首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
LocalCa2+ transients("Ca2+ sparks") caused bythe opening of one or the coordinated opening of a number of tightlyclustered ryanodine-sensitiveCa2+-release (RyR) channels in thesarcoplasmic reticulum (SR) activate nearbyCa2+-dependentK+(KCa) channels to cause anoutward current [referred to as a "spontaneous transientoutward current" (STOC)]. TheseKCa currents cause membranepotential hyperpolarization of arterial myocytes, which would lead tovasodilation through decreasingCa2+ entry throughvoltage-dependent Ca2+ channels.Therefore, modulation of Ca2+spark frequency should be a means to regulation ofKCa channel currents and hencemembrane potential. We examined the frequency modulation ofCa2+ sparks and STOCs byactivation of protein kinase C (PKC). The PKC activators, phorbol12-myristate 13-acetate (PMA; 10 nM) and 1,2-dioctanoyl-sn-glycerol (1 µM),decreased Ca2+ spark frequency by72% and 60%, respectively, and PMA reduced STOC frequency by 83%.PMA also decreased STOC amplitude by 22%, which could be explained byan observed reduction (29%) inKCa channel open probability inthe absence of Ca2+ sparks. Thereduction in STOC frequency occurred in the presence of an inorganicblocker (Cd2+) ofvoltage-dependent Ca2+ channels.The reduction in Ca2+ sparkfrequency did not result from SRCa2+ depletion, sincecaffeine-induced Ca2+ transientsdid not decrease in the presence of PMA. These results suggest thatactivators of PKC can modulate the frequency ofCa2+ sparks, through an effect onthe RyR channel, which would decrease STOC frequency (i.e.,KCa channel activity).

  相似文献   

2.
Localized Ca2+ transients inisolated murine colonic myocytes depend on Ca2+ releasefrom inositol 1,4,5-trisphosphate (IP3) receptors.Localized Ca2+ transients couple to spontaneous transientoutward currents (STOCs) and mediate hyperpolarization responses inthese cells. We used confocal microscopy and whole cell patch-clamprecording to investigate how muscarinic stimulation, which causesformation of IP3, can suppress Ca2+ transientsand STOCs that might override the excitatory nature of cholinergicresponses. ACh (10 µM) reduced localized Ca2+ transientsand STOCs, and these effects were associated with a rise in basalcytosolic Ca2+. These effects of ACh were mimicked bygeneralized rises in basal Ca2+ caused by ionomycin(250-500 nM) or elevated external Ca2+ (6 mM).Atropine (10 µM) abolished the effects of ACh. Pretreatment of cellswith nicardipine (1 µM), or Cd2+ (200 µM) had no effecton responses to ACh. An inhibitor of phospholipase C, U-73122, blockedCa2+ transients and STOCs but did not affect the increasein basal Ca2+ after ACh stimulation. Xestospongin C (Xe-C;5 µM), a membrane-permeable antagonist of IP3 receptors,blocked spontaneous Ca2+ transients but did not prevent theincrease of basal Ca2+ in response to ACh. Gd3+(10 µM), a nonselective cation channel inhibitor, prevented the increase in basal Ca2+ after ACh and increased thefrequency and amplitude of Ca2+ transients and waves.Another inhibitor of receptor-mediated Ca2+ influxchannels, SKF-96365, also prevented the rise in basal Ca2+after ACh and increased Ca2+ transients and development ofCa2+ waves. FK-506, an inhibitor ofFKBP12/IP3 receptor interactions, had no effect onthe rise in basal Ca2+ but blocked the inhibitory effectsof increased basal Ca2+ and ACh on Ca2+transients. These results suggest that the rise in basalCa2+ that accompanies muscarinic stimulation of colonicmuscles inhibits localized Ca2+ transients that couldcouple to activation of Ca2+-activated K+channels and reduce the excitatory effects of ACh.

