首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
Plant characteristics that determine food quantity and quality to consumers exhibit extensive within-plant heterogeneity, and this heterogeneity is an important influence on the interactions between plants and consumers (herbivores, pathogens, mutualists, soil-dwelling microorganisms). Here we present a functional model – based on plant vascular architecture and local environmental variability – that can be used to predict the patterns of within-plant resource heterogeneity. We argue that heterogeneity is generated largely by sectoriality, the restricted movement of resources along vascular traces within a plant. In essence, the combination of sectoriality and spatial variation in previous damage, nutrient, water, and light availability generates predictable patterns of within-plant heterogeneity in tissue quality. We point out that vascular architecture differs across taxa, growth habit and plant developmental stage, and suggest that certain attributes of the environment maximize the extent of heterogeneity.  相似文献   

2.
While carbon transport and partitioning is largely determined by phloem source-sink relationships, it may be constrained by vascular connections. Tomato (Lycopersicon esculentum) plants exhibit a high degree of sectoriality, with restricted movement of nutrients from particular roots to orthostichous leaves. In this experiment we investigated the manner in which sectoriality influences source-sink phloem partitioning from shoots to roots in tomatoes and whether the size of the sink (root) modifies the pattern of carbon movement outside sectored pathways. Using (13)C, we determined that shoot-to-root carbon transport in tomatoes is sectored even from upper leaves. Sink size also influenced carbon partitioning. Specifically, when a lateral root was grown in isolation (using a split-pot technique), it grew more and acquired significantly more (13)C from an orthostichous, exposed leaf than did any other single root. Vascular constraints were evident. (13)C accumulation in a large, isolated lateral root was very low when a leaf opposite the isolated lateral root was exposed. Thus sink size did not overcome vascular constraints. Because carbon assimilates are needed for nutrient acquisition and assimilation, these vascular constraints may affect the ability of sectored plants to utilize heterogeneously distributed soil resources. If so, future studies should compare species that differ in sectoriality to determine whether vascular constraints affect competitive hierarchies when soil resource availability is patchy.  相似文献   

3.
The evolution of tolerance is one potential plant response to selection imposed by herbivores. Plant architecture, and in turn, sectoriality may influence a plant's ability to tolerate tissue loss. However, each may either constrain or facilitate a plant's ability to compensate following herbivore attack depending on the plant part damaged and the identity of the damaging herbivore.Plants are limited in their ability to respond to localized damage by chewing insects because carbon does not flow freely from damaged to undamaged plant parts, particularly between branches. Thus, defoliation of individual branches invariably results in decreased growth and reproduction of those branches. Within branches, carbon flow via vascular connections between orthostichies may ameliorate the effects of damage restricted within an orthostichy. Local induction of secondary chemicals to spread damage by folivores throughout a plant's canopy, redistribution of resources within and between IPU's, and delaying reproductive activity until resources have been pooled may all alleviate the constraints on response of plants to grazing.In contrast to the effects of damage by grazers, the metameric construction of plants typically ensures points of regrowth from dormant buds when apical meristems are destroyed either by vertebrate browsers or galling insects. Sectoriality constrains the ability of sap-sucking insects to tap the entire resource base of a plant, thus having a positive effect on plant fitness. However, both the site and timing of attack mitigate the degree of limitation imposed by sectoriality. During peak periods of assimilation, photosynthate flow is mainly over short distances (between sources and sinks within the canopy), and thus sap-sucking insects have a small resource base to draw upon. In contrast, when sucking insects tap into vascular elements in which the flow is from roots to leaves and vice versa, resource availability to the insect (and in turn, potential resource loss from the plant) are only limited by the resources present in those vascular elements.Studies of specific traits in species which demonstrate differential tolerance would greatly add to our understanding of herbivore impacts on plant growth and reproduction. In particular, intraspecific variation in tolerance has been documented for individuals within and among populations with different grazing histories. A number of traits related to sectoriality and architecture probably contribute to such variation in tolerance, and because they are easily manipulated and easily quantified, represent potentially profitable avenues of research. These traits include distribution of leaves and buds, ability to release secondary meristems from dormancy, and the timing of resource movement both before and subsequent to damage.  相似文献   

