首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
Histone modifications in response to DNA damage   总被引:1,自引:0,他引:1  
  相似文献   

4.
张旭  李晴 《生命科学》2014,(11):1176-1186
真核生物中的DNA复制,不但要保证DNA编码的基因组信息高保真复制,也要保证染色质结构所蕴含的表观遗传组稳定传递,这个过程对于维持基因组的完整性和稳定性至关重要。时至今日,人们对DNA复制的机制已经有了深入的认识,但是对染色质复制以及表观遗传信息传递的了解才刚刚开始。组蛋白是染色质结构中最主要的蛋白组成部分,其上面丰富的转录后修饰是表观遗传调控的核心方式之一。从最近几年组蛋白的修饰研究进展入手,主要综述在DNA复制过程中组蛋白修饰如何参与染色质复制的调控。  相似文献   

5.
Heterochromatin is characteristically more compact than euchromatin in the eukaryotic genome. The establishment of heterochromatin is mediated by special histone modifications, recruitment and propagation of heterochromatin specific proteins, as well as formation of special primary and high order structures of chromatin. Chromatin remodeling factors are ATPases that can alter the conformation and/or positioning of nucleosomes along DNA in an ATP-dependent manner. There is increasing evidence implicating chromatin remodeling activities in heterochromatin in various organisms ranging from yeasts to humans. Chromatin remodeling factors play roles in the establishment, maintenance and epigenetic inheritance of heterochromatin, but the underlying molecular mechanisms have just begun to be investigated.  相似文献   

6.
Selection and licensing of mammalian DNA replication origins may be regulated by epigenetic changes in chromatin structure. The Epstein-Barr virus (EBV) origin of plasmid replication (OriP) uses the cellular licensing machinery to regulate replication during latent infection of human cells. We found that the minimal replicator sequence of OriP, referred to as the dyad symmetry (DS), is flanked by nucleosomes. These nucleosomes were subject to cell cycle-dependent chromatin remodeling and histone modifications. Restriction enzyme accessibility assay indicated that the DS-bounded nucleosomes were remodeled in late G1. Remarkably, histone H3 acetylation of DS-bounded nucleosomes decreased during late G1, coinciding with nucleosome remodeling and MCM3 loading, and preceding the onset of DNA replication. The ATP-dependent chromatin-remodeling factor SNF2h was also recruited to DS in late G1, and formed a stable complex with HDAC2 at DS. siRNA depletion of SNF2h reduced G1-specific nucleosome remodeling, histone deacetylation, and MCM3 loading at DS. We conclude that an SNF2h-HDAC1/2 complex coordinates G1-specific chromatin remodeling and histone deacetylation with the DNA replication initiation process at OriP.  相似文献   

7.
8.
DNA修复的表观遗传学调控   总被引:1,自引:0,他引:1  
表观遗传学信息的改变是导致人类肿瘤形成的重要因素之一.基因组的稳定性经常会受到DNA损伤的威胁.然而,高度致密的染色质结构却极大地妨碍了DNA修复的进行.因此,真核生物细胞中必须有一个精确的机制来克服染色质这一天然的屏障.其中,组蛋白的共价修饰和ATP-依赖的染色质重塑通过改变染色质的结构,对DNA修复进程起着关键的调控作用.介绍了DNA修复过程中,发生在表观遗传学方面的主要调控过程,特别阐述了在DNA双链断裂损伤应答和修复过程中,组蛋白修饰和染色质重塑方面最新的研究进展,并对今后的发展方向进行了讨论.  相似文献   

9.
10.
Every cell has to duplicate its entire genome during S-phase of the cell cycle. After replication, the newly synthesized DNA is rapidly assembled into chromatin. The newly assembled chromatin ‘matures’ and adopts a variety of different conformations. This differential packaging of DNA plays an important role for the maintenance of gene expression patterns and has to be reliably copied in each cell division. Posttranslational histone modifications are prime candidates for the regulation of the chromatin structure. In order to understand the maintenance of chromatin structures, it is crucial to understand the replication of histone modification patterns. To study the kinetics of histone modifications in vivo, we have pulse-labeled synchronized cells with an isotopically labeled arginine (15N4) that is 4 Da heavier than the naturally occurring 14N4 isoform. As most of the histone synthesis is coupled with replication, the cells were arrested at the G1/S boundary, released into S-phase and simultaneously incubated in the medium containing heavy arginine, thus labeling all newly synthesized proteins. This method allows a comparison of modification patterns on parental versus newly deposited histones. Experiments using various pulse/chase times show that particular modifications have considerably different kinetics until they have acquired a modification pattern indistinguishable from the parental histones.  相似文献   

