首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Understanding the carbon flux of forests is critical for constraining the global carbon cycle and managing forests to mitigate climate change. Monitoring forest growth and mortality rates is critical to this effort, but has been limited in the past, with estimates relying primarily on field surveys. Advances in remote sensing enable the potential to monitor tree growth and mortality across landscapes. This work presents an approach to measure tree growth and loss using multidate lidar campaigns in a high‐biomass forest in California, USA. Individual tree crowns were delineated in 2008 and again in 2013 using a 3D crown segmentation algorithm, with derived heights and crown radii extracted and used to estimate individual tree aboveground biomass. Tree growth, loss, and aboveground biomass were analyzed with respect to tree height and crown radius. Both tree growth and loss rates decrease with increasing tree height, following the expectation that trees slow in growth rate as they age. Additionally, our aboveground biomass analysis suggests that, while the system is a net source of aboveground carbon, these carbon dynamics are governed by size class with the largest sources coming from the loss of a relatively small number of large individuals. This study demonstrates that monitoring individual tree‐based growth and loss can be conducted with multidate airborne lidar, but these methods remain relatively immature. Disparities between lidar acquisitions were particularly difficult to overcome and decreased the sample of trees analyzed for growth rate in this study to 21% of the full number of delineated crowns. However, this study illuminates the potential of airborne remote sensing for ecologically meaningful forest monitoring at an individual tree level. As methods continue to improve, airborne multidate lidar will enable a richer understanding of the drivers of tree growth, loss, and aboveground carbon flux.  相似文献   

2.
While theoretical allometric models postulate universal scaling exponents, empirical relationships between tree dimensions show marked variability that reflects changes in the biomass allocation pattern. As growth of the various tree compartments may be controlled by different functions, it is hypothesized that they may respond differently to factors of variation, resulting in variable tree morphologies and potentially in trade-offs between allometric relationships. We explore the variability of tree stem and crown allometries using a dataset of 1,729 trees located in an undisturbed wet evergreen forest of the Western Ghats, India. We specifically test whether species adult stature, terrain slope, tree size and crown light exposure affect the relationships between stem diameter and stem height (stem allometry), and between stem diameter and crown width, crown area and crown volume (crown allometries). Results show that both stem and crown allometries are subject to variations in relation to both endogenous (tree size, species adult stature) and exogenous (terrain slope, crown light exposure) factors. Stem allometry appears to be more affected by these factors than are crown allometries, including the stem diameter–crown volume relationship, which proved to be particularly stable. Our results support the idea that height is a prevailing adjustment factor for a tree facing variable growth (notably light) conditions, while stem diameter–crown volume allometry responds more to internal metabolic constraints. We ultimately discuss the various sources of variability in the stem and crown allometries of tropical trees that likely play an important role in forest community dynamics.  相似文献   

3.
Savannah ecosystems are important carbon stocks on the Earth, and their quantification is crucial for understanding the global impact of climate and land‐use changes in savannahs. The estimation of aboveground/belowground plant biomass requires tested allometric relationships that can be used to determine total plant biomass as a function of easy‐to‐measure morphological indicators. Despite recent advances in savannah ecology, research on allometric relations in savannahs remains confined to a few site‐specific studies where basal area is typically used as the main morphometric parameter with plant biomass. We investigate allometric relations at four sites along a 950‐km transect in the Kalahari across mean rainfall gradient 170 mm yr?1–550 mm yr?1. Using data from 342 harvested trees/shrubs, we relate basal area, height and crown diameter to aboveground biomass. These relationships are strongest in trees and weakest in small shrubs. Strong allometric relationships are also determined for morphologically similar groups of woody vegetation. We show that crown diameter can be used as an alternative to basal area in allometric relationships with plant biomass. This finding may enhance the ability to determine aboveground biomass over large areas using high‐resolution aerial or satellite imagery without requiring ground‐based measurements of basal area.  相似文献   

