首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemokine receptor expressions and responsiveness of cord blood T cells   总被引:5,自引:0,他引:5  
Chemokines and their receptors play a critical role in the selective attraction of various subsets of leukocytes. We examined the chemokine receptor expressions and responsiveness of cord blood (CB) T cells. Flow-cytometric analysis revealed that peripheral blood (PB) T cells expressed CCR-1, CCR-2, CCR-5, CCR-6, CXC chemokine receptor-3 (CXCR-3), and CXCR-4, while CB T cells expressed only CXCR-4 on their surface. Chemotactic migratory response of CB T cells to macrophage-inflammatory protein (MIP)-1alpha, monocyte chemoattractant protein-1, RANTES, MIP-3alpha, monokine induced by IFN-gamma, and IFN-gamma-inducible protein-10 was significantly impaired compared with those of PB T cells. In contrast, the ability of CB T cells to migrate to MIP-3beta, 6Ckine, and stromal cell-derived factor-1alpha was greater than that of PB T cells, and these events were correlated with the expression levels of CCR-7 and CXCR-4, respectively. Engagement of CD3 and CD28 specifically up-regulated CXCR-3 expression and chemotaxis to monokine induced by IFN-gamma and IFN-gamma-inducible protein-10, whereas this stimulation down-regulated CCR-7 expression and chemotaxis to MIP-3beta and 6Ckine in PB T cells, but not in CB T cells. These results suggest that PB T cells and CB T cells exhibit distinct chemokine responsiveness via different chemokine receptor repertoire.  相似文献   

2.
IL-6 is synthesized in human papilloma virus (HPV)-transformed cervical carcinoma cell lines and is supposed to stimulate these cells in an autocrine manner. We studied IL-6 production and responsiveness in nonmalignant HPV-transformed keratinocytes and cervical carcinoma cells in detail. IL-6 was detected in cervical carcinomas in situ. Correspondingly, HPV-positive carcinoma cell lines expressed high IL-6 levels. However, these carcinoma cell lines showed low responsiveness to IL-6 as revealed by low constitutive STAT3 binding activity, which was not further enhanced by exogenous IL-6. In contrast, in vitro-transformed nonmalignant keratinocytes without endogenous IL-6 production strongly responded to exogenous IL-6 with activation of STAT3. STAT3 protein expression levels were comparable in both responsive and nonresponsive cell lines. Also, gp130, the upstream signal-transducing receptor subunit conveying IL-6 signals into the cell, was expressed in all tested cell lines. However, the IL-6 binding subunit gp80 was lost in the malignant cells. Addition of soluble gp80 was sufficient to restore IL-6 responsiveness in carcinoma cells as shown by enhanced activation of STAT3 binding activity. As a consequence of the restored IL-6 responsiveness, carcinoma cells strongly produced the chemokine monocyte chemoattractant protein-1 (MCP-1). Our data demonstrate that cervical carcinoma cells producing high amounts of IL-6 only weakly respond to IL-6 in an autocrine manner due to limited gp80 expression. While production of IL-6 might contribute to a local immunosuppressive effect, silencing an autocrine IL-6 response prevents constitutive production of the mononuclear cell-attracting chemokine MCP-1. Both mechanisms might help the tumor to escape the immune system.  相似文献   

3.
CD8 T cell-mediated immune responses fall into two distinct types based on effector cell-derived cytokine production. Type I CD8 T cells (Tc1) produce IFN-gamma, whereas type 2 cells (Tc2) secrete IL-4, IL-5, IL-10, and GM-CSF. Using a murine TCR transgenic T cell/breast tumor model, we show that adoptively transferred Ag-specific Tc1 cells are more effective in delaying mammary tumor growth and progression than that of functionally distinct Tc2 cells. Donor Tc1 cells administered 7 days posttumor challenge localized and persisted at sites of primary tumor growth with antitumor responses that were dependent, in part, on effector cell-derived IFN-gamma. Tc1-mediated responses markedly enhanced the appearance and local accumulation of highly differentiated (CD44(high)) CD4 and CD8 endogenous tumor-infiltrating T cells when compared with that of untreated tumor-bearing mice. Conversely, Tc1 cell transfer markedly delayed the appearance of corresponding nondifferentiated (CD44(low)) endogenous T cells. Such cells were acutely activated as defined by coexpression of surface markers associated with TCR engagement (CD69) and early T cell activation (CD25). Moreover, cellular response kinetics appeared to further correlate with the up-regulation of endogenous T cells producing the chemokine IFN-gamma-inducible protein-10 in vivo. This suggested that CD8-mediated type 1 antitumor responses cannot only promote accumulation of distinct endogenous CD4 and CD8 T cell subpopulations, but also facilitate and preferentially modulate their localization kinetics, persistence, states of activation/differentiation, and function within the primary tumor environment at various stages of tumor progression. These studies offer insight into potential mechanisms for enhancing T cell-based immunotherapy in breast cancer.  相似文献   

