首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Repetitive DNA sequences with the potential to form alternative DNA conformations, such as slipped structures and cruciforms, can induce genetic instability by promoting replication errors and by serving as a substrate for DNA repair proteins, which may lead to DNA double-strand breaks (DSBs). However, the contribution of each of the DSB repair pathways, homologous recombination (HR), non-homologous end-joining (NHEJ) and single-strand annealing (SSA), to this sort of genetic instability is not fully understood. Herein, we assessed the genome-wide distribution of repetitive DNA sequences in the Mycobacterium smegmatis, Mycobacterium tuberculosis and Escherichia coli genomes, and determined the types and frequencies of genetic instability induced by direct and inverted repeats, both in the presence and in the absence of HR, NHEJ, and SSA. All three genomes are strongly enriched in direct repeats and modestly enriched in inverted repeats. When using chromosomally integrated constructs in M. smegmatis, direct repeats induced the perfect deletion of their intervening sequences ∼1,000-fold above background. Absence of HR further enhanced these perfect deletions, whereas absence of NHEJ or SSA had no influence, suggesting compromised replication fidelity. In contrast, inverted repeats induced perfect deletions only in the absence of SSA. Both direct and inverted repeats stimulated excision of the constructs from the attB integration sites independently of HR, NHEJ, or SSA. With episomal constructs, direct and inverted repeats triggered DNA instability by activating nucleolytic activity, and absence of the DSB repair pathways (in the order NHEJ>HR>SSA) exacerbated this instability. Thus, direct and inverted repeats may elicit genetic instability in mycobacteria by 1) directly interfering with replication fidelity, 2) stimulating the three main DSB repair pathways, and 3) enticing L5 site-specific recombination.  相似文献   

2.
3.
Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase.  相似文献   

4.
《PloS one》2013,8(3)
Tourette syndrome (TS) is a neuropsychiatric disorder with a strong genetic component. However, the genetic architecture of TS remains uncertain. Copy number variation (CNV) has been shown to contribute to the genetic make-up of several neurodevelopmental conditions, including schizophrenia and autism. Here we describe CNV calls using SNP chip genotype data from an initial sample of 210 TS cases and 285 controls ascertained in two Latin American populations. After extensive quality control, we found that cases (N = 179) have a significant excess (P = 0.006) of large CNV (>500 kb) calls compared to controls (N = 234). Amongst 24 large CNVs seen only in the cases, we observed four duplications of the COL8A1 gene region. We also found two cases with ∼400kb deletions involving NRXN1, a gene previously implicated in neurodevelopmental disorders, including TS. Follow-up using multiplex ligation-dependent probe amplification (and including 53 more TS cases) validated the CNV calls and identified additional patients with rearrangements in COL8A1 and NRXN1, but none in controls. Examination of available parents indicates that two out of three NRXN1 deletions detected in the TS cases are de-novo mutations. Our results are consistent with the proposal that rare CNVs play a role in TS aetiology and suggest a possible role for rearrangements in the COL8A1 and NRXN1 gene regions.  相似文献   

5.
6.
We describe here an approach for rapidly producing scar-free and precise gene deletions in S. cerevisiae with high efficiency. Preparation of the disruption gene cassette in this approach was simply performed by overlap extension-PCR of an invert repeat of a partial or complete sequence of the targeted gene with URA3. Integration of the prepared disruption gene cassette to the designated position of a target gene leads to the formation of a mutagenesis cassette within the yeast genome, which consists of a URA3 gene flanked by the targeted gene and its inverted repeat between two short identical direct repeats. The inherent instability of the inverted sequences in close proximity facilitates the self-excision of the entire mutagenesis cassette deposited in the genome and promotes homologous recombination resulting in a seamless deletion via a single transformation. This rapid assembly circumvents the difficulty during preparation of disruption gene cassettes composed of two inverted repeats of the URA3, which requires the engineering of unique restriction sites for subsequent digestion and T4 DNA ligation in vitro. We further identified that the excision of the entire mutagenesis cassette flanked by two DRs in the transformed S. cerevisiae is dependent on the length of the inverted repeat of which a minimum of 800 bp is required for effective gene deletion. The deletion efficiency improves with the increase of the inverted repeat till 1.2 kb. Finally, the use of gene-specific inverted repeats of target genes enables simultaneous gene deletions. The procedure has the potential for application on other yeast strains to achieve precise and efficient removal of gene sequences.  相似文献   

