首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
d-Arabinose(l-fucose) isomerase (d-arabinose ketol-isomerase, EC 5.3.1.3) was purified from the extracts of d-arabinose-grown cells of Aerobacter aerogenes, strain M-7 by the procedure of repeated fractional precipitation with polyethylene glycol 6000 and isolating the crystalline state. The crystalline enzyme was homogeneous in ultracentrifugal analysis and polyacrylamide gel electrophoresis. Sedimentation constant obtained was 15.4s and the molecular weight was estimated as being approximately 2.5 × 105 by gel filtration on Sephadex G-200.

Optimum pH for isomerization of d-arabinose and of l-fucose was identical at pH 9.3, and the Michaelis constants were 51 mm for l-fucose and 160 mm for d-arabinose. Both of these activities decreased at the same rate with thermal inactivation at 45 and 50°C. All four pentitols inhibited two pentose isomerase activities competitively with same Ki values: 1.3–1.5 mm for d-arabitol, 2.2–2.7 mm for ribitol, 2.9–3.2 mm for l-arabitol, and 10–10.5 mm for xylitol. It is confirmed that the single enzyme is responsible for the isomerization of d-arabinose and l-fucose.  相似文献   

2.
The α-d-galactosidases of six Streptomyces strains were examined on their inducer susceptibility, substate specificity, and inhibitor susceptibility. In all strains examined, α-d-galactosidase was induced by d-galactose, but neither by d-fucose nor by l-arabinose. α-d-Fucosidase activity was always induced accompanying with α-d-galactosedase activity. β-l-Arabinosidase activity, however, was never observed. These α-d-galactosidases were purified to electrophoretically pure degree by successive ammonium sulfate and ethanol precipitation, and ion exchange and gel filtration chromatography. The purified preparations from six strains were different from each other in their chromatographic behaviors and in some physical properties, but they all showed strong α-d-fucosidase activity as well. The α-d-galactosidase activities were strongly inhibited by d-galactose and l-arabinose, but scarcely by d-fucose. On the other hand, their α-d-fucosidase activities were inhibited by d-fucose as well as by d-galactose and l-arabinose.  相似文献   

3.
Regulatory properties of the enzymes in l-tyrosine and l-phenyalanine terminal pathway in Corynebacterium glutamicum were investigated. Prephenate dehydrogenase was partially feedback inhibited by l-tyrosine. Prephenate dehydratase was strongly inhibited by l-phenylalanine and l-tryptophan and 100% inhibition was attained at the concentrations of 5 × 10?2mm and 10?1mm, respectively. l-Tyrosine stimulated prephenate dehydratase activity (6-fold stimulation at 1 mm) and restored the enzyme activity inhibited by l-phenylalanine or l-tryptophan. These regulations seem to give the balanced synthesis of l-tyrosine and l-phenyl-alanine. Prephenate dehydratase from C. glutamicum was stimulated by l-methionine and l-leucine similarly to the enzyme in Bacillus subtilis and moreover by l-isoleucine and l-histidine. C. glutamicum mutant No. 66, an l-phenylalanine producer resistant to p-fluorophenyl-alanine, had a prephenate dehydratase completely resistant to the inhibition by l-phenylalanine and l-tryptophan.  相似文献   

4.
Biosynthetic threonine deaminase was purified to an apparent homogeneous state from the cell extract of Proteus morganii, with an overall yield of 7.5%. The enzyme had a s020,w of 10.0 S, and the molecular weight was calculated to be approximately, 228,000. The molecular weight of a subunit of the enzyme was estimated to be 58,000 by sodium dodecyl sulfate gel electrophoresis. The enzyme seemed to have a tetrameric structure consisting of identical subunits. The enzyme had a marked yellow color with an absorption maximum at 415 nm and contained 2 mol of pyridoxal 5′-phosphate per mol. The threonine deaminase catalyzed the deamination of l-threonine, l-serine, l-cysteine and β-chloro-l-alanine. Km values for l-threonine and l-serine were 3.2 and 7.1 mm, respectively. The enzyme was not activated by AMP, ADP and ATP, but was inhibited by l-isoleucine. The Ki for l-isoleucine was 1.17 mm, and the inhibition was not recovered by l-valine. Treatment with mercuric chloride effectively protected the enzyme from inhibition by l-isoleucine.  相似文献   