4.
A well-integrated plant shows extensive carbohydrate translocation through the plant body. Even in highly integrated plants, however, translocation patterns will be sectorial if vascular tissue restricts carbon movement to sectors along stems. Both integration and sectorial translocation patterns are sensitive to plant architecture and thus may change as a plant develops. These patterns should vary also with the position of the source leaf because leaves at each node are unique in age and vascular relationship to the rest of the plant. I measured the effects of developmental stage and location of the source leaf on integration and sectoriality in an annual plant, Perilla frutescens, by labeling plants with C at one of three leaves and four developmental stages. Stage and source leaf affected both integration and sectoriality. Most notably, integration declined and sectoriality increased during seed fill, when resource demand at each node was high. Furthermore, translocation was least extensive from the leaf supporting the largest number of seeds on its axillary branch. These results suggest that plants are not homogeneous collections of subunits; rather, the role of each leaf in a plant's carbon budget is a function of its age and location on the plant.  相似文献   

5.
The plant metabolite composition is modulated by various abiotic and biotic factors including nutrient availability and herbivory. In turn, induced changes in plant quality can affect herbivore performance and mediate indirect interactions between spatially separated herbivores sharing a host. Studies on plant-mediated herbivore interactions have been carried out at single fertilization regimes only, but we hypothesized that nutrient availability modifies these interactions. Therefore, we studied the interactions between two vascular tissue herbivores, the aboveground feeding aphid Brevicoryne brassicae and the belowground infesting nematode Heterodera schachtii, on Arabidopsis thaliana grown under two nitrate fertilization conditions (varying by 33 %). Furthermore, we investigated plant growth and primary metabolic responses to fertilization and herbivore treatments, which could potentially mediate these interactions, as the herbivores may act as metabolic sinks. Whereas nematodes had no effects on aphids, aphid presence influenced nematodes in opposite directions, depending on fertilization: at low nitrate supply, aphids had a promoting effect on nematodes, whereas at high nitrate fertilization they lowered the nematode infestation compared to control plants. Plants produced significantly more biomass under high nitrate supply but C and N contents were not altered. Primary metabolite profiles differed only marginally between roots of both fertilization treatments in plants with and without aphids, indicating that nematodes may respond to these or other metabolic modifications, which are caused by minute environmental changes, in a sensitive way. Our results highlight the need to consider the importance of plant nutrient availability on the outcome of interactions between co-occurring herbivores in future studies.  相似文献   

6.
Plant sectoriality implies physiological subdivision of physically coherent plant structures. It is largely determined by vascular structure. Sectorial transport of carbon assimilates, mineral nutrients, water or hormones may be an essential component of plant phenotype in ecological interactions. Most studies of sectoriality have focussed on its effects on plant growth, resource allocation and herbivory. Since sectoriality allows semiautonomous reactions to environmental stimuli to be displayed by different plant parts, it also needs to be considered in discussions of selfishness vs. altruism of plant parts. Future lines of research should include analysis of the genetic basis of sectoriality, investigations into root sectoriality and its effects, studies of the impacts of sectoriality on plant life histories, and analyses of intra- and interpopulation variation in traits related to sectoriality.  相似文献   

7.
Exploitation of patchy light is a key determinant of plant performance in the forest understory. While many adaptive traits are known, the role of stem vasculature in understory photosynthesis is not established. Sectoriality—the degree of vascular constraint to long distance transport—has been hypothesized to limit growth in heterogeneous light. We simulated the photosynthetic potential of sectored and integrated plants in patchy light, as a function of soil water potential (patchy or uniform). We used hydraulic parameters typical of temperate woody species in an Ohm’s law model including a tangential resistance parameter, and simulated cavitation by varying axial resistance of leaves, leaves and roots, or the whole plant. Our results suggest that differential sectoriality will not affect photosynthesis when water is plentiful, but can constrain stomatal conductance at more negative soil water potentials, especially when only a small portion of the crown receives light. This effect is strongest just below the turgor loss point, and depends on axial resistance and soil water heterogeneity. Increased resistance in high light leaves decreases photosynthesis regardless of sectoriality. However, when resistance is increased for leaves and roots or the whole plant, photosynthesis decreases more for sectored than for integrated plants. Moreover, the simulations suggest that sectoriality can further depress photosynthesis when water availability is asymmetrical. These results might explain why integrated species, such as Betula lenta, B. alleghaniensis, and Acer saccharum thrive in the forest understory and grow rapidly into canopy gaps, while sectored species, such as Quercus rubra, do not.  相似文献   

