首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
线粒体融合蛋白2(mitofusin 2,Mfn2)位于线粒体外膜上,是线粒体外膜融合的重要蛋白之一。研究发现,它不仅参与调控线粒体形态结构,还与细胞代谢、增殖、凋亡密切相关。近年来资料提示,Mfn2参与调控内质网应激、自噬、线粒体自噬等方面。由于Mfn2作用复杂,生理状态下细胞内必定存在精细的调控网络以使其保持在稳定水平。本文概括介绍了Mfn2结构、功能及其调控机制新进展。  相似文献   

2.
细胞增殖抑制基因(HSG,又称线粒体融合蛋白-2,Mfn2)是我国学者陈光慧利用差异显示技术得到的一个新基因,其编码产物HSG/Mfn2可通过抑制ERK/MAPK信号转导途径使细胞周期停滞在G0/G1期,抑制细胞增殖;还可与平滑肌α肌动蛋白相互作用参与血管平滑肌细胞再分化,在血管平滑肌细胞表型调节中起重要作用。另外,HSG/Mfn2具有促进线粒体融合的功能,与线粒体形态、结构和功能有着密切关系。HSG/Mfn2对血管增殖紊乱和其他过度增殖性疾病的发病及治疗具有重要的意义。  相似文献   

3.
张喆  孙易  季浏 《生命科学》2015,(2):168-173
一直以来,线粒体动态变化都备受关注,这不仅关系到线粒体本身,也与细胞的整体状态密切相关。线粒体动态变化主要指线粒体的分裂和融合,该过程涉及一系列蛋白质。在线粒体融合中,目前研究得较深入的促线粒体融合蛋白主要有Mfn1、Mfn2和OPA1。随着研究的深入,发现这3种蛋白质不仅对于线粒体融合有重要作用,在细胞凋亡过程中也扮演着重要角色。现就Mfn1、Mfn2和OPA1的促线粒体融合作用及其与细胞凋亡的关系作详细阐述。  相似文献   

4.
线粒体融合蛋白Mfn1/2的结构和功能   总被引:1,自引:0,他引:1  
线粒体融合素基因(mitofusin gene,Mfn)在哺乳动物中编码两种蛋白质分子,Mfn1和Mfn2,它们在线粒体融合、分裂与细胞凋亡中起重要作用,调控着线粒体形态的动态变化。另外,Mfn1/2还参与线粒体的能量代谢并与相关疾病的发生有着密切关系。  相似文献   

5.
线粒体是一种高度动态的细胞器,通过不断的融合和分裂维持其动态平衡,参与生理病理功能调节。线粒体融合与分裂主要由融合分裂相关蛋白调控,如Drp1、Fis1、Mfn1、Mfn2、OPA1等,多种诱导因子通过调节线粒体融合分裂相关蛋白表达及活化进而调节线粒体形态和生理功能。现有研究表明线粒体融合分裂的异常可能是许多中枢神经系统疾病的发病机制之一。本文从线粒体融合分裂的分子调控机制及其在缺血性脑中风、帕金森综合征和阿尔兹海默症等中枢神经系统疾病中的研究进展方面进行综述,为相关疾病的防治提供一定参考和线索。  相似文献   

6.
心血管并发症是糖尿病患者死亡的首要原因。其中,糖尿病心肌病是排除了高血压、冠心病所致的心肌损伤后的一类特异性心肌病,其特征在于心肌细胞的代谢异常和心脏功能的逐渐衰退,临床表现为早期心肌舒张功能受损,晚期心肌收缩功能受损,最终发展为心力衰竭。线粒体是心肌细胞内提供能量的主要细胞器,线粒体动力学是指线粒体进行融合和分裂的动态过程,是线粒体质量控制的重要途径,线粒体动力学在维持线粒体稳态与心脏功能中起着至关重要的作用。调节线粒体分裂的蛋白主要是Drp1及其受体Fis1、MFF、MiD49和MiD51,执行线粒体外膜融合的蛋白为Mfn1/2,内膜融合蛋白为Opa1。本文综述了近期在糖尿病心肌病线粒体动力学方面的系列研究成果:1型与2型糖尿病心肌病的线粒体动力学失衡均表现为分裂增加与融合受阻,前者的分子机制主要是Drp1上调与Opa1下调,后者的分子机制主要为Drp1上调与Mfn1/2下调,线粒体分裂增加和融合受阻可导致线粒体功能障碍,促进糖尿病心肌病的发生、发展。中药单体安石榴苷、丹皮酚和内源性物质褪黑素等活性成分可通过抑制线粒体分裂或促进线粒体融合,改善线粒体功能,减轻糖尿病心肌病症状。本文...  相似文献   