5.
An aminopeptidase was purified from Aspergillus sojae X–816. The molecular weight of the enzyme was estimated to be 220,000. The isoelectric point was at pH 5.3. The optimum pH for l-leucylglycylglycine was 7.5. The enzyme was stable up to 37°C against temperature treatment for 15 min. Some chelating agents inhibited the enzyme activity. The Km value for l-leucylglycylglycine at pH 7.5 and 37°C was 45 mm. The Km value for l-leucyl-β-naphthylamide at pH 7.0 and 37°C was 2.2 mm.  相似文献   

6.
Regulatory properties of chorismate mutase from Corynebacterium glutamicum were studied using the dialyzed cell-free extract. The enzyme activity was strongly feedback inhibited by l-phenylalanine (90% inhibition at 0.1~1 mm) and almost completely by a pair of l-tyrosine and l-phenylalanine (each at 0.1~1 mm). The enzyme from phenylalanine auxotrophs was scarcely inhibited by l-tyrosine alone but the enzyme from a wild-type strain or a tyrosine auxotroph was weakly inhibited by l-tyrosine alone (40~50% inhibition, l-tyrosine at 1 mm). The enzyme activity was stimulated by l-tryptophan and the inhibition by l-phenylalanine alone or in the simultaneous presence of l-tyrosine was reversed by l-tryptophan. The Km value of the reaction for chorismate was 2.9 } 10?3 m. Formation of chorismate mutase was repressed by l-phenylalanine. A phenylalanine auxotrophic l-tyrosine producer, C. glutamicum 98–Tx–71, which is resistant to 3-amino-tyrosine, p-aminophenylanaine, p-fluorophenylalanine and tyrosine hydroxamate had chorismate mutase derepressed to two-fold level of the parent KY 10233. The enzyme in C. glutamicum seems to have two physiological roles; one is the control of the metabolic flow to l-phenylalanine and l-tyrosine biosynthesis and the other is the balanced partition of chorismate between l-phenylalanine-l-tyrosine biosynthesis and l-tryptophan biosynthesis.  相似文献   

7.
l-Alanine adding enzymes from Bacillus subtilis and Bacillus cereus which catalyzed l-alanine incorporation into UDPMurNAc were partially purified and the properties of the enzymes were examined. The enzyme from B. subtilis was markedly stimulated by reducing agents including 2-mercaptoethanol, dithiothreitol, glutathione and cysteine. Mn2+ and Mg2+ activated l-alanine adding activity and their optimal concentrations were 2 to 5 mm and 10 mm, respectively. The optimum pH was 9.5 and the Km for l-alanine was 1.8×10?4m. l-Alanine adding reaction was strongly inhibited by p-chloromercuribenzoate and N-ethyl-maleimide. Among glycine, l- and d-amino acids and glycine derivatives, glycine was the most effective inhibitor of the l-alanine adding reaction. The enzyme from B. cereus was more resistant to glycine than that from B. subtilis. Glycine was incorporated into UDPMurNAc in place of l-alanine, and the Ki for glycine was 4.2×l0?3m with the enzyme from B. subtilis. From these data, the growth inhibition of bacteria by glycine is discussed.  相似文献   

8.
meso-Diaminopimelate dehydrogenase (EC 1.4.1.16) was purified to homogeneity from Corynebacterium glutamicum ATCC 13032. The enzyme had a molecular weight of about 70,000 and consisted of two subunits identical in molecular weight. The enzyme was highly specific for meso-2,6-diaminopimelate. The pH optima for deamination and amination were about 9.8 and 7.9, respectively. The Michaelis constants were 3.1mm for meso-2,6-diaminopimelate, 0.12mm for NADP+, 0.28 mm for l-2-amino-6-ketopimelate, 36 mm for ammonia, and 0.13 mm for NADPH. d and l isomers of 2,6-diaminopimelate competitively inhibited the oxidative deamination of meso-2,6-diaminopimelate. The enzyme was distributed in a wider range of bacterial species than reported previously [Misono et al., J. Bacteriol., 137, 22 (1979)] when assayed by a sensitive formazan formation method.  相似文献   