4.
Chemokines can promote interstitial fibrosis that is, in turn, a strong predictor of renal failure in chronic glomerulonephritides (GN). Resident renal cells, including renal tubular epithelial cells (RTEC), represent a prominent source of chemokine expression. Evaluating those factors responsible for sustained chemokine production by RTEC during GN is therefore crucial. The contribution of interstitial T cells to such expression, and in particular the precise nature of their interactions with RTEC, are poorly understood. Activated T cell/RTEC coculture induced production of high levels of monocyte chemoattractant protein-1 (MCP-1), RANTES, and IFN-inducible protein-10 from RTEC. Using double-chamber cultures and activated T cell plasma membrane preparations we demonstrated that both cell contact and soluble factors contributed to RTEC chemokine production. Importantly, different chemokines exhibited distinct activation requirements. Thus, for RANTES cell contact was essential, but not sufficient. In contrast, either soluble factors or cell contact induced MCP-1 and IFN-inducible protein-10 production, although both pathways were required for a maximal response. Neutralization experiments identified critical roles in this process for proinflammatory cytokines such as TNF-alpha, IL-1beta, and IFN-gamma as well as membrane molecules such as LFA-1, CD40 ligand, and membrane bound TNF-alpha. Finally, chemotactic bioassays of T cell/RTEC coculture supernatants demonstrated 80% reduction of monocyte migration following MCP-1 neutralization, indicating a dominant role for this chemokine. In summary, activation of renal tubular cells by infiltrating T cells can amplify and perpetuate local inflammatory responses through chemokine production differentially mediated by soluble and cell contact-dependent factors. Recognition of this regulatory diversity has important implications in the choice of potential therapeutic targets in GN.  相似文献   

5.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

6.
Previous studies have shown that the CXC chemokine, IFN-gamma-inducible T cell alpha chemoattractant (I-TAC), was chemotactic for IL-2-activated human T lymphocytes, which express abundant CXCR3. However, because most memory T lymphocytes are also CXCR3(+), the ability of I-TAC to promote the migration of normal human blood T cells across HUVEC monolayers in Transwell chambers was examined. I-TAC induced a marked (4- to 6-fold) increase in transendothelial migration (TEM) of T cells across unstimulated HUVEC from 5.6 to 28% of input T cells and was substantially more active than IFN-gamma-inducible protein-10, another CXCR3 ligand. I-TAC significantly enhanced TEM of T cells across TNF-alpha, but not across IFN-gamma or IFN-gamma plus TNF-alpha-activated HUVEC. IFN-gamma or IFN-gamma plus TNF-alpha-activated HUVEC produced substantial amounts of I-TAC, in contrast to TNF-alpha-treated EC. Both CD4(+) and CD8(+) T cells migrated in response to I-TAC to a similar extent, while memory T cells migrated several fold better than naive T cells. Blockade of LFA-1 strongly inhibited I-TAC-induced T cell TEM across unstimulated HUVEC, and approximately 50-60% of the TEM across cytokine-activated HUVEC. However, blocking both LFA-1 and very late Ag-4 abolished I-TAC induced T cell TEM. In vivo significant levels of I-TAC were detected in arthritic synovial fluid. Thus, I-TAC is one of the most potent chemoattractants of normal human blood CD4 and CD8 T cell TEM and is likely a major mediator of blood memory T lymphocyte migration to inflammation.  相似文献   