7.
线粒体是一种处于高度运动状态的频繁地进行融合与分裂的细胞器.在生理状态下,线粒体的融合与分裂处于一种平衡的状态,这种平衡受线粒体融合蛋白1/2(Mfn1/2)、视神经萎缩蛋白1(OPA1)和动力相关蛋白1(Drp1)的调节. Mfn1/2介导线粒体外膜的融合,而OPA1则参与线粒体内膜的融合,这些蛋白受泛素化和蛋白水解的调控. Drp1参与线粒体的分裂过程,受多种翻译后修饰的调节,如磷酸化、泛素化、SUMO化和S 硝基化.对于神经元来说,线粒体融合分裂的动态平衡对保证神经元末梢长距离运输和能量平均分布是非常重要的.因此,线粒体融合分裂异常可能是许多神经变性疾病的致病因素之一.对线粒体融合而言,Mfn2错义突变将导致遗传性运动感觉神经病2型(CMT2A);OPA1错义突变将引起显性遗传性视神经萎缩(ADOA),而就线粒体分裂而言,Drp1突变与多系统功能障碍的新生儿致死性相关.  相似文献   

8.
线粒体融合分裂平衡是线粒体动力学的需要。本研究观察12周规律有氧运动对APP/PS1双转基因小鼠中枢神经元线粒体融合分裂动态平衡的影响。本研究采用3月龄雄性APP/PS1小鼠(AD模型)随机分为AD安静组(AS)、AD运动组(AE),同月龄雄性C57BL/6J小鼠做正常对照组(CS)。AE组进行12周规律跑台运动,5 d/周,60 min/d。前10 min运动速度12 m/min,后50 min运动速度15 m/min,跑台坡度为0°。八臂迷宫实验检测小鼠工作记忆错误频率和参考记忆错误频率;Western印迹检测小鼠皮层、海马组织中线粒体分裂蛋白Drp1和Fis1的含量,以及Drp1的活性(p-Drp1-Ser616)、线粒体融合蛋白Mfn1、Mfn2、Opa1的表达水平;透射电镜观察皮层、海马线粒体形态结构、健康线粒体比率及线粒体平均直径。本研究证实AS组较CS组工作记忆错误频率显著提高(P<0.05),12周有氧运动显著降低工作记忆错误频率(P<0.05)。AS组小鼠皮层Fis1蛋白和海马脑区Drp1、Fis1蛋白表达水平及皮层、海马脑区Drp1蛋白的活性增加(P<0.05)。而皮层Mfn1和海马Mfn1、Mfn2蛋白表达水平显著降低(P<0.05)。12周有氧运动显著减低Fis1、Drp1蛋白表达及Drp1蛋白的活性,提高Mfn1、Mfn2蛋白表达水平(P<0.05)。AS组小鼠皮层、海马线粒体多呈现球形,部分线粒体膜结构消失,线粒体嵴结构紊乱。且AS组较CS组小鼠健康线粒体比率降低、直径缩短。12周规律有氧运动可明显改善线粒体形态和结构,提高健康线粒体比率及直径。本研究提示,12周规律有氧运动可有效抑制皮层、海马脑区线粒体分裂蛋白Drp1和 Fis1的表达,降低Drp1的活性(p-Drp1-Ser616),上调线粒体融合蛋白Mfn1、Mfn2的蛋白表达水平,改善线粒体形态和结构以促进线粒体质量控制,是有氧运动改善AD模型空间学习记忆能力的分子机制之一。  相似文献   