  相似文献   

3.
Spontaneous Ca2+ sparks were observed in fluo 4-loaded myocytes from guinea pig vas deferens with line-scan confocal imaging. They were abolished by ryanodine (100 µM), but the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) blockers 2-aminoethoxydiphenyl borate (2-APB; 100 µM) and intracellular heparin (5 mg/ml) increased spark frequency, rise time, duration, and spread. Very prolonged Ca2+ release events were also observed in 20% of cells treated with IP3R blockers but not under control conditions. 2-APB and heparin abolished norepinephrine (10 µM; 0 Ca2+)-evoked Ca2+ transients but increased caffeine (10 mM; 0 Ca2+) transients in fura 2-loaded myocytes. Transients evoked by ionomycin (25 µM; 0 Ca2+) were also enhanced by 2-APB. Ca2+ sparks and transients evoked by norepinephrine and caffeine were abolished by thimerosal (100 µM), which sensitizes the IP3R to IP3. In cells voltage clamped at –40 mV, spontaneous transient outward currents (STOCs) were increased in frequency, amplitude, and duration in the presence of 2-APB. These data are consistent with a model in which the Ca2+ store content in smooth muscle is limited by tonic release of Ca2+ via an IP3-dependent pathway. Blockade of IP3Rs elevates sarcoplasmic reticulum store content, promoting Ca2+ sparks and STOC activity. calcium ion release; calcium ion transients; smooth muscle  相似文献   

4.
Two populations,Ca2+-dependent(BKCa) andCa2+-independentK+ (BK) channels of largeconductance were identified in inside-out patches of nonlabor and laborfreshly dispersed human pregnant myometrial cells, respectively.Cell-attached recordings from nonlabor myometrial cells frequentlydisplayed BKCa channel openings characterized by a relatively low open-state probability, whereas similar recordings from labor tissue displayed either no channel openings or consistently high levels of channel activity that oftenexhibited clear, oscillatory activity. In inside-out patch recordings,Ba2+ (2-10 mM),4-aminopyridine (0.1-1 mM), andShaker B inactivating peptide("ball peptide") blocked theBKCa channel but were much lesseffective on BK channels. Application of tetraethylammonium toinside-out membrane patches reduced unitary current amplitude ofBKCa and BK channels, withdissociation constants of 46 mM and 53 µM, respectively.Tetraethylammonium applied to outside-out patches decreased the unitaryconductance of BKCa and BKchannels, with dissociation constants of 423 and 395 µM,respectively. These results demonstrate that the properties of humanmyometrial large-conductance K+channels in myocytes isolated from laboring patients are significantly different from those isolated from nonlaboring patients.

  相似文献   

5.
To test thehypothesis that intracellular Ca2+activation of large-conductanceCa2+-activatedK+ (BK) channels involves thecytosolic form of phospholipase A2 (cPLA2), we first inhibited theexpression of cPLA2 by treating GH3 cells with antisenseoligonucleotides directed at the two possible translation start siteson cPLA2. Western blot analysis and a biochemical assay of cPLA2activity showed marked inhibition of the expression ofcPLA2 in antisense-treated cells.We then examined the effects of intracellularCa2+ concentration([Ca2+]i)on single BK channels from these cells. Open channel probability (Po) for thecells exposed to cPLA2 antisenseoligonucleotides in 0.1 µM intracellularCa2+ was significantly lower thanin untreated or sense oligonucleotide-treated cells, but the voltagesensitivity did not change (measured as the slope of thePo-voltagerelationship). In fact, a 1,000-fold increase in[Ca2+]ifrom 0.1 to 100 µM did not significantly increasePoin these cells, whereas BK channels from cells in the other treatmentgroups showed a normalPo-[Ca2+]iresponse. Finally, we examined the effect of exogenous arachidonic acidon thePoof BK channels from antisense-treated cells. Although arachidonic aciddid significantly increasePo,it did so without restoring the[Ca2+]isensitivity observed in untreated cells. We conclude that although [Ca2+]idoes impart some basal activity to BK channels inGH3 cells, the steepPo-[Ca2+]irelationship that is characteristic of these channels involves cPLA2.