9.
The properties of the tyrosinase from Pseudomonas melanogenum was investigated with the crude enzyme preparation. Optimum temperature and pH of the enzyme were 23°C and 6.8, respectively. l-Tyrosine, d-tyrosine, m-tyrosine, N-acetyl-l-tyrosine and l-DOPA were utilized as a substrate by the enzyme. The value for Km obtained were as follows: l-tyrosine 6.90 × 10?4 m, d-tyrosine 1.43 ×10?3 m and l-DOPA 9.90 × 10?4 m. The enzyme was inhibited by chelating agents of Cu2+ l-cysteine, l-homocysteine, thiourea and diethyl-dithiocarbamate and the inhibition was completely reversed by the addition of excess Cu2+ From these results it is concluded that the enzyme is a copper-containing oxidase.  相似文献   

10.
N-Benzoyl-l-alanine amidohydrolase was purified from a cell-free extract of Corynebacterium equi H-7 which was grown in a medium containing hippuric acid as the sole carbon source. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis and SDS-polyacrylamide gel electrophoresis. The molecular weight was 230,000 and the enzyme consisted of six subunits, identical in molecular weight (approximately 40,000). The isoelectric point of the enzyme was pH 4.6. The optimum pH of the enzyme reaction was 8.0 and the enzyme was stable from pH 7.0 to 8.0. The enzyme hydrolyzed N-benzoyl-l-alanine, N-benzoylglycine, and N-benzoyl-l-aminobutyric acid. The Km values for these substrates were 4.3 mm, 6.7 mm, and 4.3 mm, respectively. The enzyme was activated by Co2+.  相似文献   

11.
Alkaline proteinase was purified from culture extract of a strain of Aspergillus oryzae. The process consists of the Amberlite IRC-50 adsorption, column chromatography on DEAE-cellulose and CM-cellulose and Sephadex G-100 gel filtration. The molecular weight of the enzyme was estimated to be about 23,000 by a gel filtration method. Alkaline proteinase showed neither carboxypeptidase activity nor aminopeptidase activity, but degraded 10101010 poly-l,α-glutamic acid, poly-l-lysine, 10101010 and 10101010. The enzyme was completely inhibited by diisopropylphos-phorofluoridate (10?2 m) or potato inhibitor (250 μg/ml).  相似文献   

12.
The starfish saponin previously reported by the present authors as the toxic principle of Asterias amurensis Lutken was found to be separable into six components. The main component was designated asterosaponin A. It shows an ultraviolet absorption at 244 mµ indicative of a heteroannular diene. The infrared spectrum shows a band at 1640 cm?1. Acid hydrolysis of asterosaponin A yields an aglycone, one molecule of sulfuric acid, and each two molecules of d-quinovose and d-fucose. In addtion to the above sugars, d-galactose and d-xylose were isolated from the hydrolyzates of the crude saponin mixture.  相似文献   

13.
Branched chain amino acid aminotransferase was partially purified from Pseudomonas sp. by ammonium sulfate fractionation, aminohexyl-agarose and Bio-Gel A-0.5 m column chromatography.

This enzyme showed different substrate specificity from those of other origins, namely lower reactivity for l-isoleucine and higher reactivity for l-methionine.

Km values at pH 8.0 were calculated to be 0.3 mm for l-leucine, 0.3 mm for α-ketoglutarate, 1.1 mm for α-ketoisocaproate and 3.2 mm for l-glutamate.

This enzyme was activated with β-mercaptoethanol, and this activated enzyme had different kinetic properties from unactivated enzyme, namely, Km values at pH 8.0 were calculated to be 1.2 mm for l-leucine, 0.3 mm for α-ketoglutarate.