7.
Chromosome breakage in germline and somatic genomes gives rise to copy number variation (CNV) responsible for genomic disorders and tumorigenesis. DNA sequence is known to play an important role in breakage at chromosome fragile sites; however, the sequences susceptible to double-strand breaks (DSBs) underlying CNV formation are largely unknown. Here we analyze 140 germline CNV breakpoints from 116 individuals to identify DNA sequences enriched at breakpoint loci compared to 2800 simulated control regions. We find that, overall, CNV breakpoints are enriched in tandem repeats and sequences predicted to form G-quadruplexes. G-rich repeats are overrepresented at terminal deletion breakpoints, which may be important for the addition of a new telomere. Interstitial deletions and duplication breakpoints are enriched in Alu repeats that in some cases mediate non-allelic homologous recombination (NAHR) between the two sides of the rearrangement. CNV breakpoints are enriched in certain classes of repeats that may play a role in DNA secondary structure, DSB susceptibility and/or DNA replication errors.  相似文献   

8.
9.
T. Q. Trinh  R. R. Sinden 《Genetics》1993,134(2):409-422
We describe a system to measure the frequency of both deletions and duplications between direct repeats. Short 17- and 18-bp palindromic and nonpalindromic DNA sequences were cloned into the EcoRI site within the chloramphenicol acetyltransferase gene of plasmids pBR325 and pJT7. This creates an insert between direct repeated EcoRI sites and results in a chloramphenicol-sensitive phenotype. Selection for chloramphenicol resistance was utilized to select chloramphenicol resistant revertants that included those with precise deletion of the insert from plasmid pBR325 and duplication of the insert in plasmid pJT7. The frequency of deletion or duplication varied more than 500-fold depending on the sequence of the short sequence inserted into the EcoRI site. For the nonpalindromic inserts, multiple internal direct repeats and the length of the direct repeats appear to influence the frequency of deletion. Certain palindromic DNA sequences with the potential to form DNA hairpin structures that might stabilize the misalignment of direct repeats had a high frequency of deletion. Other DNA sequences with the potential to form structures that might destabilize misalignment of direct repeats had a very low frequency of deletion. Duplication mutations occurred at the highest frequency when the DNA between the direct repeats contained no direct or inverted repeats. The presence of inverted repeats dramatically reduced the frequency of duplications. The results support the slippage-misalignment model, suggesting that misalignment occurring during DNA replication leads to deletion and duplication mutations. The results also support the idea that the formation of DNA secondary structures during DNA replication can facilitate and direct specific mutagenic events.  相似文献   

10.
Small direct repeats, which are frequent in all genomes, are a potential source of genome instability. To study the occurrence and genetic control of repeat-associated deletions, we developed a system in the yeast Saccharomyces cerevisiae that was based on small direct repeats separated by either random sequences or inverted repeats. Deletions were examined in the LYS2 gene, using a set of 31- to 156-bp inserts that included inserts with no apparent potential for secondary structure as well as two quasipalindromes. All inserts were flanked by 6- to 9-bp direct repeats of LYS2 sequence, providing an opportunity for Lys+ reversion via precise excision. Reversions could arise by extended deletions involving either direct repeats or random sequences and by -1-or +2-bp frameshift mutations. The deletion breakpoints were always associated with short (3- to 9-bp) perfect or imperfect direct repeats. Compared with the POL+ strain, deletions between small direct repeats were increased as much as 100-fold, and the spectrum was changed in a temperature-sensitive DNA polymerase delta pol3-t mutant, suggesting a role for replication. The type of deletion depended on orientation relative to the origin of replication. On the basis of these results, we propose (i) that extended deletions between small repeats arise by replication slippage and (ii) that the deletions occur primarily in either the leading or lagging strand. The RAD50 and RAD52 genes, which are required for the recombinational repair of many kinds of DNA double-strand breaks, appeared to be required also for the production of up to 90% of the deletions arising between separated repeats in the pol3-t mutant, suggesting a newly identified role for these genes in genome stability and possibly replication.  相似文献   