8.
The induction of systemic responses in plants is associated with the connectivity between damaged and undamaged leaves, as determined by vascular architecture. Despite the widespread appreciation for studying variation in induced plant defense, few studies have characterized spatial variability of induction in the model species, Arabidopsis thaliana. Here we show that plant architecture generates fine scale spatial variation in the systemic induction of invertase and phenolic compounds. We examined whether the arrangement of leaves along the stem (phyllotaxy) produces predictable spatial patterns of cell-wall bound and soluble invertase activities, and downstream phenolic accumulation following feeding by the dietary specialist herbivore, Pieris rapae and the generalist, Spodoptera exigua. Responses were measured in leaves within and outside of the damaged orthostichy (leaves sharing direct vascular connections), and compared to those from plants where source-sink transport was disrupted by source leaf removal and by an insertional mutation in a sucrose transporter gene (suc2-1). Following herbivore damage to a single, middle-aged leaf, induction of cell-wall and soluble invertase was most pronounced in young and old leaves within the damaged orthostichy. The pattern of accumulation of phenolics was also predicted by these vascular connections and was, in part, dependent on the presence of source leaves and intact sucrose transporter function. Induction also occurred in leaves outside of the damaged orthostichy, suggesting that mechanisms may exist to overcome vascular constraints in this system. Our results demonstrate that systemic responses vary widely according to orthostichy, are often herbivore-specific, and partially rely on transport between source and sink leaves. We also provide evidence that patterns of induction are more integrated in A. thaliana than previously described. This work highlights the importance of plant vascular architecture in determining patterns of systemic induction, which is likely to be ecologically important to insect herbivores and plant pathogens.  相似文献   

9.
The transport of water, sugar, and nutrients in trees is restricted to specific vascular pathways, and thus organs may be relatively isolated from one another (i.e. sectored). Strongly sectored leaf-to-leaf pathways have been shown for the transport of sugar and signal molecules within a shoot, but not previously for water transport. The hydraulic sectoriality of leaf-to-leaf pathways was determined for current year shoots of six temperate deciduous tree species (three ring-porous: Castanea dentata, Fraxinus americana, and Quercus rubra, and three diffuse-porous: Acer saccharum, Betula papyrifera, and Liriodendron tulipifera). Hydraulic sectoriality was determined using dye staining and a hydraulic method. In the dye method, leaf blades were removed and dye was forced into the most proximal petiole. For each petiole the vascular traces that were shared with the proximal petiole were counted. For other shoots, measurements were made of the leaf-area-specific hydraulic conductivity for the leaf-to-leaf pathways (k(LL)). In five out of the six species, patterns of sectoriality reflected phyllotaxy; both the sharing of vascular bundles between leaves and k(LL) were higher for orthostichous than non-orthostichous leaf pairs. For each species, leaf-to-leaf sectoriality was determined as the proportional differences between non-orthostichous versus orthostichous leaf pairs in their staining of shared vascular bundles and in their k(LL); for the six species these two indices of sectoriality were strongly correlated (R2=0.94; P <0.002). Species varied 8-fold in their k(LL)-based sectoriality, and ring-porous species were more sectored than diffuse-porous species. Differential leaf-to-leaf sectoriality has implications for species-specific co-ordination of leaf gas exchange and water relations within a branch, especially during fluctuations in irradiance and water and nutrient availability.  相似文献   

10.
In aseptically cultured rhizome segments of the aquatic fern Marsilea quadrifolia, the addition of abscisic acid (ABA) to the liquid medium induced development of morphological characteristics distinctive to the land form of the plant. The land-form characteristics induced by ABA included a change in leaf morphology, an increase in the surface area of leaflets, differentiation of stomata and trichomes, elongation of petioles and roots, development of lateral roots, shortening of rhizome, and reduction in the number of leaves and roots formed on each plant.  相似文献   

11.
Plants as competing populations of redundant organs   总被引:5,自引:2,他引:3  
At any given time, a vascular or land plant may be a colony of functional sectors, each consisting of a shoot and its associated roots. In most plants, however, the activity of the cambium can change the relative vascular contacts of neighbouring shoots. Vascular tissues can even differentiate along new orientations, forming contacts that change the sectorial structure of the plant. Such reoriented differentiation is induced by the same auxin from developing leaves as are other types of vascular differentiation. The occurrence of vascular reorientation is determined by two criteria: the presence of an auxin flow that exceeds the transport capacity of the tissues that follow the previous, established orientation and the availability of nearby channels that are not fully occupied, not‘protected’ by their own flow of auxin. These controls of vascular orientation suggest that neighbouring shoots (and neighbouring roots) compete with one another, by means of signals indicating their state and their environment, for vascular contacts with the rest of the plant. Such internal competition between genetically equivalent shoots is an adaptation to heterogeneous environments: it is the shoots in the best conditions available to the plant that receive the support of a greater part of the root system. The potential for changes of vascular contacts points to open problems and to neglected aspects of the role of the cambium in plant organization.  相似文献   