4.
Allometric equations for the estimation of tree volume and aboveground biomass in a tropical humid forest were developed based on direct measurements of 19 individuals of seven tree species in Northern Costa Rica. The volume and the biomass of the stems represented about two‐thirds of the total volume and total aboveground biomass, respectively. The average stem volume varied between 4 and 11 Mg/tree and the average total aboveground biomass ranged from 4 to 10 mg/tree. The mean specific gravity of the sampled trees was 0.62 ± 0.06 (g/cm3). The average biomass expansion factor was 1.6 ± 0.2. The best‐fit equations for stem and total volume were of logarithmic form, with diameter at breast height (R2= 0.66 ? 0.81) as an independent variable. The best‐fit equations for total aboveground biomass that were based on combinations of diameter at breast height, and total and commercial height as independent variables had R2 values between 0.77 and 0.87. Models recommended for estimating total aboveground biomass are based on diameter at breast height, because the simplicity of these models is advantageous. This variable is easy to measure accurately in the field and is the most common variable recorded in forest inventories. Two widely used models in literature tend to underestimate aboveground biomass in large trees. In contrast, the models developed in this study accurately estimate the total aboveground biomass in these trees.  相似文献   

5.
Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees ≥ 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
Applying allometric equations in combination with forest inventory data is an effective approach to use when qualifying forest biomass and carbon storage on a regional scale. The objectives of this study were to (1) develop general allometric tree component biomass equations and (2) investigate tree biomass allocation patterns for Pinus massoniana, a principal tree species native to southern China, by applying 197 samples across 20 site locations. The additive allometric equations utilized to compute stem, branch, needle, root, aboveground, and total tree biomass were developed by nonlinear seemingly unrelated regression. Results show that the relative proportion of stem biomass to tree biomass increased while the contribution of canopy biomass to tree biomass decreased as trees continued to grow through time. Total root biomass was a large biomass pool in itself, and its relative proportion to tree biomass exhibited a slight increase with tree growth. Although equations employing stem diameter at breast height (dbh) alone as a predictor could accurately predict stem, aboveground, root, and total tree biomass, they were poorly fitted to predict the canopy biomass component. The inclusion of the tree height (H) variable either slightly improved or did not in any way increase model fitness. Validation results demonstrate that these equations are suitable to estimate stem, aboveground, and total tree biomass across a broad range of P. massoniana stands on a regional scale.  相似文献   

7.
王佳慧  李凤日  董利虎 《生态学杂志》2018,29(11):3685-3695
森林生物量是森林生态系统的最基本数量特征,生物量数据是研究许多林业问题和生态问题的基础,因此,准确测定生物量对于计算碳储量以及研究气候变化、森林健康、森林生产力、养分循环等十分重要.目前,测算森林生物量常用的方法为生物量模型估算法.本研究基于小兴安岭地区和张广才岭地区97株实测生物量数据,建立了3个天然椴树立木可加性生物量模型系统(基于胸径的一元可加性生物量模型系统、基于胸径和树高的二元可加性生物量模型系统、基于最优变量的最优可加性生物量模型系统),采用非线性似乎不相关回归法进行参数估计,用加权方法解决模型的异方差问题,并采用“刀切法”进行模型检验.结果表明: 3种可加性生物量模型系统均能较好地对椴树各部分生物量进行拟合和预测(调整后确定系数Ra2>0.84,平均预测误差百分比MPE<8.5%,平均绝对误差MAE<16.3 kg,平均百分标准误差MPSE<28.5%),其中,树干和地上生物量的拟合效果优于树叶、树枝和树冠;在引入树高和树冠因子后,提高了模型的拟合效果和预测能力(Ra2提高0.01~0.04,MAE降低0.01~4.55 kg),缩小了预测值置信区间的范围,树干、树叶和地上生物量提高较多,树枝和树冠提高较少.总体来看,最优生物量模型系统效果最好,其次为二元生物量模型系统,再次是一元生物量模型系统,添加树高和树冠因子进行生物量模型的构建十分必要.  相似文献   