11.
Replication, DNA organization, and mismatch repair (MMR) can influence recombination. We examined the effects of altered replication due to a mutation in the polymerase delta gene, long inverted repeats (LIRs) in motifs similar to those in higher eukaryotes, and MMR on intrachromosomal recombination between highly diverged (28%) truncated genes in Saccharomyces cerevisiae. A combination of altered replication and an LIR increased recombination up to 700-fold, while each alone led to a 3- to 20-fold increase. Homeologous recombination was not altered by pms1, msh2, and msh3 mismatch repair mutations. Similar to our previous observations for replication slippage-mediated deletions, there were > or = 5-bp identical runs at the recombination breakpoints. We propose that the dramatic increase in recombination results from enhancement of the effects of altered replication by the LIR, leading to recombinationally active initiating structures. Such interactions predict replication-related, MMR-independent genome changes.  相似文献   

12.
D Kong  W Masker 《Journal of bacteriology》1994,176(19):5904-5911
An in vitro system based on extracts of Escherichia coli infected with bacteriophage T7 was used to study genetic deletions between directly repeated sequences. The frequency of deletion was highest under conditions in which the DNA was actively replicating. Deletion frequency increased markedly with the length of the direct repeat both in vitro and in vivo. When a T7 gene was interrupted by 93 bp of nonsense sequence flanked by 20-bp direct repeats, the region between the repeats was deleted in about 1 out of every 1,600 genomes during each round of replication. Very similar values were found for deletion frequency in vivo and in vitro. The deletion frequency was essentially unaffected by a recA mutation in the host. When a double-strand break was placed between the repeats, repair of this strand break was often accompanied by the deletion of the DNA between the direct repeats, suggesting that break rejoining could contribute to deletion during in vitro DNA replication.  相似文献   

13.
We have generated a panel of deletion mutants of ors12 (812-bp), a mammalian origin of DNA replication previously isolated by nascent strand extrusion from early replicating African Green monkey (CV-1) DNA. The deletion mutants were tested for their replication activity in vivo by the bromodeoxyuridine substitution assay, after transfection into HeLa cells, and in vitro by the DpnI resistance assay, using extracts from HeLa cells. We identified a 215-bp internal fragment as essential for the autonomous replication activity of ors12. When subcloned into the vector pML2 and similarly tested, this subfragment was capable of autonomous replication in vivo and in vitro. Several repeated sequence motifs are present in this 215-bp fragment, such as TGGG(A) and G(A)AG (repeated four times each); TTTC, AGG, and CTTA (repeated 3 times each); the motifs CACACA and CTCTCT, and two imperfect inverted repeats, 22 and 16 bp long, respectively. The overall sequence of the 215-bp fragment is G/C-rich (50.2%), by comparison to the 186-bp (33.5% G/C-rich) minimal sequence required for the autonomous replication activity of ors8, another functional ors that was similarly isolated and characterized. J. Cell. Biochem. 66:87–97, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
C. J. Saveson  S. T. Lovett 《Genetics》1997,146(2):457-470
Repeated genes and sequences are prone to genetic rearrangements including deletions. We have investigated deletion formation in Escherichia coli strains mutant for various replication functions. Deletion was selected between 787 base pair tandem repeats carried either on a ColE1-derived plasmid or on the E. coli chromosome. Only mutations in functions associated with DNA Polymerase III elevated deletion rates in our assays. Especially large increases were observed in strains mutant in dnaQ, the ε editing subunit of Pol III, and dnaB, the replication fork helicase. Mutations in several other functions also altered deletion formation: the α polymerase (dnaE), the γ clamp loader complex (holC, dnaX), and the β clamp (dnaN) subunits of Pol III and the primosomal proteins, dnaC and priA. Aberrant replication stimulated deletions through several pathways. Whereas the elevation in dnaB strains was mostly recA- and lexA-dependent, that in dnaQ strains was mostly recA- and lexA-independent. Deletion product analysis suggested that slipped mispairing, producing monomeric replicon products, may be preferentially increased in a dnaQ mutant and sister-strand exchange, producing dimeric replicon products, may be elevated in dnaE mutants. We conclude that aberrant Polymerase III replication can stimulate deletion events through several mechanisms of deletion and via both recA-dependent and independent pathways.  相似文献   

