpha(IIb) potentially involved in the platelet-aggregation event. Regions alpha(IIb) 313-332, alpha(IIb) 265-284 and alpha(IIb) 57-64 of alpha(IIb)beta(3) were identified as putative fibrinogen-binding domains because the corresponding peptides inhibited platelet aggregation and antagonized fibrinogen association, possibly by interacting with this ligand. The latter is further supported by the finding that the above peptides did not interfere with the binding of PAC-1 to the activated form of alpha(IIb)beta(3). Furthermore, alpha(IIb) 313-332 was found to bind to fibrinogen in a solid-phase binding assay. It should be emphasized that all the experiments in this study were carried out on activated platelets and consequently on the activated form of this integrin receptor. We hypothesize that RAD and RAE adhesive motifs, encompassed in alpha(IIb) 313-332, 265-284 and 57-64, are capable of recognizing complementary domains of fibrinogen, thus inhibiting the binding of this ligand to platelets.  相似文献   

11.
Adhesive interactions of platelet integrin alpha(IIb)beta3 with fibrinogen and fibrin are central events in hemostasis and thrombosis. However, the mechanisms by which alpha(IIb)beta3 binds these ligands remain incompletely understood. We have recently demonstrated that alpha(IIb)beta3 binds the gamma365-383 sequence in the gammaC-domain of fibrin(ogen). This sequence contains neither the AGDV nor the RGD recognition motifs, known to bind alpha(IIb)beta3, suggesting the different specificity of the integrin. Here, using peptide arrays, mutant fibrinogens, and recombinant mutant gammaC-domains, we have examined the mechanism whereby alpha(IIb)beta3 binds gamma365-383. The alpha(IIb)beta3-binding activity was localized within gamma370-381, with two short sequences, gamma370ATWKTR375 and gamma376WYSMKK381, being able to independently bind the integrin. Furthermore, recognition of alpha(IIb)beta3 by gamma370-381 depended on four basic residues, Lys373, Arg375, Lys380, and Lys381. Simultaneous replacement of these amino acids and deletion of the gamma408AGDV411 sequence in the recombinant gammaC-domain resulted in the loss of alpha(IIb)beta3-mediated platelet adhesion. Confirming the critical roles of the identified residues, abnormal fibrinogen Kaiserslautern, in which gammaLys380 is replaced by Asn, demonstrated delayed clot retraction and impaired alpha(IIb)beta3 binding. Also, a mutant recombinant fibrinogen modeled after the naturally occurring variant Osaka V (gammaArg375 --> Gly) showed delayed clot retraction and reduced binding to purified alpha(IIb)beta3. These results identify the gamma370-381 sequence of fibrin(ogen) as the binding site for alpha(IIb)beta3 involved in platelet adhesion and clot retraction and define the new recognition specificity of this integrin.  相似文献   

12.
Following platelet aggregation, integrin alpha(IIb)beta(3) becomes associated with the platelet cytoskeleton. The conserved NPLY sequence represents a potential beta-turn motif in the beta(3) cytoplasmic tail and has been suggested to mediate the interaction of beta(3) integrins with talin. In the present study, we performed a double mutation (N744Q/P745A) in the integrin beta(3) subunit to test the functional significance of this beta-turn motif. Chinese hamster ovary cells were co-transfected with cDNA constructs encoding mutant beta(3) and wild type alpha(IIb). Cells expressing either wild type (A5) or mutant (D4) alpha(IIb)beta(3) adhered to fibrinogen; however, as opposed to control A5 cells, adherent D4 cells failed to spread, form focal adhesions, or initiate protein tyrosine phosphorylation. To investigate the role of the NPLY motif in talin binding, we examined the ability of the mutant alpha(IIb)beta(3) to interact with talin in a solid phase binding assay. Both wild type and mutant alpha(IIb)beta(3), purified by RGD affinity chromatography, bound to a similar extent to immobilized talin. Additionally, purified talin failed to interact with peptides containing the AKWDTANNPLYK sequence indicating that the talin binding domain in the integrin beta(3) subunit does not reside in the NPLY motif. In contrast, specific binding of talin to peptides containing the membrane-proximal HDRKEFAKFEEERARAK sequence of the beta(3) cytoplasmic tail was observed, and this interaction was blocked by a recombinant protein fragment corresponding to the 47-kDa N-terminal head domain of talin (rTalin-N). In addition, RGD affinity purified platelet alpha(IIb)beta(3) bound dose-dependently to immobilized rTalin-N, indicating that an integrin-binding site is present in the talin N-terminal head domain. Collectively, these studies demonstrate that the NPLY beta-turn motif regulates post-ligand binding functions of alpha(IIb)beta(3) in a manner independent of talin interaction. Moreover, talin was shown to bind through its N-terminal head domain to the membrane-proximal sequence of the beta(3) cytoplasmic tail.  相似文献   