12.
Abstract

This paper investigates the modification of root architecture of Spartium junceum L. seedlings grown in slope condition. It is reported that 50% of the total number of lateral roots are concentrated in few centimetres of the taproot near the collar. The anatomical analysis of transverse sections along the taproot axis reveals that this taproot zone is characterised by two types of lateral roots: one with a trace extending to the centre of the vascular cylinder by following the path of a medullar ray; one with a trace which ends in the vascular cambium. The first type may be lateral roots originated from the taproot primary structure; the second type seems to be lateral roots developing later when a secondary structure has completely substituted the primary structure. The emission of this second type of lateral roots seems to be strongly controlled by environmental conditions with considerable consequences upon the overall root architecture. In the example reported in this paper, young plants growing under mechanical stress due to a slope develop asymmetric root architecture with lateral roots elongating in two prevalent directions: up-slope or down-slope. This asymmetric architecture is produced in the zone of the taproot where a secondary structure is present and represents the plant response to the need of increasing its anchorage strength.  相似文献   

13.
The vascular connection between lateral roots and stem in the Ophioglossaceae and in two leptosporangiate fern species was examined. Two types of connections were found: “gradual” connections, which resemble leaf traces in ontogeny and morphology, and “abrupt” connections, which resemble the connections between lateral roots and their parent roots. Gradual root-stem connections occur in the genera Ophioglossum and Helminthostachys and in Woodwardia virginica. They are initiated in shoot apices distal to the level where cauline xylem elements mature. They resemble leaf traces in being provascular (procambial) strands that connect the cauline stele with the future vasculature of lateral appendages. As with leaf traces, gradual connections are part of the provascular and, later, protoxylem continuity between stems and lateral appendages. Gradual connections have many features in common with leaf traces, and the term root trace is applicable to them. The order of radial maturation of the primary xylem in gradual connections varies in different parts of the connections. It is endarch near the intersection with the cauline stele and exarch where the connections intersect root steles. Gradual connections resemble the transition regions of certain seed plants where protoxylem is also continuous from stem to root and the order of maturation is found to change continuously from stem to root. Abrupt connections occur in Botrychium and Osmunda cinnamomea. They develop in shoot apices at levels where cauline xylem is mature or maturing. The mature xylem does not dedifferentiate, so provascular and protoxylem continuity of the kind found in root traces does not occur. Also, reorientation of the order of maturation does not occur in abrupt connections. Xylem connectors are found in the region where radially oriented elements of the connections abut the longitudinally oriented cauline elements. Abrupt connections resemble the connection of secondary roots with their parent root systems since xylem connectors and the lack of continuity are also features found in these vascular systems. The resemblance of the vascular pattern of the fern root trace to the transition region of seed plants suggests that the radicle is more closely comparable to the cladogenous roots of pteridophytes than hitherto supposed.  相似文献   

14.
Phosphate availability regulates root system architecture in Arabidopsis   总被引:31,自引:0,他引:31  
Plant root systems are highly plastic in their development and can adapt their architecture in response to the prevailing environmental conditions. One important parameter is the availability of phosphate, which is highly immobile in soil such that the arrangement of roots within the soil will profoundly affect the ability of the plant to acquire this essential nutrient. Consistent with this, the availability of phosphate was found to have a marked effect on the root system architecture of Arabidopsis. Low phosphate availability favored lateral root growth over primary root growth, through increased lateral root density and length, and reduced primary root growth mediated by reduced cell elongation. The ability of the root system to respond to phosphate availability was found to be independent of sucrose supply and auxin signaling. In contrast, shoot phosphate status was found to influence the root system architecture response to phosphate availability.  相似文献   

15.
Plants have evolved some mechanisms to maximize the efficiency of phosphorus acquisition.Changes in root architecture are one such mechanism. When Fraxinus mandshurica Rupr. seedlings were grown under conditions of low phosphorus availability, the length of cells in the meristem zone of the lateral roots was longer, but the length of cells in the elongation and mature zones of the lateral roots was shorter,compared with seedlings grown under conditions of high phosphorus availability. The elongation rates of primary roots increased as phosphorus availability increased, but the elongation rates of the branched zones of the primary roots decreased. The number of lateral root primordia and the length of the lateral roots decreased as phosphorus availability increased. The topological index (altitude slope) decreased as phosphorus availability increased, suggesting that root architecture tended to be herringbone-like when seedlings were grown under conditions of low phosphate availability. Herringbone-like root systems exploit nutrients more efficiently, but they have higher construction costs than root systems with a branching pattern.  相似文献   