8.
The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems ha–1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B × X–0.5083). The allometric equation for each tree component was highly significant (p<0.0001), with all r2 values greater than 0.90. The allometric relationship was used to estimate total aboveground biomass that ranged from 7.9 to 23.2 ton ha–1. Rhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.  相似文献   

9.
Rain Forest Structure at Forest-Pasture Edges in Northeastern Costa Rica   总被引:2,自引:1,他引:1  
Land-use change in the Sarapiquí region of Costa Rica has resulted in a fragmented forest landscape with abrupt edges between forest and pasture. Forest responses to edge effects vary widely and can significantly affect ecosystem integrity. Our objective was to examine forest structure at 20+ yr old forest-pasture edges in Sarapiquí. Three transects with 0.095-ha plots at seven distances from forest edges were established in each of six forest patches. Stem density, basal area, and aboveground biomass in trees and palms ≥ 10-cm diameter at breast height were measured in all plots. In addition, hemispherical photographs were taken to determine leaf area index, understory light availability, and percent canopy openness. Linear mixed-effects models showed significantly higher tree stem density at forest edges, relative to interiors, a pattern reflected by increased stem density, basal area, and aboveground biomass in small diameter trees (≤ 20 cm) growing near edges. No differences in total tree basal area, aboveground biomass, or hemispherical photograph-derived parameters were detected across the forest edge to interior gradient. The recruitment of small diameter trees following edge creation has contributed to the development of dense vegetation at the forest edge and has aided in the maintenance of similar tree basal area and aboveground biomass between edge and interior environments. These data reflect on the robustness of forest edges in Sarapiquí, a characteristic that will likely minimize future detrimental edge effects and promote a number of high-value environmental services in these forests.  相似文献   

10.
Large‐diameter, tall‐stature, and big‐crown trees are the main stand structures of forests, generally contributing a large fraction of aboveground biomass, and hence play an important role in climate change mitigation strategies. Here, we hypothesized that the effects of large‐diameter, tall‐stature, and big‐crown trees overrule the effects of species richness and remaining trees attributes on aboveground biomass in tropical forests (i.e., we term the “big‐sized trees hypothesis”). Specifically, we assessed the importance of: (a) the “top 1% big‐sized trees effect” relative to species richness; (b) the “99% remaining trees effect” relative to species richness; and (c) the “top 1% big‐sized trees effect” relative to the “99% remaining trees effect” and species richness on aboveground biomass. Using environmental factor and forest inventory datasets from 712 tropical forest plots in Hainan Island of southern China, we tested several structural equation models for disentangling the relative effects of big‐sized trees, remaining trees attributes, and species richness on aboveground biomass, while considering for the full (indirect effects only) and partial (direct and indirect effects) mediation effects of climatic and soil conditions, as well as interactions between species richness and trees attributes. We found that top 1% big‐sized trees attributes strongly increased aboveground biomass (i.e., explained 55%–70% of the accounted variation) compared to species richness (2%–18%) and 99% remaining trees attributes (6%–10%). In addition, species richness increased aboveground biomass indirectly via increasing big‐sized trees but via decreasing remaining trees. Hence, we show that the “big‐sized trees effect” overrides the effects of remaining trees attributes and species richness on aboveground biomass in tropical forests. This study also indicates that big‐sized trees may be more susceptible to atmospheric drought. We argue that the effects of big‐sized trees on species richness and aboveground biomass should be tested for better understanding of the ecological mechanisms underlying forest functioning.  相似文献   

11.
Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven‐dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter–height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter–height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.  相似文献   

12.
森林生物量是林业生产经营和森林资源监测的重要指标,为探索高效低偏的单木生物量估测方法,引入人工神经网络.本研究采用黑龙江省东折棱河林场的101株长白落叶松地上生物量数据,基于不同变量(胸径、树高、冠幅)组合建立了4个聚合模型体系(AMS),采用加权回归消除模型的异方差.然后,基于最优的变量组合建立人工神经网络(ANN)...  相似文献   