7.
T cell-mediated liver diseases are associated with elevated serum levels of C-C chemokine ligand 2 (CCL2)/monocyte chemoattractant protein-1 (MCP-1). However, the extent to which the actions of CCL2/MCP-1 contribute to the pathogenesis of T cell-mediated hepatitis remains incompletely understood. Con A-induced hepatitis is a liver-specific inflammation mediated by activated T cells and is driven by an up-regulation of the hepatic expression of TNF-alpha, IFN-gamma, and IL-4. The present study examined the role of CCL2/MCP-1 in the pathogenesis of T cell-mediated hepatitis induced by Con A administration in the mouse. We demonstrate a novel hepatoprotective role for CCL2/MCP-1 during Con A-induced hepatitis, because CCL2/MCP-1 neutralization strikingly enhanced hepatic injury, both biochemically and histologically, after Con A administration. Furthermore, CCL2/MCP-1 neutralization was associated with a significant reduction in the hepatic levels of TNF-alpha and IFN-gamma, but with a significant increase in hepatic IL-4 levels. Moreover, IL-4 production and CCR2 expression by Con A-stimulated CD3(+)NK1.1(+) T cells was significantly reduced by rMCP-1 treatment in vitro. In summary, we propose that CCL2/MCP-1 fulfills a novel anti-inflammatory role in T cell-mediated hepatitis by inhibiting CD3(+)NK1.1(+) T cell-derived IL-4 production through direct stimulation of its specific receptor CCR2. These findings may have direct clinical relevance to T cell-mediated hepatitis.  相似文献   

8.
9.
CD40, a member of the TNFR superfamily, is expressed on a variety of host immune cells, as well as some tumors. In this study, we show that stimulation of CD40 expressed on both mouse and human renal carcinoma cells (RCCs) triggers biological effects in vitro and in vivo. Treatment of the CD40+ Renca mouse RCC tumor cells in vitro with an agonistic anti-CD40 Ab induced strong expression of the genes and proteins for GM-CSF and MCP-1, and induced potent chemotactic activity. Similarly, administration of alphaCD40 to both wild-type and CD40-/- mice bearing Renca tumors resulted in substantial amounts of TNF-alpha and MCP-1 in the serum, increased the number of total splenocytes and MHC class II+ CD11c+ leukocytes, and when combined with IFN-gamma, inhibited the progression of established Renca tumors in vivo in both wild-type and CD40-/- mice. Similarly, treatment of CD40+ A704 and ACHN human RCC lines with mouse anti-human CD40 Ab induced strong expression of genes and proteins for MCP-1, IL-8, and GM-CSF in vitro and in vivo. Finally, in SCID mice, the numbers of ACHN pulmonary metastases were dramatically reduced by treatment with species-specific human CD40 Ab. These results show that CD40 stimulation of CD40+ tumor cells can enhance immune responses and result in antitumor activity.  相似文献   

10.
In polymyositis (PM)/dermatomyositis (DM), T cells infiltrate the muscle tissues and interact with muscle cells via cell surface molecules. Recently, myoblasts have been reported to express CD40, but little is known about the role of CD40 in myoblasts. In the present study we examined the expression and involvement of CD40 and CD40 ligand (CD40L) in the interaction between muscle cells and T cells in PM/DM. Immunohistochemical staining revealed that CD40 was expressed on muscle cells in five of five PM and four of five DM patients, and that infiltrating mononuclear cells (MNCs) expressed CD40L in all cases of PM/DM. These CD40L-expressing MNCs were primarily CD4+ T cells. IFN-gamma, which is known to induce CD40 expression on various types of cells, was also expressed on the MNCs in four of the PM and four of the DM patients. Although cultured human myoblasts (SkMC 2859) did not express CD40 constitutively, IFN-gamma induced CD40 expression in a dose-dependent manner. To clarify the functional roles of CD40-mediated signals, the effects of a trimeric form of recombinant human CD40L on cytokine production were studied in SkMC 2859 that were prestimulated with IFN-gamma to express CD40. Recombinant human CD40L markedly increased the production of IL-6, IL-8, IL-15, and monocyte chemoattractant protein-1 of SkMC 2859. The expression of these humoral factors in muscle cells of PM and DM was demonstrated by immunohistochemistry. These results suggest that interaction between T cells and muscle cells via the CD40-CD40L system contributes to the immunopathogenesis of PM/DM by augmenting inflammation via cytokine production by the muscle cells.  相似文献   