  相似文献   

6.
Spontaneous transient outward currents(STOCs) were recorded from smooth muscle cells of theguinea pig taenia coli using the whole cell patch-clamp technique.STOCs were resolved at potentials positive to 50 mV. Treatingcells with caffeine (1 mM) caused a burst of outward currentsfollowed by inhibition of STOCs. Replacing extracellularCa2+ with equimolarMn2+ caused STOCs to "rundown." Iberiotoxin (200 nM) or charybdotoxin (ChTX; 200 nM)inhibited large-amplitude STOCs, but small-amplitude "mini-STOCs"remained in the presence of these drugs. Mini-STOCs were reduced byapamin (500 nM), an inhibitor of small-conductance Ca2+-activatedK+ channels (SK channels).Application of ATP or 2-methylthioadenosine 5'-triphosphate(2-MeS-ATP) increased the frequency of STOCs. The effects of 2-MeS-ATPpersisted in the presence of charybdotoxin but were blocked bycombination of ChTX (200 nM) and apamin (500 nM). 2-MeS-ATP did notincrease STOCs in the presence of pyridoxal phosphate6-azophenyl-2',4'-disulfonic acid, aP2 receptor blocker. Similarly,pretreatment of cells with U-73122 (1 µM), an inhibitor ofphospholipase C (PLC), abolished the effects of 2-MeS-ATP. XestosponginC, an inositol 1,4,5-trisphosphate(IP3) receptor blocker,attenuated STOCs, but these events were not affected by ryanodine. Thedata suggest that purinergic activation through P2Y receptors results in localizedCa2+ release via PLC- andIP3-dependent mechanisms. Releaseof Ca2+ is coupled to STOCs, whichare composed of currents mediated by large-conductanceCa2+-activatedK+ channels and SK channels. Thelatter are thought to mediate hyperpolarization and relaxationresponses of gastrointestinal muscles to inhibitory purinergic stimulation.

  相似文献   

7.
To examine the natureof inositol 1,4,5-trisphosphate (IP3)-sensitive andryanodine (Ryn)-sensitive Ca2+ stores in isolated caninepulmonary arterial smooth cells (PASMC), agonist-induced changes inglobal intracellular Ca2+ concentration([Ca2+]i) were measured using fura2-AM fluorescence. Properties of elementary local Ca2+release events were characterized using fluo 3-AM or fluo 4-AM, incombination with confocal laser scanning microscopy. In PASMC, depletion of sarcoplasmic reticulum Ca2+ stores with Ryn(300 µM) and caffeine (Caf; 10 mM) eliminated subsequent Caf-inducedintracellular Ca2+ transients but had little or no effecton the initial IP3-mediated intracellular Ca2+transient induced by ANG II (1 µM). Cyclopiazonic acid (CPA; 10 µM) abolished IP3-induced intracellularCa2+ transients but failed to attenuate the initialCaf-induced intracellular Ca2+ transient. These resultssuggest that in canine PASMC, IP3-, and Ryn-sensitiveCa2+ stores are organized into spatially distinctcompartments while similar experiments in canine renal arterial smoothmuscle cells (RASMC) reveal that these Ca2+ stores arespatially conjoined. In PASMC, spontaneous local intracellular Ca2+ transients sensitive to modulation by Caf and Ryn weredetected, exhibiting spatial-temporal characteristics similar to thosepreviously described for "Ca2+ sparks" in cardiac andother types of smooth muscle cells. After depletion of Ryn-sensitiveCa2+ stores, ANG II (8 nM) induced slow, sustained[Ca2+]i increases originating at sites nearthe cell surface, which were abolished by depleting IP3stores. Discrete quantal-like events expected due to the coordinatedopening of IP3 receptor clusters ("Ca2+puffs") were not observed. These data provide new information regarding the functional properties and organization of intracellular Ca2+ stores and elementary Ca2+ release eventsin isolated PASMC.