9.
郑仕桥  夏志  尚画雨 《生命科学》2023,(8):1071-1079
线粒体作为细胞的能量中心,在细胞内呈现高度的动态变化,其数量、质量及功能的稳定对维持细胞的正常活动至关重要。线粒体动力学与线粒体自噬之间可互相调控,共同构成线粒体质量控制的重要环节。泛素特异性蛋白酶30 (USP30)作为去泛素化酶,既可通过线粒体融合蛋白1/2 (Mfn1/2)、线粒体动力蛋白相关蛋白1 (Drp1)等融合与分裂蛋白参与调控线粒体动力学过程,还能通过E3泛素连接酶Parkin、泛素(Ub)及电压依赖性阴离子通道1 (VDAC1)等多种信号而调控PTEN诱导激酶1 (PINK1)/Parkin途径介导的线粒体自噬,但其详细机制尚未完全阐明。本文对USP30在调控线粒体动力学和线粒体自噬中的作用与其机制进行了综述。  相似文献   

10.
线粒体融合蛋白2与心血管疾病   总被引:1,自引:0,他引:1  
Yu HY  Guo YH  Gao W 《生理科学进展》2010,41(1):11-16
线粒体融合蛋白2(mitofusin2,Mfn2)不仅是一种不可或缺的调控线粒体形态和功能的动力素(dynamin)相关蛋白,还是一个重要的细胞内信号分子,参与调控细胞增殖、分化、凋亡等生命过程。Mfn2与高血压、冠状动脉腔内成形术后再狭窄、动脉粥样硬化、心肌肥厚、心肌氧化损伤等多种心血管疾病的病理生理过程密切相关,并通过调节物质代谢影响糖尿病和胰岛素抵抗等的发病。此外,Mfn2还可能是心血管疾病的一个重要的分子标志和治疗靶分子。  相似文献   

11.
Mitochondrial dynamics with constant fusion and fission plays vital roles in regulating cellular biological processes. Mitofusin 2 (Mfn2) is dynamin-related protein whose activity promotes mitochondrial fusion and maintains the homeostasis of mitochondrial dynamics. Advanced studies have demonstrated that Mfn2 is a multifunctional protein with signaling roles beyond fusion. Mfn2 is actively involved in various biological processes under both physical and pathological conditions, including mitochondrial transport and the interaction between endoplasmic reticulum/sarcoplasmic reticulum and mitochondria, as well as cell metabolism, apoptosis and autophagy. This review summarises the structural and functional properties of Mfn2, with focus on recent advances in its regulatory role in cardiovascular system.  相似文献   

12.
Disruption of fusion results in mitochondrial heterogeneity and dysfunction   总被引:27,自引:0,他引:27  
Mitochondria undergo continual cycles of fusion and fission, and the balance of these opposing processes regulates mitochondrial morphology. Paradoxically, cells invest many resources to maintain tubular mitochondrial morphology, when reducing both fusion and fission simultaneously achieves the same end. This observation suggests a requirement for mitochondrial fusion, beyond maintenance of organelle morphology. Here, we show that cells with targeted null mutations in Mfn1 or Mfn2 retained low levels of mitochondrial fusion and escaped major cellular dysfunction. Analysis of these mutant cells showed that both homotypic and heterotypic interactions of Mfns are capable of fusion. In contrast, cells lacking both Mfn1 and Mfn2 completely lacked mitochondrial fusion and showed severe cellular defects, including poor cell growth, widespread heterogeneity of mitochondrial membrane potential, and decreased cellular respiration. Disruption of OPA1 by RNAi also blocked all mitochondrial fusion and resulted in similar cellular defects. These defects in Mfn-null or OPA1-RNAi mammalian cells were corrected upon restoration of mitochondrial fusion, unlike the irreversible defects found in fzodelta yeast. In contrast, fragmentation of mitochondria, without severe loss of fusion, did not result in such cellular defects. Our results showed that key cellular functions decline as mitochondrial fusion is progressively abrogated.  相似文献   