11.
Glucocorticoids have long been used as first-line immunosuppressants, although their precise mechanism of action has not been fully elucidated yet. This study evaluated the gene and protein expression of monocyte chemoattractant protein-1 (MCP-1), and its relationship with interleukin-12 and interleukin-10 synthesis, in human monocyte-derived dendritic cells exposed to dexamethasone. Dendritic cells were differentiated in the presence or in the absence of dexamethasone and then activated by IFN-gamma+soluble CD40 ligand; the gene and protein expression of target cytokines was measured by real-time PCR and ELISA, respectively. Our results showed that dexamethasone-primed mature dendritic cells expressed low levels of interleukin-12, and, at the opposite, high levels of interleukin-10 and MCP-1. Transfection experiments confirmed the ability of dexamethasone to activate MCP-1 gene promoter. Dexamethasone increased also MCP-2, but not MCP-3 synthesis, and the gene expression of CC chemokine receptor-2 by mature dendritic cells. The addition of anti-MCP-1 blocking antibody depressed MCP-1 release, and increased interleukin-12 production in dexamethasone-treated dendritic cells, thus demonstrating that interleukin-12 downregulation is largely dependent on MCP-1 overexpression. Our findings suggest that the induction of MCP expression in human dendritic cells by dexamethasone, and the amplification of cell response via the upregulation of the chemokine cognate receptor, may be critical to inhibit type 1 T-helper-biased immune response and, possibly, to favor type 2 T-helper-skewed response.  相似文献   

12.
CD40 ligand (CD40L) is a membrane-bound molecule expressed by activated T cells. CD40L potently induces dendritic cell (DC) maturation and IL-12p70 secretion and plays a critical role during T cell priming in the lymph nodes. IFN-gamma and IL-4 are required for CD40L-mediated cytokine secretion, suggesting that T cells are required for optimal CD40L activity. Because CD40L is rapidly up-regulated by non-T cells during inflammation, CD40 stimulation may also be important at the primary infection site. However, a role for T cells at the earliest stages of infection is unclear. The present study demonstrates that the innate immune cell-derived cytokine, IL-1beta, can increase CD40L-induced cytokine secretion by monocyte-derived DC, CD34(+)-derived DC, and peripheral blood DC independently of T cell-derived cytokines. Furthermore, IL-1beta is constitutively produced by monocyte-derived DC and monocytes, and is increased in response to intact Escherichia coli or CD40L, whereas neither CD34(+)-derived DC nor peripheral blood DC produce IL-1beta. Finally, DC activated with CD40L and IL-1beta induce higher levels of IFN-gamma secretion by T cells compared with DC activated with CD40L alone. Therefore, IL-1beta is the first non-T cell-derived cytokine identified that enhances CD40L-mediated activation of DC. The synergy between CD40L and IL-1beta highlights a potent, T cell-independent mechanism for DC activation during the earliest stages of inflammatory responses.  相似文献   

13.
Accumulating evidence indicates that monocyte chemoattractant protein-1 (MCP-1), a CC chemokine, also displays immunoregulatory functions and may be involved in Th subset differentiation. In this study, we examined the effects of MCP-1 on the cytokine-driven differentiation of monocytes into dendritic cells (DCs), the most potent APCs for naive T cells. We found that DCs generated in the presence of MCP-1 displayed a markedly reduced production of IL-12 in response to CD40 ligand but not in response to Staphylococcus aureus stimulation in the presence or absence of IFN-gamma. The production of IL-10, a potent endogenous IL-12 inhibitor, was not affected by MCP-1. Whereas the inhibitory activity of MCP-1 on IL-12 production by monocytes was sensitive to pertussis toxin, its effects on DC differentiation were pertussis toxin resistant. MCP-1 did not affect the surface phenotype and T cell-stimulating activity of DCs, but most interestingly, naive T cells stimulated with MCP-1-primed DCs produced much less IFN-gamma but the same levels of IL-13. Taken together, our results indicated that MCP-1 modulates the differentiation of monocytes into DCs and may thereby inhibit Th1 cell development.  相似文献   

14.
CD40, a member of the TNF receptor superfamily, is expressed on B cells, dendritic cells, and some tumor cells, including melanoma and bladder carcinoma. In this study, we report that both mouse and human renal carcinoma cells (RCC) also constitutively express functional CD40. Treatment of mouse RCC with CD40L induced strong expression of genes and proteins for ICAM-1 and Fas, and this expression was further enhanced by combining CD40L with IFN-gamma. Similar effects were demonstrated using an agonist anti-CD40 antibody. The increased levels of Fas expression on RCC after treatment with CD40L plus IFN-gamma resulted in potent killing by either FasL-positive effector cells or agonistic anti-Fas antibody. The combination of CD40L plus IFN-gamma also significantly enhanced killing of RCC by tumor-specific CTL lines. Our results demonstrate that constitutively expressed CD40 is functionally active and may provide a molecular target for the development of new approaches to the treatment of RCC.  相似文献   