15.
Zhang CY  Wei JF  Het SH 《Biochemical genetics》2005,43(5-6):229-237
CCR5 is a seven-transmembrane G-protein-coupled receptor that binds the CC-chemokines including RANTES, eotaxin, MIP-1α and β. CCR5 serves as an essential coreceptor for cell entry of R5 (macrophage-tropic, nonsyncytium-inducing) strains of HIV-1. To date, four deletions have been found in human and primate ccr5. There is little evidence, however, on how these deletion mutations occur. In the present study, we analyzed ccr5 sequences of both mutants and wild type and found that direct repeats flanked the breakpoints of the deletions, suggesting that these deletions resulted from slipped mispairing during DNA replication. Of particular interest was the location of these deletions in or near the regions with higher negative FORS-D values. High negative FORS-D values stand for high stem-loop potential determined by base order and influence mainly the formation of stem-loop structures. Therefore, the particular location of these deletions suggests that the local sequence of bases might be important in the initiation of deletions mediated by DNA slip replication in concert with direct repeats. Contributed to this paper equally  相似文献   

16.
We have studied the deletion of inverted repeats cloned into the EcoRI site within the CAT gene of plasmid pBR325. A cloned inverted repeat constitutes a palindrome that includes both EcoRI sites flanking the insert. In addition, the two EcoRI sites represent direct repeats flanking a region of palindromic symmetry. A current model for deletion between direct repeats involves the formation of DNA secondary structure which may stabilize the misalignment between the direct repeats during DNA replication. Our results are consistent with this model. We have analyzed deletion frequencies for several series of inverted repeats, ranging from 42 to 106 bp, that were designed to form cruciforms at low temperatures and at low superhelical densities. We demonstrate that length, thermal stability of base pairing in the hairpin stem, and ease of cruciform formation affect the frequency of deletion. In general, longer palindromes are less stable than shorter ones. The deletion frequency may be dependent on the thermal stability of base pairing involving approximately 16-20 bp from the base of the hairpin stem. The formation of cruciforms in vivo leads to a significant increase in the deletion frequency. A kinetic model is presented to describe the relationship between the physical-chemical properties of DNA structure and the deletion of inverted repeats in living cells.  相似文献   

17.
Approximately 5% of patients with neurofibromatosis type 1 (NF1) exhibit gross deletions that encompass the NF1 gene and its flanking regions. The breakpoints of the common 1.4-Mb (type 1) deletions are located within low-copy repeats (NF1-REPs) and cluster within a 3.4-kb hotspot of nonallelic homologous recombination (NAHR). Here, we present the first comprehensive breakpoint analysis of type 2 deletions, which are a second type of recurring NF1 gene deletion. Type 2 deletions span 1.2 Mb and are characterized by breakpoints located within the SUZ12 gene and its pseudogene, which closely flank the NF1-REPs. Breakpoint analysis of 13 independent type 2 deletions did not reveal any obvious hotspots of NAHR. However, an overrepresentation of polypyrimidine/polypurine tracts and triplex-forming sequences was noted in the breakpoint regions that could have facilitated NAHR. Intriguingly, all 13 type 2 deletions identified so far are characterized by somatic mosaicism, which indicates a positional preference for mitotic NAHR within the NF1 gene region. Indeed, whereas interchromosomal meiotic NAHR occurs between the NF1-REPs giving rise to type 1 deletions, NAHR during mitosis appears to occur intrachromosomally between the SUZ12 gene and its pseudogene, thereby generating type 2 deletions. Such a clear distinction between the preferred sites of mitotic versus meiotic NAHR is unprecedented in any other genomic disorder induced by the local genomic architecture. Additionally, 12 of the 13 mosaic type 2 deletions were found in females. The marked female preponderance among mosaic type 2 deletions contrasts with the equal sex distribution noted for type 1 and/or atypical NF1 deletions. Although an influence of chromatin structure was strongly suspected, no sex-specific differences in the methylation pattern exhibited by the SUZ12 gene were apparent that could explain the higher rate of mitotic recombination in females.  相似文献   