  相似文献   

8.
Forskolin, which elevates cAMP levels, and sodium nitroprusside(SNP) and nicorandil, which elevate cGMP levels, increased, by two- tothreefold, the frequency of subcellularCa2+ release("Ca2+ sparks") throughryanodine-sensitive Ca2+ release(RyR) channels in the sarcoplasmic reticulum (SR) of myocytes isolatedfrom cerebral and coronary arteries of rats. Forskolin, SNP,nicorandil, dibutyryl-cAMP, and adenosine increased the frequency ofCa2+-sensitiveK+(KCa) currents["spontaneous transient outward currents" (STOCs)] bytwo- to threefold, consistent withCa2+ sparks activating STOCs.These agents also increased the mean amplitude of STOCs by 1.3-fold, aneffect that could be explained by activation ofKCa channels, independent ofeffects on Ca2+ sparks. To testthe hypothesis that cAMP could act to dilate arteries throughactivation of the Ca2+sparkKCa channel pathway,the effects of blockers of KCachannels (iberiotoxin) and of Ca2+sparks (ryanodine) on forskolin-induced dilations of pressurized cerebral arteries were examined. Forskolin-induced dilations were partially inhibited by iberiotoxin and ryanodine (with no additive effects) and were entirely prevented by elevating externalK+. Forskolin lowered averageCa2+ in pressurized arteries whileincreasing ryanodine-sensitive, caffeine-inducedCa2+ transients. These experimentssuggest a new mechanism for cyclic nucleotide-mediated dilationsthrough an increase in Ca2+ sparkfrequency, caused by effects on SRCa2+ load and possibly on the RyRchannel, which leads to increased STOC frequency, membrane potentialhyperpolarization, closure of voltage-dependentCa2+ channels, decrease inarterial wall Ca2+, and,ultimately, vasodilation.

  相似文献   

9.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

10.
The goal of the present study was to testthe hypothesis that local Ca2+ release events(Ca2+ sparks) deliver high local Ca2+concentration to activate nearby Ca2+-sensitiveK+ (BK) channels in the cell membrane of arterial smoothmuscle cells. Ca2+ sparks and BK channels were examined inisolated myocytes from rat cerebral arteries with laser scanningconfocal microscopy and patch-clamp techniques. BK channels had anapparent dissociation constant for Ca2+ of 19 µM and aHill coefficient of 2.9 at 40 mV. At near-physiological intracellularCa2+ concentration ([Ca2+]i; 100 nM) and membrane potential (40 mV), the open probability of a singleBK channel was low (1.2 × 106). A Ca2+spark increased BK channel activity to 18. Assuming that 1-100% of the BK channels are activated by a single Ca2+ spark, BKchannel activity increases 6 × 105-fold to 6 × 103-fold, which corresponds to ~30 µM to 4 µM sparkCa2+ concentration.1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester caused the disappearance of all Ca2+sparks while leaving the transient BK currents unchanged. Our resultssupport the idea that Ca2+ spark sites are in closeproximity to the BK channels and that local[Ca2+]i reaches micromolar levels to activateBK channels.

  相似文献   

11.
We investigatedthe relationship between voltage-operatedCa2+ channel current and thecorresponding intracellular Ca2+concentration([Ca2+]i)change (Ca2+ transient) in guineapig gastric myocytes. Fluorescence microspectroscopy was combined withconventional whole cell patch-clamp technique, and fura 2 (80 µM) wasadded to CsCl-rich pipette solution. Step depolarization to 0 mVinduced inward Ca2+ current(ICa) andconcomitantly raised[Ca2+]i.Both responses were suppressed by nicardipine, an L-typeCa2+ channel blocker, and thevoltage dependence of Ca2+transient was similar to the current-voltage relation ofICa. When pulseduration was increased by up to 900 ms, peakCa2+ transient increased andreached a steady state when stimulation was for longer. The calculatedfast Ca2+ buffering capacity(B value), determined as the ratio ofthe time integral ofICa divided bythe amplitude of Ca2+ transient,was not significantly increased after depletion of Ca2+ stores by the cyclicapplication of caffeine (10 mM) in the presence of ryanodine (4 µM).The addition of cyclopiazonic acid (CPA, 10 µM), a sarco(endo)plasmicreticulum Ca2+-ATPase inhibitor,decreased B value by ~20% in areversible manner. When KCl pipette solution was used,Ca2+-activatedK+ current[IK(Ca)]was also recorded during step depolarization. CPA sensitivelysuppressed the initial peak and oscillations of IK(Ca) withirregular effects on Ca2+transients. The above results suggest that, in guinea pig gastric myocyte, Ca2+ transient is tightlycoupled to ICaduring depolarization, and global[Ca2+]iis not significantly affected byCa2+-inducedCa2+ release from sarcoplasmicreticulum during depolarization.

