首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
"Stem cell aging" is a novel concept that developed together with the advances of stem cell biology, especially the sophisticated prospectively isolation and characterization of multipotent somatic tissue stem cells. Although being immortal in principle, stem cells can also undergo aging processes and potentially contribute to organismal aging. The impact of an age-dependent decline of stem cell function weighs differently in organs with high or low rates of cell turnover. Nonetheless, most of the organ systems undergo age-dependent loss of homeostasis and functionality, and emerging evidence showed that this has to do with the aging of resident stem cells in the organ systems. The mechanisms of stem cell aging and its real contribution to human aging remain to be defined. Many antitumor mechanisms protect potential malignant transformation of stem cell by inducing apoptosis or senescence but simultaneously provoke stem cell aging. In this review, we try to discuss several concept of stem cell aging and summarize recent progression on the molecular mechanisms of stem cell aging.  相似文献   

2.
Rossi DJ  Jamieson CH  Weissman IL 《Cell》2008,132(4):681-696
The aging of tissue-specific stem cell and progenitor cell compartments is believed to be central to the decline of tissue and organ integrity and function in the elderly. Here, we examine evidence linking stem cell dysfunction to the pathophysiological conditions accompanying aging, focusing on the mechanisms underlying stem cell decline and their contribution to disease pathogenesis.  相似文献   

3.
The analysis of model systems has broadened our understanding of telomere-related aging processes. Telomerase-deficient mouse models have demonstrated that telomere dysfunction impairs tissue renewal capacity and shortens lifespan. Telomere shortening limits cell proliferation by activating checkpoints that induce replicative senescence or apoptosis. These checkpoints protect against an accumulation of genomically instable cells and cancer initiation. However, the induction of these checkpoints can also limit organ homeostasis, regeneration, and survival during aging and in the context of diseases. The decline in tissue regeneration in response to telomere shortening has been related to impairments in stem cell function. Telomere dysfunction impairs stem cell function by activation of cell-intrinsic checkpoints and by the induction of alterations in the micro- and macro-environment of stem cells. In this review, we discuss the current knowledge about the impact of telomere shortening on disease stages induced by replicative cell aging as indicated by studies on telomerase model systems.  相似文献   

4.
Tight regulation of stem cell proliferation is fundamental to tissue homeostasis, aging and tumor suppression. Although stem cells are characterized by their high potential to proliferate throughout the life of the organism, the mechanisms that regulate the cell cycle of stem cells remain poorly understood. Here, we show that the Cdc25 homolog String (Stg) is a crucial regulator of germline stem cells (GSCs) and cyst stem cells (CySCs) in Drosophila testis. Through knockdown and overexpression experiments, we show that Stg is required for stem cell maintenance and that a decline in its expression during aging is a critical determinant of age-associated decline in stem cell function. Furthermore, we show that restoration of Stg expression reverses the age-associated decline in stem cell function but leads to late-onset tumors. We propose that Stg/Cdc25 is a crucial regulator of stem cell function during tissue homeostasis and aging.  相似文献   

5.
A decline in the replicative and regenerative capacity of adult stem cell populations is a major contributor to the aging process. Mitochondrial DNA (mtDNA) mutations clonally expand with age in human stem cell compartments including the colon, small intestine, and stomach, and result in respiratory chain deficiency. Studies in a mouse model with high levels of mtDNA mutations due to a defect in the proofreading domain of the mtDNA polymerase γ (mtDNA mutator mice) have established causal relationships between the accumulation of mtDNA point mutations, stem cell dysfunction, and premature aging. These mtDNA mutator mice have also highlighted that the consequences of mtDNA mutations upon stem cells vary depending on the tissue. In this review, we present evidence that these studies in mice are relevant to normal human stem cell aging and we explore different hypotheses to explain the tissue‐specific consequences of mtDNA mutations. In addition, we emphasize the need for a comprehensive analysis of mtDNA mutations and their effects on cellular function in different aging human stem cell populations.  相似文献   