13.
Neutrophil elastase (NE) upregulates the fibrinogen binding activity of the platelet integrin alpha(IIb)beta(3) through proteolysis of the alpha(IIb) subunit. This cleavage allows a strong potentiation of platelet aggregation induced by low concentrations of cathepsin G (CG), another neutrophil serine proteinase. During this activation process, we observed a strong fibrinogen binding and aggregation-dependent phosphatidylinositol 3,4-bis-phosphate (PtdIns(3,4)P(2)) accumulation. PtdIns(3,4)P(2) has been suggested to play a role in the stabilization of platelet aggregation, possibly through the control of a maintained alpha(IIb)beta(3) integrin activation. Here we show that inhibition of phosphoinositide 3-kinase (PI 3-K) by very low concentrations of wortmannin or LY294002 transformed the irreversible platelet aggregation induced by a combination of NE and low concentrations of CG into a reversible aggregation. However, although inhibition of PI 3-K was very efficient in inducing platelet disaggregation, it did not modify the level of alpha(IIb)beta(3) activation as assessed by binding of an activation-dependent antibody. These results indicate that PI 3-K activity can control the irreversibility of platelet aggregation even under conditions where alpha(IIb)beta(3) integrin remains activated.  相似文献   

14.
Studies with inhibitors have implicated protein kinase C (PKC) in the adhesive functions of integrin alpha(IIb)beta(3) in platelets, but the responsible PKC isoforms and mechanisms are unknown. Alpha(IIb)beta(3) interacts directly with tyrosine kinases c-Src and Syk. Therefore, we asked whether alpha(IIb)beta(3) might also interact with PKC. Of the several PKC isoforms expressed in platelets, only PKC beta co-immunoprecipitated with alpha(IIb)beta(3) in response to the interaction of platelets with soluble or immobilized fibrinogen. PKC beta recruitment to alpha(IIb)beta(3) was accompanied by a 9-fold increase in PKC activity in alpha(IIb)beta(3) immunoprecipitates. RACK1, an intracellular adapter for activated PKC beta, also co-immunoprecipitated with alpha(IIb)beta(3), but in this case, the interaction was constitutive. Broad spectrum PKC inhibitors blocked both PKC beta recruitment to alpha(IIb)beta(3) and the spread of platelets on fibrinogen. Similarly, mouse platelets that are genetically deficient in PKC beta spread poorly on fibrinogen, despite normal agonist-induced fibrinogen binding. In a Chinese hamster ovary cell model system, adhesion to fibrinogen caused green fluorescent protein-PKC beta I to associate with alpha(IIb)beta(3) and to co-localize with it at lamellipodial edges. These responses, as well as Chinese hamster ovary cell migration on fibrinogen, were blocked by the deletion of the beta(3) cytoplasmic tail or by co-expression of a RACK1 mutant incapable of binding to beta(3). These studies demonstrate that the interaction of alpha(IIb)beta(3) with activated PKC beta is regulated by integrin occupancy and can be mediated by RACK1 and that the interaction is required for platelet spreading triggered through alpha(IIb)beta(3). Furthermore, the studies extend the concept of alpha(IIb)beta(3) as a scaffold for multiple protein kinases that regulate the platelet actin cytoskeleton.  相似文献   

15.
16.
To analyze the basis of affinity modulation of integrin function, we studied cloned stable Chinese hamster ovary cell lines expressing recombinant integrins of the beta 3 family (alpha IIb beta 3 and alpha v beta 3). Antigenic and peptide recognition specificities of the recombinant receptors resembled those of the native receptors found in platelets or endothelial cells. The alpha IIb beta 3-expressing cell line (A5) bound RGD peptides and immobilized fibrinogen (Fg) but not soluble fibrinogen or the activation-specific monoclonal anti-alpha IIb beta 3 (PAC1), indicating that it was in the affinity state found on resting platelets. Several platelet agonists failed to alter the affinity state of ("activate") recombinant alpha IIb beta 3. The binding of soluble Fg and PAC1, however, was stimulated in both platelets and A5 cells by addition of IgG papain-digestion products (Fab) fragments of certain beta 3-specific monoclonal antibodies. These antibodies stimulated PAC1 binding to platelets fixed under conditions rendering them unresponsive to other agonists. Addition of these antibodies to detergent-solubilized alpha IIb beta 3 also stimulated specific Fg binding. These data demonstrate that certain anti-beta 3 antibodies activate alpha IIb beta 3 by acting directly on the receptor, possibly by altering its conformation. Furthermore, they indicate that the activation state of alpha IIb beta 3 is a property of the receptor itself rather than of the surrounding cell membrane microenvironment.  相似文献   