  相似文献   

12.
To investigatethe Ca2+-dependent plasticity ofsarcoplasmic reticulum (SR) function in vascular smooth muscle,transient responses to agents releasing intracellularCa2+ by either ryanodine(caffeine) orD-myo-inositol1,4,5-trisphosphate [IP3;produced in response to norepinephrine (NE),5-hydroxytryptamine (5-HT), arginine vasopressin (AVP)] receptorsin rat tail arterial rings were evaluated after 4 days of organculture. Force transients induced by all agents were increased comparedwith those induced in fresh rings. Stimulation by 10% FCSduring culture further potentiated the force andCa2+ responses to caffeine (20 mM)but not to NE (10 µM), 5-HT (10 µM), or AVP (0.1 µM). The effectwas persistent, and SR capacity was not altered after reversibledepletion of stores with cyclopiazonic acid. The effects of serum couldbe mimicked by culture in depolarizing medium (30 mMK+) and blocked by the additionof verapamil (1 µM) or EGTA (1 mM) to the medium, loweringintracellular Ca2+ concentration([Ca2+]i)during culture. These results show that modulation of SR function canoccur in vitro by a mechanism dependent on long-term levels of basal[Ca2+]iand involving ryanodine- but notIP3 receptor-mediatedCa2+release.  相似文献   

13.
ATP is a candidate enteric inhibitory neurotransmitterin visceral smooth muscles. ATP hyperpolarizes visceral muscles via activation of small-conductance, Ca2+-activatedK+ (SK) channels. Coupling between ATP stimulation and SKchannels may be mediated by localized Ca2+ release.Isolated myocytes of the murine colon produced spontaneous, localizedCa2+ release events. These events corresponded tospontaneous transient outward currents (STOCs) consisting ofcharybdotoxin (ChTX)-sensitive and -insensitive events.ChTX-insensitive STOCs were inhibited by apamin. LocalizedCa2+ transients were not blocked by ryanodine, but theseevents were reduced in magnitude and frequency by xestospongin C(Xe-C), a blocker of inositol 1,4,5-trisphosphate receptors. Thus wehave termed the localized Ca2+ events in colonic myocytes"Ca2+ puffs." The P2Y receptor agonist2-methylthio-ATP (2-MeS-ATP) increased the intensity and frequency ofCa2+ puffs. 2-MeS-ATP also increased STOCs in associationwith the increase in Ca2+ puffs.Pyridoxal-phospate-6-azophenyl-2',4'-disculfonic acid tetrasodium, aP2 receptor inhibitor, blocked responses to 2-MeS-ATP. Spontaneous Ca2+ transients and the effects of 2-MeS-ATP onCa2+ puffs and STOCs were blocked by U-73122, an inhibitorof phospholipase C. Xe-C and ryanodine also blocked responses to2-MeS-ATP, suggesting that, in addition to release from IP3receptor-operated stores, ryanodine receptors may be recruited duringagonist stimulation to amplify release of Ca2+. These datasuggest that localized Ca2+ release modulatesCa2+-dependent ionic conductances in the plasma membrane.Localized Ca2+ release may contribute to the electricalresponses resulting from purinergic stimulation.