15.
CXC chemokine receptor 4 expression and function in human astroglioma cells   总被引:7,自引:0,他引:7  
Chemokines constitute a superfamily of proteins that function as chemoattractants and activators of leukocytes. Astrocytes, the major glial cell type in the CNS, are a source of chemokines within the diseased brain. Specifically, we have shown that primary human astrocytes and human astroglioma cell lines produce the CXC chemokines IFN-gamma-inducible protein-10 and IL-8 and the CC chemokines monocyte chemoattractant protein-1 and RANTES in response to stimuli such as TNF-alpha, IL-1beta, and IFN-gamma. In this study, we investigated chemokine receptor expression and function on human astroglioma cells. Enhancement of CXC chemokine receptor 4 (CXCR4) mRNA expression was observed upon treatment with the cytokines TNF-alpha and IL-1beta. The peak of CXCR4 expression in response to TNF-alpha and IL-1beta was 8 and 4 h, respectively. CXCR4 protein expression was also enhanced upon treatment with TNF-alpha and IL-1beta (2- to 3-fold). To study the functional relevance of CXCR4 expression, stable astroglioma transfectants expressing high levels of CXCR4 were generated. Stimulation of cells with the ligand for CXCR4, stromal cell-derived factor-1alpha (SDF-1alpha), resulted in an elevation in intracellular Ca(2+) concentration and activation of the mitogen-activated protein kinase cascade, specifically, extracellular signal-regulated kinase 2 (ERK2) mitogen-activated protein kinase. Of most interest, SDF-1alpha treatment induced expression of the chemokines monocyte chemoattractant protein-1, IL-8, and IFN-gamma-inducible protein-10. SDF-1alpha-induced chemokine expression was abrogated upon inclusion of U0126, a pharmacological inhibitor of ERK1/2, indicating that the ERK signaling cascade is involved in this response. Collectively, these data suggest that CXCR4-mediated signaling pathways in astroglioma cells may be another mechanism for these cells to express chemokines involved in angiogenesis and inflammation.  相似文献   

16.
Cell-mediated immunity that results in IL-12/IFN-gamma production is essential to control infections by intracellular organisms. Studies in animal models revealed contrasting results in regard to the importance of CD40-CD40 ligand (CD40L) signaling for induction of a type 1 cytokine response against these pathogens. We demonstrate that CD40-CD40L interaction in humans is critical for generation of the IL-12/IFN-gamma immune response against Toxoplasma gondii. Infection of monocytes with T. gondii resulted in up-regulation of CD40. CD40-CD40L signaling was required for optimal T cell production of IFN-gamma in response to T. gondii. Moreover, patients with hyper IgM (HIGM) syndrome exhibited a defect in IFN-gamma secretion in response to the parasite and evidence compatible with impaired in vivo T cell priming after T. gondii infection. Not only was IL-12 production in response to T. gondii dependent on CD40-CD40L signaling, but also, patients with HIGM syndrome exhibited deficient in vitro secretion of this cytokine in response to the parasite. Finally, in vitro incubation with agonistic soluble CD40L trimer enhanced T. gondii-triggered production of IFN-gamma and, through induction of IL-12 secretion, corrected the defect in IFN-gamma production observed in HIGM patients. Our results are likely to explain the susceptibility of patients with HIGM syndrome to infections by opportunistic pathogens.  相似文献   

17.
In this study, we describe the expression and function of CD40, a TNF receptor family member, in cervical carcinomas. CD40 was present at very low levels in normal cervical epithelium but was overexpressed in human papillomavirus-infected lesions and advanced squamous carcinomas of the cervix. The stimulation of CD40-positive cervical carcinoma cell lines with soluble CD40L (CD154) resulted in activation of the NF-kappaB and MAPK signaling pathways and up-regulation of cell surface markers and intracellular molecules associated with Ag processing and presentation. Concomitantly, the CD154-induced activation of CD40 in carcinoma cells was found to directly influence susceptibility to CTL-mediated killing. Thus, CD40 stimulation in cervical carcinoma cell lines expressing a TAP-dependent human papillomavirus 16 E6 Ag epitope resulted in their enhanced killing by specific CTLs. However, CD154 treatment of carcinoma cells expressing proteasome-dependent but TAP-independent Ags from the EBV-encoded BRLF1 and BMLF1 failed to increase tumor cell lysis by specific CTLs. Moreover, we demonstrate that chemotherapeutic agents that suppress protein synthesis and reverse the CD40-mediated dissociation of the translational repressor eukaryotic initiation factor 4E-binding protein from the initiation factor eukaryotic initiation factor 4E, such as 5-fluorouracil, etoposide, and quercetin, dramatically increase the susceptibility of cervical carcinoma cells to CD40L-induced apoptosis. Taken together, these observations demonstrate the functional expression of CD40 in epithelial tumors of the cervix and support the clinical exploitation of the CD40 pathway for the treatment of cervical cancer through its multiple effects on tumor cell growth, apoptosis, and immune recognition.  相似文献   