13.
Mitochondria are dynamic organelles that undergo frequent fission and fusion or branching. Although these morphologic changes are considered crucial for cellular functions, the underlying mechanisms remain elusive, especially in mammalian cells. We characterized two rat mitochondrial outer membrane proteins, Mfn1 and Mfn2, with distinct tissue expressions, that are homologous to Drosophila Fzo, a GTPase involved in mitochondrial fusion. Expression of the GTPase-domain mutant of Mfn2 (Mfn2(K109T)) in HeLa cells induced mitochondrial fragmentation in which Mfn2(K109T) localized at the restricted domains. Immuno-electronmicroscopy revealed that Mfn2(K109T) was concentrated at the contact domains between adjacent mitochondria, suggesting that fusion of the outer membrane was arrested at some intermediate step. Mfn1 expression induced highly connected tubular network structures depending on the functional GTPase domain. The Mfn1-induced tubular networks were suppressed by co-expression with Mfn2. In vivo depletion of either isoform by RNA interference revealed that both are required to maintain normal mitochondrial morphology. The fusion of differentially-labeled mitochondria in HeLa cells subjected to depletion of either Mfn isoform and subsequent cell fusion by hemagglutinating virus of Japan revealed that both proteins have distinct functions in mitochondrial fusion. We conclude that the two Mfn isoforms cooperate in mitochondrial fusion in mammalian cells.  相似文献   

14.
Mitochondrial fusion protects against neurodegeneration in the cerebellum   总被引:16,自引:0,他引:16  
Chen H  McCaffery JM  Chan DC 《Cell》2007,130(3):548-562
Mutations in the mitochondrial fusion gene Mfn2 cause the human neurodegenerative disease Charcot-Marie-Tooth type 2A. However, the cellular basis underlying this relationship is poorly understood. By removing Mfn2 from the cerebellum, we established a model for neurodegeneration caused by loss of mitochondrial fusion. During development and after maturity, Purkinje cells require Mfn2 but not Mfn1 for dendritic outgrowth, spine formation, and cell survival. In vivo, cell culture, and electron microscopy studies indicate that mutant Purkinje cells have aberrant mitochondrial distribution, ultrastructure, and electron transport chain activity. In fibroblasts lacking mitochondrial fusion, the majority of mitochondria lack mitochondrial DNA nucleoids. This deficiency provides a molecular mechanism for the dependence of respiratory activity on mitochondrial fusion. Our results show that exchange of mitochondrial contents is important for mitochondrial function as well as organelle distribution in neurons and have important implications for understanding the mechanisms of neurodegeneration due to perturbations in mitochondrial fusion.  相似文献   

15.
Mitochondrial fusion and fission events, collectively known as mitochondrial dynamics, act as quality control mechanisms to ensure mitochondrial function and fine‐tune cellular bioenergetics. Defective mitofusin 2 (Mfn2) expression and enhanced mitochondrial fission in skeletal muscle are hallmarks of insulin‐resistant states. Interestingly, Mfn2 is highly expressed in brown adipose tissue (BAT), yet its role remains unexplored. Using adipose‐specific Mfn2 knockout (Mfn2‐adKO) mice, we demonstrate that Mfn2, but not Mfn1, deficiency in BAT leads to a profound BAT dysfunction, associated with impaired respiratory capacity and a blunted response to adrenergic stimuli. Importantly, Mfn2 directly interacts with perilipin 1, facilitating the interaction between the mitochondria and the lipid droplet in response to adrenergic stimulation. Surprisingly, Mfn2‐adKO mice were protected from high‐fat diet‐induced insulin resistance and hepatic steatosis. Altogether, these results demonstrate that Mfn2 is a mediator of mitochondria to lipid droplet interactions, influencing lipolytic processes and whole‐body energy homeostasis.  相似文献   

16.
17.
Mitochondrial impairment is hypothesized to contribute to the pathogenesis of chronic cholestatic liver diseases. Mitofusin 2 (Mfn2) regulates mitochondrial morphology and signaling and is involved in the development of numerous mitochondrial-related diseases; however, a functional role for Mfn2 in chronic liver cholestasis which is characterized by increased levels of toxic bile acids remain unknown. Therefore, the aims of this study were to evaluate the expression levels of Mfn2 in liver samples from patients with extrahepatic cholestasis and to investigate the role Mfn2 during bile acid induced injury in vitro. Endogenous Mfn2 expression decreased in patients with extrahepatic cholestasis. Glycochenodeoxycholic acid (GCDCA) is the main toxic component of bile acid in patients with extrahepatic cholestasis. In human normal hepatocyte cells (L02), Mfn2 plays an important role in GCDCA-induced mitochondrial damage and changes in mitochondrial morphology. In line with the mitochondrial dysfunction, the expression of Mfn2 decreased significantly under GCDCA treatment conditions. Moreover, the overexpression of Mfn2 effectively attenuated mitochondrial fragmentation and reversed the mitochondrial damage observed in GCDCA-treated L02 cells. Notably, a truncated Mfn2 mutant that lacked the normal C-terminal domain lost the capacity to induce mitochondrial fusion. Increasing the expression of truncated Mfn2 also had a protective effect against the hepatotoxicity of GCDCA. Taken together, these findings indicate that the loss of Mfn2 may play a crucial role the pathogenesis of the liver damage that is observed in patients with extrahepatic cholestasis. The findings also indicate that Mfn2 may directly regulate mitochondrial metabolism independently of its primary fusion function. Therapeutic approaches that target Mfn2 may have protective effects against hepatotoxic of bile acids during cholestasis.  相似文献   