  相似文献   

14.
Physiological and pathologicalCa2+ loads are thought to be takenup by mitochondria via a process dependent on aerobic metabolism. Wesought to determine whether human diploid fibroblasts from a patientwith an inherited defect in pyruvate dehydrogenase (PDH) exhibit adecreased ability to sequester cytosolicCa2+ into mitochondria.Mobilization of Ca2+ stores withbradykinin (BK) increased the cytosolicCa2+ concentration([Ca2+]c)to comparable levels in control and PDH-deficient fibroblasts. Innormal fibroblasts transfected with plasmid DNA encodingmitochondrion-targeted apoaequorin, BK elicited an increase inCa2+-dependent aequorinluminescence corresponding to an increase in the mitochondrialCa2+ concentration([Ca2+]mt)of 2.0 ± 0.2 µM. The mitochondrial uncoupling agent carbonyl cyanidep-(trifluoromethoxy)phenylhydrazoneblocked the BK-induced [Ca2+]mtincrease, although it did not affect the[Ca2+]ctransient. Basal[Ca2+]cand[Ca2+]mtin control and PDH-deficient cells were similar. However, confocalimaging of the potential-sensitive dye JC-1 indicated that thepercentage of highly polarized mitochondria was reduced from 30 ± 1% in normal cells to 19 ± 2% in the PDH-deficient fibroblasts. BK-elicited[Ca2+]mttransients in PDH-deficient cells were reduced to 4% of control, indicating that PDH-deficient mitochondria have a decreased ability totake up cytosolic Ca2+. Thus cellswith compromised aerobic metabolism have a reduced capacity tosequester Ca2+.

  相似文献   

15.
Recent studies on the role of nitric oxide (NO) ingastrointestinal smooth muscle have raised the possibility thatNO-stimulated cGMP could, in the absence of cGMP-dependent proteinkinase (PKG) activity, act as aCa2+-mobilizing messenger[K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28):G660-G671, 1993]. This notion was examined indispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) andwith NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 µM),NO (1 µM), and VIP (1 µM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ releasestimulated by 8-BrcGMP was concentration dependent with anEC50 of 0.4 ± 0.1 µM and athreshold of 10 nM. 8-BrcGMP and NO increased cytosolic freeCa2+ concentration([Ca2+]i)and induced contraction; both responses were abolished after Ca2+ stores were depleted withthapsigargin. With VIP, which normally increases[Ca2+]iby stimulating Ca2+ influx,treatment with PKA and PKG inhibitors caused a further increase in[Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release norcontraction induced by cGMP and NO in permeabilized muscle cells wasaffected by heparin or ruthenium red.Ca2+ release induced by maximallyeffective concentrations of cGMP and inositol 1,4,5-trisphosphate(IP3) was additive, independent of which agent was applied first. We conclude that, in the absence ofPKA and PKG activity, cGMP stimulatesCa2+ release from anIP3-insensitive store and that itseffect is additive to that of IP3.

  相似文献   

16.
Thenotion that intracellular Ca2+ (Cai2+)stores play a significant role in the chemoreception process inchemoreceptor cells of the carotid body (CB) appears in the literaturein a recurrent manner. However, the structural identity of theCa2+ stores and their real significance in the function ofchemoreceptor cells are unknown. To assess the functional significanceof Cai2+ stores in chemoreceptor cells, we havemonitored 1) the release of catecholamines (CA) from thecells using an in vitro preparation of intact rabbit CB and2) the intracellular Ca2+ concentration([Ca2+]i) using isolated chemoreceptor cells;both parameters were measured in the absence or the presence of agentsinterfering with the storage of Ca2+. We found thatthreshold [Ca2+]i for high extracellularK+ (Ke+) to elicit a release response is250 nM. Caffeine (10-40 mM), ryanodine (0.5 µM), thapsigargin(0.05-1 µM), and cyclopiazonic acid (10 µM) did not alter thebasal or the stimulus (hypoxia, high Ke+)-inducedrelease of CA. The same agents produced Cai2+transients of amplitude below secretory threshold; ryanodine (0.5 µM), thapsigargin (1 µM), and cyclopiazonic acid (10 µM) did notalter the magnitude or time course of the Cai2+responses elicited by high Ke+. Several potentialactivators of the phospholipase C system (bethanechol, ATP, andbradykinin), and thereby of inositol 1,4,5-trisphosphate receptors,produced minimal or no changes in [Ca2+]i anddid not affect the basal release of CA. It is concluded that, in therabbit CB chemoreceptor cells, Cai2+ stores do not playa significant role in the instant-to-instant chemoreception process.