13.
Canopy structural data can be used for biomass estimation and studies of carbon cycling, disturbance, energy balance, and hydrological processes in tropical forest ecosystems. Scarce information on canopy dimensions reflects the difficulties associated with measuring crown height, width, depth, and area in tall, humid tropical forests. New field and spaceborne observations provide an opportunity to acquire these measurements, but the accuracy and reliability of the methods are unknown. We used a handheld laser range finder to estimate tree crown height, diameter, and depth in a lowland tropical forest in the eastern Amazon, Brazil, for a sampling of 300 trees stratified by diameter at breast height (DBH). We found significant relationships between DBH and both tree height and crown diameter derived from the laser measurements. We also quantified changes in crown shape between tree height classes, finding a significant but weak positive trend between crown depth and width. We then compared the field‐based measurements of crown diameter and area to estimates derived manually from panchromatic 0.8 m spatial resolution IKONOS satellite imagery. Median crown diameter derived from satellite observations was 78 percent greater than that derived from field‐based laser measurements. The statistical distribution of crown diameters from IKONOS was biased toward larger trees, probably due to merging of smaller tree crowns, underestimation of understory trees, and overestimation of individual crown dimensions. The median crown area derived from IKONOS was 65 percent higher than the value modeled from field‐based measurements. We conclude that manual interpretation of IKONOS satellite data did not accurately estimate distributions of tree crown dimensions in a tall tropical forest of eastern Amazonia. Other methods will be needed to more accurately estimate crown dimensions from high spatial resolution satellite imagery.  相似文献   

14.
Abstract Current estimates of the total biomass in tropical rainforests vary considerably; this is due in large part to the different approaches that are used to calculate biomass. In this study we have used a canopy crane to measure the tree architectures in a 1 ha plot of complex mesophyll vine forest at Cape Tribulation, Australia. Methods were developed to measure and calculate the crown and stem biomass of six major species of tree and palm (Alstonia scholaris (Apocynaceae), Cleistanthus myrianthus (Euphorbiaceae), Endiandra microneura (Lauraceae), Myristica insipida (Myristicaceae), Acmena graveolens (Myrtaceae), Normanbya normanbyi (Arecaceae)) using the unique access provided by the crane. This has allowed the first non‐destructive biomass estimate to be carried out for a forest of this type. Allometric equations which relate tree biomass to the measured variable ‘diameter at breast height’ were developed for the six species, and a general equation was also developed for trees on the plot. The general equation was similar in form to equations developed for tropical rainforests in Brazil and New Guinea. The species equations were applied at the level of families, the generalized equation was applied to the remaining species which allowed the biomass of a total of 680 trees to be calculated. This has provided a current estimate of 270 t ha−1 above‐ground biomass at the Australian Canopy Crane site; a value comparable to lowland rainforests in Panama and French Guiana. Using the same tree database seven alternative allometric equations (literature equations for tropical rainforests) were used to calculate the site biomass, the range was large (252–446 t ha−1) with only three equations providing estimates within 34 t ha−1 (12.5%) of the site value. Our use of multiple species‐specific allometric equations has provided a site estimate only slightly larger (1%) than that obtained using allometric equations developed specifically for tropical wet rainforests. We have demonstrated that it is possible to non‐destructively measure the biomass in a complex forest using an on‐site canopy crane. In conjunction the development of crown maps and a detailed tree architecture database allows changes in forest structure to be followed quantitatively.  相似文献   