6.
Zhao R  Xuan Y  Li X  Xi R 《Aging cell》2008,7(3):344-354
Adult stem cells are important in replenishing aged cells to maintain tissue homeostasis. Aging in turn may exert profound effects on stem cell's regenerative potential, but to date the mechanisms of such stem cell aging are poorly understood, and it is not clear to what extent stem cell aging contributes to tissue or organ aging. Here we show in female Drosophila that germline stem cell (GSC) division rate progressively declines with age, which is accompanied by reduced decapentaplegic (dpp) niche signaling pathway activation within GSCs. Egg production also rapidly declines with age, which is accompanied by both decreased stem cell division and increased incidence of cell death of developing eggs, especially in the oldest females. Genetically increasing dpp expression delays GSC activity decline and transiently increases egg production. We conclude that age-related decline of reproduction is caused by both decreased GSC activity and increased incidence of cell death during oogenesis, while decreased GSC activity is attributed to declined signaling from the regulatory niche. We suggest that niche functional decay may be an important mechanism for stem cell aging and system failure.  相似文献   

7.
Tissue engineering has yet to reach its ideal goal, i.e. creating profitable off-the-shelf tissues and organs, designing scaffolds and three-dimensional tissue architectures that can maintain the blood supply, proper biomaterial selection, and identifying the most efficient cell source for use in cell therapy and tissue engineering. These are still the major challenges in this field. Regarding the identification of the most appropriate cell source, aging as a factor that affects both somatic and stem cells and limits their function and applications is a preventable and, at least to some extents, a reversible phenomenon. Here, we reviewed different stem cell types, namely embryonic stem cells, adult stem cells, induced pluripotent stem cells, and genetically modified stem cells, as well as their sources, i.e. autologous, allogeneic, and xenogeneic sources. Afterward, we approached aging by discussing the functional decline of aged stem cells and different intrinsic and extrinsic factors that are involved in stem cell aging including replicative senescence and Hayflick limit, autophagy, epigenetic changes, miRNAs, mTOR and AMPK pathways, and the role of mitochondria in stem cell senescence. Finally, various interventions for rejuvenation and geroprotection of stem cells are discussed. These interventions can be applied in cell therapy and tissue engineering methods to conquer aging as a limiting factor, both in original cell source and in the in vitro proliferated cells.  相似文献   

8.
9.
Reactive oxygen species (ROS) are considered a key factor in mitochondrial dysfunction associated with brain aging process. Mitochondrial respiration is an important source of ROS and hence a potential contributor to brain functional changes with aging. In this study, we examined the effect of aging on cytochrome c oxidase activity and other bioenergetic processes such as oxygen consumption, membrane potential and ROS production in rat brain mitochondria. We found a significant age-dependent decline in the cytochrome c oxidase activity which was associated with parallel changes in state 3 respiration, membrane potential and with an increase in H2O2 generation. The cytochrome aa3 content was practically unchanged in mitochondria from young and aged animals. The age-dependent decline of cytochrome c oxidase activity could be restored, in situ, to the level of young animals, by exogenously added cardiolipin. In addition, exposure of brain mitochondria to peroxidized cardiolipin resulted in an inactivation of this enzyme complex. It is suggested that oxidation/depletion of cardiolipin could be responsible, at least in part, for the decline of cytochrome c oxidase and mitochondrial dysfunction in brain aging. Melatonin treatment of old animals largely prevented the age-associated alterations of mitochondrial bioenergetic parameters. These results may prove useful in elucidating the molecular mechanisms underlying mitochondrial dysfunction associated with brain aging process, and may have implications in etiopathology of age-associated neurodegenerative disorders and in the development of potential treatment strategies.  相似文献   

10.
Adult stem cells are responsible for the cellular turnover of many organs, and an impairment in their function leads to aging and disease. In efforts to reverse the process of tissue stem cell aging, we speculate on the promise and challenges of in vivo direct reprogramming strategies.  相似文献   