  相似文献   

17.
Stretch-induced Ca(2+) release via an IP(3)-insensitive Ca(2+) channel   总被引:6,自引:0,他引:6  
Various mechanicalstimuli increase the intracellular Ca2+ concentration([Ca2+]i) in vascular smooth muscle cells(VSMC). A part of the increase in [Ca2+]i isdue to the release of Ca2+ from intracellular stores. Wehave investigated the effect of mechanical stimulation produced bycyclical stretch on the release of Ca2+ from theintracellular stores. Permeabilized VSMC loaded with 45Ca2+ were subjected to 7.5% average (15%maximal) cyclical stretch. This resulted in an increase in45Ca2+ rate constant by 0.126 ± 0.0035. Inhibition of inositol 1,4,5-trisphosphate (IP3),ryanodine, and nicotinic acid adenine dinucleotide phosphate channels(NAADP) with 50 µg/ml heparin, 50 µM ruthenium red, and 25 µMthio-NADP, respectively, did not block the increase in45Ca2+ efflux in response to cyclical stretch.However, 10 µM lanthanum, 10 µM gadolinium, and 10 µMcytochalasin D but not 10 µM nocodazole inhibited the increase in45Ca2+ efflux. This supports the existence of anovel stretch-sensitive intracellular Ca2+ store in VSMCthat is distinct from the IP3-, ryanodine-, and NAADP-sensitive stores.

  相似文献   

18.
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have been suggested as participants in enteric inhibitory neural regulation of gastrointestinal motility. These peptides cause a variety of postjunctional responses including membrane hyperpolarization and inhibition of contraction. Neuropeptides released from enteric motor neurons can elicit responses by direct stimulation of smooth muscle cells as opposed to other transmitters that rely on synapses between motor nerve terminals and interstitial cells of Cajal. Therefore, we studied the responses of murine colonic smooth muscle cells to VIP and PACAP(1–38) with confocal microscopy and patch-clamp technique. Localized Ca2+ transients (Ca2+ puffs) were observed in colonic myocytes, and these events coupled to spontaneous transient outward currents (STOCs). VIP and PACAP increased Ca2+ transients and STOC frequency and amplitude. Application of dibutyryl cAMP had similar effects. The adenylyl cyclase blocker MDL-12,330A alone did not affect spontaneous Ca2+ puffs and STOCs but prevented responses to VIP. Disruption of A-kinase-anchoring protein (AKAP) associations by application of AKAP St-Ht31 inhibitory peptide had effects similar to those of MDL-12,330A. Inhibition of ryanodine receptor channels did not block spontaneous Ca2+ puffs and STOCs but prevented the effects of dibutyryl cAMP. These findings suggest that regulation of Ca2+ transients (which couple to activation of STOCs) may contribute to the inhibitory effects of VIP and PACAP. Regulation of Ca2+ transients by VIP and PACAP occurs via adenylyl cyclase, increased synthesis of cAMP, and PKA-dependent regulation of ryanodine receptor channels. calcium puffs; ryanodine receptor channels; enteric nervous system; gastrointestinal motility  相似文献   

19.
Hypotonicswelling increases the intracellular Ca2+ concentration([Ca2+]i) in vascular smooth muscle cells(VSMC). The source of this Ca2+ is not clear. To study thesource of increase in [Ca2+]i in response tohypotonic swelling, we measured [Ca2+]i infura 2-loaded cultured VSMC (A7r5 cells). Hypotonic swelling produced a40.7-nM increase in [Ca2+]i that was notinhibited by EGTA but was inhibited by 1 µM thapsigargin. Priordepletion of inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores with vasopressin did not inhibit the increasein [Ca2+]i in response to hypotonic swelling.Exposure of 45Ca2+-loaded intracellular storesto hypotonic swelling in permeabilized VSMC produced an increase in45Ca2+ efflux, which was inhibited by 1 µMthapsigargin but not by 50 µg/ml heparin, 50 µM ruthenium red, or25 µM thio-NADP. Thus hypotonic swelling of VSMC causes a release ofCa2+ from the intracellular stores from a novel sitedistinct from the IP3-, ryanodine-, and nicotinic acidadenine dinucleotide phosphate-sensitive stores.

  相似文献   

20.
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 µM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 µM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 µM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG. voltage-gated potassium channels; ether-à-go-go-related gene potassium channels; slow-inactivating outward currents; fast-inactivating outward currents  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号