18.
Autism spectrum disorder (ASD) is characterized by a complex polygenic background, but with the unique feature of a subset of cases (~15%-30%) presenting a rare large-effect variant. However, clinical interpretation in these cases is often complicated by incomplete penetrance, variable expressivity and different neurodevelopmental trajectories. NRXN1 intragenic deletions represent the prototype of such ASD-associated susceptibility variants. From chromosomal microarrays analysis of 104 ASD individuals, we identified an inherited NRXN1 deletion in a trio family. We carried out whole-exome sequencing and deep sequencing of mitochondrial DNA (mtDNA) in this family, to evaluate the burden of rare variants which may contribute to the phenotypic outcome in NRXN1 deletion carriers. We identified an increased burden of exonic rare variants in the ASD child compared to the unaffected NRXN1 deletion-transmitting mother, which remains significant if we restrict the analysis to potentially deleterious rare variants only (P = 6.07 × 10−5). We also detected significant interaction enrichment among genes with damaging variants in the proband, suggesting that additional rare variants in interacting genes collectively contribute to cross the liability threshold for ASD. Finally, the proband's mtDNA presented five low-level heteroplasmic mtDNA variants that were absent in the mother, and two maternally inherited variants with increased heteroplasmic load. This study underlines the importance of a comprehensive assessment of the genomic background in carriers of large-effect variants, as penetrance modulation by additional interacting rare variants to might represent a widespread mechanism in neurodevelopmental disorders.  相似文献   

19.
Copy number variations (CNVs) represent a large source of genetic variation in humans and have been increasingly studied for disease association. A deletion polymorphism of the gene encoding the cytosolic detoxification enzyme glutathione S-transferase theta 1 (GSTT1) has been extensively studied for cancer susceptibility (919 studies, from HuGE navigator, http://www.hugenavigator.net/). However, clear conclusions have not been reached. Since the GSTT1 gene is located within a genomic region of segmental duplications (SD), there may be a confounding effect from another, yet-uncharacterized CNV at the same locus. Here we describe a previously uncharacterized 38-kilo-base (kb) long deletion polymorphism of GSTT2B located within a 61-kb DNA inverted repeat. GSTT2B is a duplicated copy of GSTT2, the only paralogue of GSTT1 in humans. A newly developed PCR assay revealed that a microhomology-mediated breakpoint appears to be shared among individuals at high frequency. The GSTT2B deletion polymorphism was in strong linkage disequilibrium (LD) (D′ = 0.841) with the neighboring GSTT1 deletion polymorphism in the Caucasian population. Alleles harboring a single deletion were significantly overrepresented (p = 2.22×10−16), suggesting a selection against alleles with both deletions. The deletion alleles are almost certainly the derived ones, because the GSTT2B-GSTT2-GSTT1 genes were strictly retained in chimpanzees. Extremely low GSTT2 mRNA expression was associated with the GSTT2B deletion, suggesting an influence of the deletion on the flanking region and loss of GSTT2 function. Genome-wide LD analysis between deletion polymorphisms further points to the uniqueness of two deletions, because strong LD between deletion polymorphisms might be very rare in humans. These results show a complex genomic organization and unexpected biological functions of CNVs within segmental duplications and emphasize the importance of detailed structural characterization for disease association studies.  相似文献   

20.
Summary The effects of the rolling-circle mode of replication and the generation of single-stranded DNA (ss DNA) on plasmid deletion formation between short direct repeats in Bacillus subtilis were studied. Deletion units consisting of direct repeats (9, 18, or 27 bp) that do or do not flank inverted repeats (300 bp) were introduced into various plasmid replicons that generate different amounts of ss DNA (from 0% to 40% of the total plasmid DNA). With ss DNA-generating rolling-circle-type plasmids, deletion frequencies between the direct repeats were 3- to 13-fold higher than in plasmids not generating ss DNA. When the direct repeats flanked inverted repeats the deletion frequencies in ss DNA-generating plasmids were increased by as much as 20- to 140-fold. These results support models for deletion formation based on template-switching errors during complementary strand synthesis of rolling-circle-type plasmids. The structural instability (deletion formation between short direct repeats) of the ss DNA-generating plasmid pTA1060 in B. subtilis was very low in the presence of a functional initiation site for complementary strand synthesis (minus origin). This observation suggests that it will be possible to develop stable host-vector cloning systems for B. subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号