17.
Agonist-generated inside-out signals enable the platelet integrin alpha(IIb)beta(3) to bind soluble ligands such as fibrinogen. We found that inhibiting actin polymerization in unstimulated platelets with cytochalasin D or latrunculin A mimics the effects of platelet agonists by inducing fibrinogen binding to alpha(IIb)beta(3). By contrast, stabilizing actin filaments with jasplakinolide prevented cytochalasin D-, latrunculin A-, and ADP-induced fibrinogen binding. Cytochalasin D- and latrunculin A-induced fibrinogen was inhibited by ADP scavengers, suggesting that subthreshold concentrations of ADP provided the stimulus for the actin filament turnover required to see cytochalasin D and latrunculin A effects. Gelsolin, which severs actin filaments, is activated by calcium, whereas the actin disassembly factor cofilin is inhibited by serine phosphorylation. Consistent with a role for these factors in regulating alpha(IIb)beta(3) function, cytochalasin D- and latrunculin A-induced fibrinogen binding was inhibited by the intracellular calcium chelators 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid acetoxymethyl ester and EGTA acetoxymethyl ester and the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A. Our results suggest that the actin cytoskeleton in unstimulated platelets constrains alpha(IIb)beta(3) in a low affinity state. We propose that agonist-stimulated increases in platelet cytosolic calcium initiate actin filament turnover. Increased actin filament turnover then relieves cytoskeletal constraints on alpha(IIb)beta(3), allowing it to assume the high affinity conformation required for soluble ligand binding.  相似文献   

18.
Integrin alpha(IIb)beta(3) is the fibrinogen receptor that mediates platelet adhesion and aggregation. The ligand binding function of alpha(IIb)beta(3) is "activated" on the platelet surface by physiologic stimuli. Two forms of alpha(IIb)beta(3) can be purified from platelet lysates. These forms are facsimiles of the resting (Activation State-1 or AS-1) and the active (Activation State-2 or AS-2) conformations of the integrin found on the platelet surface. Here, the differences between purified AS-1 and AS-2 were examined to gain insight into the mechanism of activation. Four major findings are put forth. 1) The association rate (k(1)) between fibrinogen and the integrin is a key difference between AS-1 and AS-2. 2) Although the divalent ion Mn(2+) enhances the ligand binding function of AS-1, this ion is unable to convert AS-1 to AS-2. Therefore, its effect on integrin is unrelated to activation. 3) Peptide mass fingerprints indicate that the chemical structure of AS-1 and AS-2 are virtually identical, calling into question the idea that post-translational modifications are necessary for activation. 4) The two forms of alpha(IIb)beta(3) have significant conformational differences at three positions. These include the junction of the heavy and light chain of alpha(IIb), the divalent ion binding sites on alpha(IIb), and at a disulfide-bonded knot linking the amino terminus of beta(3) to the cysteine-rich domain. These observations indicate that integrin is activated by a series of specific conformational rearrangements in the ectodomain that increase the rate of ligand association.  相似文献   

19.
Ligands "activate" integrin alpha IIb beta 3 (platelet GPIIb-IIIa)   总被引:29,自引:0,他引:29  
Integrin alpha IIb beta 3 (platelet GPIIb-IIIa) binds fibrinogen via recognition sequences such as Arg-Gly-Asp (RGD). Fibrinogen binding requires agonist activation of platelets, whereas the binding of short synthetic RGD peptides does not. We now find that RGD peptide binding leads to changes in alpha IIb beta 3 that are associated with acquisition of high affinity fibrinogen-binding function (activation) and subsequent platelet aggregation. The structural specificities for peptide activation and for inhibition of ligand binding are similar, indicating that both are consequences of occupancy of the same site(s) on alpha IIb beta 3. Thus, the RGD sequence is a trigger of high affinity ligand binding to alpha IIb beta 3, and certain RGD-mimetics are partial agonists as well as competitive antagonists of integrin function.  相似文献   

20.
Integrin cytoplasmic tails regulate integrin activation that is required for high affinity binding with ligands. The interaction of the integrin beta subunit tail with a cytoplasmic protein, talin, largely contributes to integrin activation. Here we report the cooperative interaction of the beta3 membrane-proximal and -distal residues in regulation of talin-mediated alpha IIb beta3 activation. Because a chimeric integrin, alpha IIb beta3/beta1, in which the beta3 tail was replaced with the beta1 tail was constitutively active, we searched for the residues responsible for integrin activation among the residues that differed between the beta3 and beta1 tails. Single amino acid substitutions of Ile-719 and Glu-749 in the beta3 membrane-proximal and -distal regions, respectively, with the corresponding beta1 residues or alanine rendered alphaIIbbeta3 constitutively active. The I719M/E749S double mutant had the same ligand binding activity as alpha IIb beta3/beta1. These beta3 mutations also induced alphaVbeta3 activation. Conversely, substitution of Met-719 or Ser-749 in the beta1 tail with the corresponding beta3 tail residue (M719I or S749E) inhibited alpha IIb beta3/beta1 activation, and the M719I/S749E double mutant inhibited ligand binding to a level comparable with that of the wild-type alpha IIb beta3. Knock down of talin by short hairpin RNA inhibited the I719M- and E749S-induced alpha IIb beta3 activation. These results suggest that the beta3 membrane-proximal and -distal residues cooperatively regulate talin-mediated alpha IIb beta3 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号