11.
Cardiac mitochondrial bioenergetics, oxidative stress, and aging   总被引:2,自引:0,他引:2  
Mitochondria have been a central focus of several theories of aging as a result of their critical role in bioenergetics, oxidant production, and regulation of cell death. A decline in cardiac mitochondrial function coupled with the accumulation of oxidative damage to macromolecules may be causal to the decline in cardiac performance with age. In contrast, regular physical activity and lifelong caloric restriction can prevent oxidative stress, delay the onset of morbidity, increase life span, and reduce the risk of developing several pathological conditions. The health benefits of life long exercise and caloric restriction may be, at least partially, due to a reduction in the chronic amount of mitochondrial oxidant production. In addition, the available data suggest that chronic exercise may serve to enhance antioxidant enzyme activities, and augment certain repair/removal pathways, thereby reducing the amount of oxidative tissue damage. However, the characterization of age-related changes to cardiac mitochondria has been complicated by the fact that two distinct populations of mitochondria exist in the myocardium: subsarcolemmal mitochondria and interfibrillar mitochondria. Several studies now suggest the importance of studying both mitochondrial populations when attempting to elucidate the contribution of mitochondrial dysfunction to myocardial aging. The role that mitochondrial dysfunction and oxidative stress play in contributing to cardiac aging will be discussed along with the use of lifelong exercise and calorie restriction as countermeasures to aging. superoxide anion; longevity; postmitotic; calorie restriction; subsarcolemmal, interfibrillar, exercise  相似文献   

12.
Ageing is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Here we discuss emerging invertebrate models that provide insights into molecular pathways of age-related stem cell dysfunction in mammals, and we present various paradigms of how stem cell functionality changes with age, including impaired self-renewal and aberrant differentiation potential.  相似文献   

13.
Aging is accompanied by the functional decline of cells, tissues, and organs, as well as, a striking increase in susceptibility to a wide range of diseases. Within a tissue, both differentiated cells and adult stem cells are susceptible to intrinsic and extrinsic changes while aging. Muscle derived stem cells (MDSCs) are tissue specific stem cells which have been studied well for their multipotential nature. Although there are reports relating to diminished function and regenerative capacity of aged MDSCs as compared to their young counterparts, not much has been reported relating to the concomitant gain in unipotent nature of aged MDSCs. In this study, we report an inverse correlation between aging and expression of adult/mesenchymal stem cell markers and a direct correlation between aging and myogenecity in MDSCs. Aged MDSCs were able to generate a greater number of dystrophin positive myofibres, as compared to, the young MDSCs when transplanted in muscle of dystrophic mice. Our data, therefore, suggests that aging stress adds to the decline in stem cell characteristics with a concomitant increase in unipotency, in terms of, myogenecity of MDSCs. This study, hence, also opens the possibilities of using unipotent aged MDSCs as potential candidates for transplantation in patients with muscular dystrophies.  相似文献   

14.
Tissue stem cells are responsible for replenishing and maintaining a population of cells which make up a functioning organ. They divide by asymmetric cell division where one daughter remains a stem cell while the other daughter becomes a transit cell, which divides a defined number of times and differentiates. A fully differentiated cell has a finite life-span. A tissue can be maintained by various strategies. Stem cells can divide often and differentiated cells die often (fast turnover). Alternatively, stem cells can divide infrequently, and the differentiated cells are long lived (slow turnover). Genetic alterations and mutations can interfere with tissue homoeostasis. Mutations can induce senescence and apoptosis, and this can result in a reduction of the number of functioning tissue cells which could correlate with tissue aging. Alternatively, mutations can result in the carcinogenic transformation of cells and the formation of a tumour. Using mathematical models, I find that the cellular turnover rate affects the ability of genetic alterations to induce aging and the development of cancer. If mutations occur as a result of errors during cell division, the model suggests that a low cellular turnover rate protects both against aging and the development of cancer. On the other hand, if mutations occur independent from cell division (e.g. if DNA is hit by damaging agents), I find that a high cellular turnover rate protects against aging, while it promotes the development of cancer. Implications for optimal tissue design are discussed.  相似文献   