11.
In multicellular organisms, each cell contains the same DNA sequence, but with different epigenetic information that determines the cell specificity. Semi-conservative DNA replication faithfully copies the parental nucleotide sequence into two DNA daughter strands during each cell cycle. At the same time, epigenetic marks such as DNA methylation and histone modifications are either precisely transmitted to the daughter cells or dynamically changed during S-phase. Recent studies indicate that in each cell cycle, many DNA replication related proteins are involved in not only genomic but also epigenomic replication. Histone modification proteins, chromatin remodeling proteins, histone variants, and RNAs participate in the epigenomic replication during S-phase. As a consequence, epigenome replication is closely linked with DNA replication during S-phase.  相似文献   

12.
13.
14.
Cancer cells accumulate widespread local and global chromatin changes and the source of this instability remains a key question. Here we hypothesize that chromatin alterations including unscheduled silencing can arise as a consequence of perturbed histone dynamics in response to replication stress. Chromatin organization is transiently disrupted during DNA replication and maintenance of epigenetic information thus relies on faithful restoration of chromatin on the new daughter strands. Acute replication stress challenges proper chromatin restoration by deregulating histone H3 lysine 9 mono‐methylation on new histones and impairing parental histone recycling. This could facilitate stochastic epigenetic silencing by laying down repressive histone marks at sites of fork stalling. Deregulation of replication in response to oncogenes and other tumor‐promoting insults is recognized as a significant source of genome instability in cancer. We propose that replication stress not only presents a threat to genome stability, but also jeopardizes chromatin integrity and increases epigenetic plasticity during tumorigenesis.  相似文献   

15.
Moazed D 《Cell》2011,146(4):510-518
Studies in eukaryotes ranging from yeast to mammals indicate that specific chromatin structures can be inherited following DNA replication via mechanisms acting in cis. Both the initial establishment of such chromatin structures and their inheritance require sequence-dependent specificity factors and changes in histone posttranslational modifications. Here I propose models for the maintenance of epigenetic information in which DNA silencers or nascent RNA scaffolds act as sensors that work cooperatively with parentally inherited histones to re-establish chromatin states following DNA replication.  相似文献   

16.
17.
王蕊  曾宪录 《遗传》2010,32(4):301-306
染色质高度紧密的折叠阻止了转录因子和辅因子与DNA的结合, 因而通过染色质重塑以解除这样的抑制环境, 对于转录活动的正常进行是至关重要的。目前认为, 染色质重塑至少是通过两种机制来完成的, 一种是通过ATP依赖的染色质改构复合物, 另一种是通过对组蛋白尾部进行共价修饰的组蛋白修饰酶复合物。文章结合近年来的研究进展, 对前者进行染色质重塑的机制及两者在基因转录调控过程中如何相互协作等进行了论述。  相似文献   

18.
Studies in organisms belonging to different eukaryotic kingdoms have revealed that the structural state of chromatin is controlled by interactions of DNA, small RNAs and specific proteins, linked to a self-reinforcing complex network of biochemical activities involving histone and DNA modifications and ATP-dependent nucleosome remodeling. However, these findings must now be reinterpreted in light of the recent discovery of the highly dynamic character of interphase chromosomes exemplified by the constant flux of enzymatic and structural proteins through both eu- and heterochromatin and by short- and long-range chromosome movements in the nucleus. The available data on chromosome organization in Arabidopsis thaliana and links between proteins influencing chromatin structure and DNA and histone modifications documented in this model plant provide strong supportive evidence for the dynamic nature of chromosomes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号