15.
林木分化对兴安落叶松异速生长方程和生物量分配的影响   总被引:4,自引:0,他引:4  
李巍  王传宽  张全智 《生态学报》2015,35(6):1679-1687
林木因对资源竞争而产生分化,从而影响林木的异速生长方程和生物量分配,但其影响程度还不清楚。采用林木相对直径法将38株兴安落叶松(Larix gmelinii)样木在林分中的分化等级分为优势木、中等木和被压木,量化林木分化对林木异速生长方程和生物量分配的影响。结果显示:生物量组分异速生长方程多以胸径(DBH)为自变量为好,但以枝下高处的树干直径为自变量估测其枝、叶生物量时更精确。在一定的胸径范围内,同一胸径下不同林木分化等级的地下部分各组分生物量没有显著差异(P0.05),但优势木分配更多的生物量给枝和叶,中等木比优势木分配更多的生物量给树干,中等木比被压木分配更多的生物量给地上部分,而且被压木和中等木的树高显著高于优势木。除根茎生物量之外,不同林木分化等级的生物量组分(包括枝、叶、树干和根系)的相对分配比例无显著差异(P0.05),根冠比保持相对稳定。这些结果表明,主要由竞争而引起的林木分化改变了兴安落叶松地上生物量组分的异速生长和分配,但其相对分配格局较为保守。  相似文献   

16.
The evergreen oak Quercus glauca often dominates secondary broadleaved forests in Western Japan. It is regarded as a mid-successional species, whose diameter and height growth fall between those of early- and late-successional species. Despite the ecological importance of this evergreen oak in the secondary succession of the evergreen broadleaved forest zone in Japan, tree-felling data that allow estimations of tree mass and leaf area from non-destructive measurements are lacking. This paper provides stem growth data, read from tree rings on disks sampled from 13 Q. glauca stems, and their allometric data. The samples were collected in 1994 from the Ginkakuji-san National Forest, Kyoto City, Japan. Allometric data comprised data on stem age, diameter at breast height, diameter at 10% height, tree height, height of the lowest living branch, height of the lowest living leaf in the crown, volume of the main stem, squared stem diameter just below the lowest living branch, total leaf area of the stem, dry weight of the total leaves, dry weight of all branches, dry weight of the main stem, total aboveground dry weight, mean relative photosynthetic photon flux density (PPFD) above the crown, mean relative PPFD below the crown, crown projection area, and specific leaf area. These data can be helpful for estimating the biomass and leaf area index of a Q. glauca stand by enabling the derivation of allometric relationships between non-destructive measurements (such as stem diameter at breast height, and tree height) and tree mass or leaf area. Diameters (including bark thickness) at ground height and above (at 0.5- or 1-m intervals) for each stem are also provided. Stem growth data were based on tree-ring reads from disks taken from heights of 0.0 and 0.3 m, and at 0.5-m (stem height <7 m) or 1.0-m (stem height ≥7 m) intervals above that. Stem volume growth derived from these tree-ring data can be converted into stem mass growth if combined with an analysis of the allometric data, which may serve as a useful resource for the estimation of carbon fixation by evergreen oaks in relation to global climate change.  相似文献   

17.
不同林分起源的相容性生物量模型构建   总被引:4,自引:0,他引:4  
目前为止已有不同方法构建生物量相容性模型,但不同林分起源的生物量相容性模型很少报道。针对此问题,以150株南方马尾松(Pinus masson iana)地上生物量数据为例,利用比例平差法和非线性联立方程组法建立不同起源地上生物量以及干材、干皮、树枝和树叶各分项生物量相容的通用性模型。根据分配层次不同,两种方法又各自考虑总量直接控制和分级联合控制两种方案。从直径、树高、地径、枝下高和冠幅5个林分变量中选取不同的变量构建一元、二元和三元生物量模型,并利用加权最小二乘回归法消除生物量模型中存在的异方差性。结果为:比例平差法和非线性联立方程组法都能有效保证各分项生物量总和等于总生物量,模型预测精度满足要求。总体而言,非线性联立方程组方法比比例平差方法精度高,同时两种方法中总量直接控制法比分级联合控制法预测效果好;各分项生物量模型本身作为权函数能有效消除异方差;各分项对应的三元生物量模型预测精度最高,其次是二元生物量模型,最低是一元生物量模型,但这些差异不是很大。总之,为权衡考虑模型预测精度和调查成本,建议把直径和树高作为协变量利用总量直接控制非线性联立方程组法对不同起源生物量建模。  相似文献   