18.
Mitochondria play crucial role in the energetic metabolism, thermogenesis, maintenance of calcium homeostasis and apoptosis. Cyclic changes in fusion and fission of mitochondria are required for properly functioning organelles, especially in tissues with high dependence on energy supply such as skeletal muscles, heart, or neurons. The key role of mitochondrial fusion is observed in embryonic development and maintaining unchanged mtDNA pool under conditions of oxidative stress. There is a large number of data indicating that mitochondrial networks often accompany the resistance to apoptotic stimuli. In contrast to fusion--the mitochondrial fission precedes apoptosis. According to the newest knowledge precise interactions between a few proteins are required for mitochondrial fusion and division. Among them Drp1, Mfn1, Mfn2 and Opal are considered the most important. Recent reports shed some light on the physiological importance of proteins participating in mitochondrial membrane dynamics in energy production, apoptosis and cellular signaling. In this review the authors report on the recent knowledge concerning structural changes of mitochondria with a particular interest to transmembrane GTPases and their role in cellular physiology.  相似文献   

19.
Of the GTPases involved in the regulation of the fusion machinery, mitofusin 2 (Mfn2) plays an important role in the nervous system as point mutations of this isoform are associated with Charcot Marie Tooth neuropathy. Here, we investigate whether Mfn2 plays a role in the regulation of neuronal injury. We first examine mitochondrial dynamics following different modes of injury in cerebellar granule neurons. We demonstrate that neurons exposed to DNA damage or oxidative stress exhibit extensive mitochondrial fission, an early event preceding neuronal loss. The extent of mitochondrial fragmentation and remodeling is variable and depends on the mode and the severity of the death stimuli. Interestingly, whereas mitofusin 2 loss of function significantly induces cell death in the absence of any cell death stimuli, expression of mitofusin 2 prevents cell death following DNA damage, oxidative stress, and K+ deprivation induced apoptosis. More importantly, whereas wild-type Mfn2 and the hydrolysis-deficient mutant of Mfn2 (Mfn2(RasG12V)) function equally to promote fusion and lengthening of mitochondria, the activated Mfn2(RasG12V) mutant shows a significant increase in the protection of neurons against cell death and release of proapoptotic factor cytochrome c. These findings highlight a signaling role for Mfn2 in the regulation of apoptosis that extends beyond its role in mitochondrial fusion.  相似文献   

20.
Huang P  Galloway CA  Yoon Y 《PloS one》2011,6(5):e20655
Mitochondria in mammals are organized into tubular networks that undergo frequent shape change. Mitochondrial fission and fusion are the main components mediating the mitochondrial shape change. Perturbation of the fission/fusion balance is associated with many disease conditions. However, underlying mechanisms of the fission/fusion balance are not well understood. Mitochondrial fission in mammals requires the dynamin-like protein DLP1/Drp1 that is recruited to the mitochondrial surface, possibly through the membrane-anchored protein Fis1 or Mff. Additional dynamin-related GTPases, mitofusin (Mfn) and OPA1, are associated with the outer and inner mitochondrial membranes, respectively, and mediate fusion of the respective membranes. In this study, we found that two heptad-repeat regions (HR1 and HR2) of Mfn2 interact with each other, and that Mfn2 also interacts with the fission protein DLP1. The association of the two heptad-repeats of Mfn2 is fusion inhibitory whereas a positive role of the Mfn2/DLP1 interaction in mitochondrial fusion is suggested. Our results imply that the differential binding of Mfn2-HR1 to HR2 and DLP1 regulates mitochondrial fusion and that DLP1 may act as a regulatory factor for efficient execution of both fusion and fission of mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号