15.
Pan L  Chen S  Weng C  Call G  Zhu D  Tang H  Zhang N  Xie T 《Cell Stem Cell》2007,1(4):458-469
It is widely postulated that tissue aging could be, at least partially, caused by reduction of stem cell number, activity, or both. However, the mechanisms of controlling stem cell aging remain largely a mystery. Here, we use Drosophila ovarian germline stem cells (GSCs) as a model to demonstrate that age-dependent decline in the functions of stem cells and their niche contributes to overall stem cell aging. BMP signaling activity from the niche significantly decreases with age, and increasing BMP signaling can prolong GSC life span and promote their proliferation. In addition, the age-dependent E-cadherin decline in the stem cell-niche junction also contributes to stem cell aging. Finally, overexpression of SOD, an enzyme that helps eliminate free oxygen species, in either GSCs or their niche alone can prolong GSC life span and increase GSC proliferation. Therefore, this study demonstrates that stem cell aging is controlled extrinsically and intrinsically in the Drosophila ovary.  相似文献   

16.
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging‐related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin‐related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging‐induced tissue degeneration.  相似文献   

17.
Telomere dysfunction and stem cell ageing   总被引:1,自引:0,他引:1  
Ageing is characterized by a decline in organ maintenance and repair. Adult stem cells contribute to tissue repair and organ maintenance. Thus it is conceivable that ageing is partly due to a decline of stem cell function. At molecular level, ageing is associated with an accumulation of damage affecting DNA, proteins, membranes, and organelles, as well as the formation of insoluble protein aggregates. Telomere shortening represents a cell intrinsic mechanism, which contributes to the accumulation of DNA damage during cellular ageing. Telomere dysfunction in response to critical telomere shortening induces DNA damage checkpoints that lead to cell cycle arrest and/or cell death. Checkpoint responses induced by telomere dysfunction have mostly been studied in somatic cells but there are emerging data on cell intrinsic checkpoints that impair the maintenance and function of adult stem cell in response to telomere dysfunction. Moreover, telomere dysfunction induces alterations in the stem cell environment that limit the function of adult stem cells. In this review we summarize our current knowledge on the role of telomere dysfunction in adult stem cell ageing.  相似文献   

18.
19.
As they age, adult stem cells become more prone to functional decline, which is responsible for aging‐associated tissue degeneration and diseases. One goal of aging research is to identify drugs that can repair age‐associated tissue degeneration. Multiple organ development‐related signaling pathways have recently been demonstrated to have functions in tissue homeostasis and aging process. Therefore, in this study, we tested several chemicals that are essential for organ development to assess their ability to delay intestinal stem cell (ISC) aging and promote gut function in adult Drosophila. We found that taurine, a free amino acid that supports neurological development and tissue metabolism in humans, represses ISC hyperproliferation and restrains the intestinal functional decline seen in aged animals. We found that taurine represses age‐associated ISC hyperproliferation through a mechanism that eliminated endoplasmic reticulum (ER) stress by upregulation of the target genes of unfolded protein response in the ER (UPRER) and inhibiting the c‐Jun N‐terminal kinase (JNK) signaling. Our findings show that taurine plays a critical role in delaying the aging process in stem cells and suggest that it may be used as a natural compound for the treatment of age‐associated, or damage‐induced intestinal dysfunction in humans.  相似文献   

20.
Aging is unmistakable and undeniable in mammals. Interestingly, mice develop cataracts, muscle atrophy, osteoporosis, obesity, diabetes and cognitive deficits after just 2–3 postnatal years, while it takes seven or more decades for the same age-specific phenotypes to develop in humans. Thus, chronological age corresponds differently with biological age in metazoan species and although many theories exist, we do not understand what controls the rate of mammalian aging. One interesting idea is that species-specific rate of aging represents a ratio of tissue attrition to tissue regeneration. Furthermore, current findings suggest that the age-imposed biochemical changes in the niches of tissue stem cells inhibit performance of this regenerative pool, which leads to the decline of tissue maintenance and repair. If true, slowing down stem cell and niche aging, thereby promoting tissue regeneration, could slow down the process of tissue and organismal aging. In this regard, recent studies of heterochronic parabiosis provide important clues as to the mechanisms of stem cell aging and suggest novel strategies for enhancing tissue repair in the old. Here we review current literature on the relationship between the vigor of tissue stem cells and the process of aging, with an emphasis on the rejuvenation of old tissues by the extrinsic modifications of stem cell niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号