18.
Forest structure is strongly related to forest ecology, and it is a key parameter to understand ecosystem processes and services. Airborne laser scanning (ALS) is becoming an important tool in environmental mapping. It is increasingly common to collect ALS data at high enough point density to recognize individual tree crowns (ITCs) allowing analyses to move beyond classical stand‐level approaches. In this study, an effective and simple method to map ITCs, and their stem diameter and aboveground biomass (AGB) is presented. ALS data were used to delineate ITCs and to extract ITCs’ height and crown diameter; then, using newly developed allometries, the ITCs’ diameter at breast height (DBH) and AGB were predicted. Gini coefficient of DBHs was also predicted and mapped aggregating ITCs predictions. Two datasets from spruce dominated temperate forests were considered: one was used to develop the allometric models, while the second was used to validate the methodology. The proposed approach provides accurate predictions of individual DBH and AGB (R2 = .85 and .78, respectively) and of tree size distributions. The proposed method had a higher generalization ability compared to a standard area‐based method, in particular for the prediction of the Gini coefficient of DBHs. The delineation method used detected more than 50% of the trees with DBH >10 cm. The detection rate was particularly low for trees with DBH below 10 cm, but they represent a small amount of the total biomass. The Gini coefficient of the DBH distribution was predicted at plot level with R2 = .46. The approach described in this work, easy applicable in different forested areas, is an important development of the traditional area‐based remote sensing tools and can be applied for more detailed analysis of forest ecology and dynamics.  相似文献   

19.
Aboveground tree biomass of Korean pine (Pinus koraiensis Sieb. et Zucc.) was determined for a natural forest of Korean pine and mixed deciduous trees and seven age classes of plantation forests in central Korea. Regression analyses of the dry weights of stem wood, stem bark, branches, and needles versus diameter at breast height were used to calculate regression equations of the form of log Y = a + b log X. Biomass of Korean pine in the mixed forest was 118 Mg ha(-1), and biomass in the plantations was linearly related to stand age, ranging from 52.3 Mg ha(-1) in 11 to 20-year-old stands to 317.9 Mg ha(-1) in 71 to 80-year-old stands. The proportions of stem wood and stem bark in the total aboveground biomass decreased with stand age while those of branch and needle increased. Specific leaf area of Korean pine ranging from 35.2 to 52.1 cm2 g(-1) was significantly different among crown positions and needle ages; in general, lower crown position and current needles had the greatest surface area per unit dry weight.  相似文献   

20.
森林生物量计算是全球碳储量估算的基础,现已纳入全球国家森林清单项目。普遍的森林碳汇计量采用的材积源生物量法针对胸径5 cm以上的树木,幼树(胸径<6 cm,树高>0.3 m)的碳汇量并未被完整计入其中,导致生态系统碳汇能力被低估。基于青藏高原137株5种典型人工林幼树的实测生物量数据,以地径代替胸径作为预测变量,采用加权广义最小二乘法建立独立生物量模型,选择比例总量直接控制及代数和控制2种结构形式的相容性生物量模型,并通过加权非线性似乎不相关回归进行方程组估算,建立了整株及各组分的相容性生物量方程。结果表明: 二元相容性模型优于一元以及独立模型,对整株生物量来说,R2达到0.90~0.99,两种相容性模型对于不同树种来说各有优势但精度差距可以忽略,从林业生产实践角度考虑,比例总量直接控制生物量模型更有实践意义,从遥感技术的变量提取角度考虑,本研究构建了更适于遥感估算的幼树生物量模型,其整体上拟合精度高,可以准确地进行类似气候环境中的幼树整株和各组分生物量的估算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号