18.
It has previously been reported that cholera toxin (CT) is a potent mucosal adjuvant that enhances Th2 or mixed Th1/Th2 type responses to coadministered foreign Ag. Here we demonstrate that CT also promotes the generation of regulatory T (Tr) cells against bystander Ag. Parenteral immunization of mice with Ag in the presence of CT induced T cells that secreted high levels of IL-4 and IL-10 and lower levels of IL-5 and IFN-gamma. Ag-specific CD4(+) T cell lines and clones generated from these mice had cytokine profiles characteristic of Th2 or type 1 Tr cells, and these T cells suppressed IFN-gamma production by Th1 cells. Furthermore, adoptive transfer of bone marrow-derived dendritic cells (DC) incubated with Ag and CT induced T cells that secreted IL-4 and IL-10 and low concentrations of IL-5. It has previously been shown that IL-10 promotes the differentiation or expansion of type 1 Tr cells. Here we found that CT synergized with low doses of LPS to induce IL-10 production by immature DC. CT also enhanced the expression of CD80, CD86, and OX40 (CD134) on DC and induced the secretion of the chemokine, macrophage inflammatory protein-2 (MIP-2), but inhibited LPS-driven induction of CD40 and ICAM-I expression and production of the inflammatory cytokines/chemokines IL-12, TNF-alpha, MIP-1alpha, MIP-1beta, and monocyte chemoattractant protein-1. Our findings suggest that CT induces maturation of DC, but, by inducing IL-10, inhibiting IL-12, and selectively affecting surface marker expression, suppresses the generation of Th1 cells and promotes the induction of T cells with regulatory activity.  相似文献   

19.
Membrane-presented CD40 agonists can induce apoptosis in carcinoma, but not normal homologous epithelial cells, whereas soluble agonists are growth inhibitory but not proapoptotic unless protein synthesis is blocked. Here we demonstrate that membrane-presented CD40 ligand (CD154) (mCD40L), but not soluble agonists, triggers cell death in malignant human urothelial cells via a direct mechanism involving rapid upregulation of TNFR-associated factor (TRAF)3 protein, without concomitant upregulation of TRAF3 mRNA, followed by activation of the c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway and induction of the caspase-9/caspase-3-associated intrinsic apoptotic machinery. TRAF3 knockdown abrogated JNK/AP-1 activation and prevented CD40-mediated apoptosis, whereas restoration of CD40 expression in CD40-negative carcinoma cells restored apoptotic susceptibility via the TRAF3/AP-1-dependent mechanism. In normal human urothelial cells, mCD40L did not trigger apoptosis, but induced rapid downregulation of TRAF2 and 3, thereby paralleling the situation in B-lymphocytes. Thus, TRAF3 stabilization, JNK activation and caspase-9 induction define a novel pathway of CD40-mediated apoptosis in carcinoma cells.  相似文献   

20.
C3H/HeJBir is a mouse substrain that is highly susceptible to colitis. Their CD4+ T cells react to Ags of the commensal enteric bacteria, and the latter can mediate colitis when activated by these Ags and transferred to histocompatible scid recipients. In this study, multiple long-term C3H/HeJBir CD4+ T cell (Bir) lines reactive to commensal enteric bacterial Ags have been generated. All these were Ag specific, pauciclonal, and Th1 predominant; most induced colitis uniformly after transfer to scid recipients. Lesions were focal and marked by increased expression of IL-12p40 and IFN-gamma mRNA and protein. Pathogenic Bir T cell lines expressed CD40 ligand (CD40L) when cultured with Ag-pulsed APCs in vitro. Production of IL-12 was also increased in such cultures, an effect that was Ag- and T cell-dependent and required costimulation by CD40, but not by B7. The two Bir T cell lines that did not induce lesions after transfer failed to significantly express CD40L or increase IL-12 when cultured with Ag-pulsed APCs. Administration of anti-CD40L blocked disease expression induced by pathogenic T cells. We conclude that interactions in the colon mucosa between CD40L-expressing Bir Th1 cells with APCs endogenously loaded with commensal bacterial Ags are critical for sustained increases in local IL-12 production and progression to colitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号