16.
Plants in the Arctic and subarctic face the problems posed by herbivory in addition to short growth seasons, low temperatures and low nutrient availability. Herbivores control plant performance by removing biomass, by altering resource availability, by altering the physical environment, and by changing the balance of competition. The main difference between effects of herbivores in the Arctic and at lower latitudes may be the relatively greater importance of changes in resource availability and the physical environment resulting from herbivore activity, and their consequences for plant competitive abilities.Species responses to defoliation depend primarily on growth form. Artificial defoliation of graminoids has negative effects on most species, but in the field total effects of herbivores are often neutral or even positive, resulting in increased nitrogen concentrations in shoots in many species. Shrubs are less able to respond positively to herbivory than graminoids, and although there is some evidence that deciduous shrubs recover faster than evergreen ones, the difference is not great. However, effects of herbivores on shrubs are little studied, despite their importance in the herbivore diet.Responses of individual species to increased nutrient availability vary greatly, even within a growth form. Some graminoids and shrubs show strong positive responses to fertilization while others show little or no response. These species-specific effects suggest that herbivores can alter interspecific relationships through differential responses to fertilization. Herbivores may alter plant population dynamics by altering flower or seed production, by consuming seedlings, or by altering the availability of microsites. However, no study has adequately examined this for any arctic species.Changes in community composition following removal of herbivores are the result not only of selective removal of some plant species, but also of changes in microsite availability, nutrient availability, litter accumulation, and soil characteristics. Thus, the view that abiotic factors are the overwhelming determinants of community structure in low-productivity environments is compatible with the view that herbivores exercise their influence to a large extent by altering abiotic factors.Arctic herbivores often increase total above-ground nitrogen availability (and therefore food quality) in the plant community, but increased productivity as a result of herbivores is rare. The increase in nutrient availability is probably due in part to changes in soil temperature and soil moisture following a reduction in litter accumulation.Although our knowledge of effects of herbivory on individual plants and on communities is extensive, we lack information on effects at the population level. We also do not have an adequate understanding of impacts of herbivores at different spatial and temporal scales, something which is needed to be able to make predictions about longer-term impact of herbivores in these systems.  相似文献   

17.
Ions can enhance water flow through the xylem via changes in the hydraulic resistance at border pit membranes. Because flow between adjacent xylem vessels occurs primarily via bordered pit fields, it is hypothesized that xylem sap ion concentrations would affect lateral movement of water more than longitudinal flow. Using tomato as a model system, evidence is presented for ion-mediated changes in xylem hydraulic resistance and the lateral transport of water. Water flow between adjacent xylem bundles increased by approximately 50% in the presence of ions while longitudinal flow only increased by approximately 20%. However, the enhancement of lateral exchange due to ions was magnified by the presence of a pressure difference between vascular bundles. These results indicate that the degree of nutrient-sharing among sectors of a plant may depend on both nutrient concentration and the availability of water in the root zone.  相似文献   

18.
以落叶松人工林为研究对象,通过施N肥试验,对不同季节、不同土壤深度根系进行取样,研究了1级根外生菌根真菌侵染率和形态,及其与不同季节、土壤深度和土壤N有效性的关系.结果表明:外生菌根真菌对落叶松人工林1级根的侵染率显著受不同季节和土壤深度土壤N有效性的影响.在不同季节和土层之间,施N肥导致菌根真菌侵染率下降.与未侵染菌根真菌相比,菌根真菌侵染导致1级根形态发生明显改变,平均直径增加18.7%,平均根长缩短23.7%,比根长降低16.3%.这种根系形态变化在不同季节、不同土壤深度处理中表现明显.菌根真菌侵染改变了1级根形态,影响根系的生理生态过程.  相似文献   

19.
20.
1.  There are myriad ways in which pollinators and herbivores can interact via the evolutionary and behavioural responses of their host plants.
2.  Given that both herbivores and pollinators consume and are dependent upon plant-derived nutrients and secondary metabolites, and utilize plant signals, plant chemistry should be one of the major factors mediating these interactions.
3.  Here we build upon a conceptual framework for understanding plant-mediated interactions of pollinators and herbivores. We focus on plant chemistry, in particular plant volatiles and aim to unify hypotheses for plant defence and pollination. We make predictions for the evolutionary outcomes of these interactions by hypothesizing that conflicting selection pressures from herbivores and pollinators arise from the constraints imposed by plant chemistry.
4.  We further hypothesize that plants could avoid conflicts between pollinator attraction and herbivore defence through tissue-specific regulation of pollinator reward chemistry, as well as herbivore-induced changes in flower chemistry and morphology.
5.  Finally, we test aspects of our predictions in a case study using a wild tomato species, Solanum peruvianum , to illustrate the diversity of tissue-specific and herbivore-induced differences in plant chemistry that could influence herbivore and pollinator behaviour, and plant fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号