Isocaproic acid which is the substrate analog of l-leucine was competitive inhibitor for pyridoxal form of unactivated and activated enzymes, and inhibitor constants were estimated to be 6 mm and 14 mm, respectively.  相似文献   

14.
Glycoconjugates reacting with eel anti-H agglutinin were purified from extracts of leaves of three species of cruciferous plants (radish, turnip, and rape) by precipitation with ethanol, ion-exchange chromatography, and gel filtration. High voltage paper electrophoresis or ultracentrifugal analysis revealed that the purified specimens were homogeneous. Their apparent molecular weights were estimated to range from 0.5 to 1.5 x 105. They consisted of a novel l-fucose-containing acidic arabinogalactan-protein composed of residues of l-arabinose, d-galactose, l-fucose, 4-O-methyl-d-glucuronic acid, and d-glucuronic acid in similar molar proportions, and containing polypeptide portions with abundant hydroxyproline, serine, threonine, and alanine. All the arabinogalactan-proteins exhibited potent inhibitory activity against the hemagglutination of human O erythrocytes by eel anti-H agglutinin.  相似文献   

15.
Sulfated polysaccharides (SP) isolated from freshwater green algae, Spirogyra neglecta (Hassall) Kützing, and fractionated SPs were examined to investigate their molecular characteristics and immunomodulatory activity. The crude and fractionated SPs (F1, F2, and F3) consisted mostly of carbohydrates (68.5–85.3%), uronic acids (3.2–4.9%), and sulfates (2.2–12.2%) with various amounts of proteins (2.6–17.1%). d-galactose (23.5–27.3%), d-glucose (11.5–24.8%), l-fucose (19.0–26.7%), and l-rhamnose (16.4–18.3%) were the major monosaccharide units of these SPs with different levels of l-arabinose (3.0–9.4%), d-xylose (4.6–9.8%), and d-mannose (0.4–2.3%). The SPs contained two sub-fractions with molecular weights (Mw) ranging from 164 × 103 to 1460 × 103 g/mol. The crude and fractionated SPs strongly stimulated murine macrophages, producing considerable amounts of nitric oxide and various cytokines via up-regulation of their mRNA expression by activation of nuclear factor-kappa B and mitogen-activated protein kinases pathways. The main backbone of the most immunoenhancing SP was (1→3)-l-Fucopyranoside, (1→4,6)-d-Glucopyranoside, and (1→4)-d-Galactopyranoside.  相似文献   

16.
3-Methylthiopropylamine (MTPA) formation from l-methionine in Streptomyces sp. K37 was studied in detail. The reaction was confirmed to be catalyzed by the decarboxylase of l-methionine. The properties of the enzyme were studied in detail using acetone dried cells or cell-free extract. The enzyme was specific for l-methionine. Pyridoxal phosphate stimulated the reaction and protected the enzyme against heat inactivation. The optimum pH for the reaction was 6.0~8.0 and the optimum temperature was about 40°C. Carbonyl reagents (10?2~10?3 m) inhibited the reaction completely, and silver nitrate and mercuric chloride (10?3~10?4 m) markedly inhibited the reaction. Km value for the reaction was 1.21 × 10?5 m. l-Methionine assay using the decarboxylase was attempted and was found to be applicable to practical use.  相似文献   

17.
Leucine dehydrogenase [EC 1.4.1.9] was purified to homogeneity from Corynebacterium pseudodiphtheriticum ICR 2210. The enzyme consisted of a single polypeptide with a molecular weight of about 34,000. Stepwise Edman degradation provided the N-terminal sequence of the first 24 amino acids, and carboxypeptidase Y digestion provided the C-terminal sequence of the last 2 amino acids. Although the enzyme catalyzed the reversible deamination of various branched-chain l-amino acids, l-valine was the best substrate for oxidative deamination at pH 10.9 and the saturated concentration. The enzyme, however, had higher reactivity for l-leucine, and the kcat/Km value for l-leucine was higher than that for l-valine. The enzyme required NAD+ as a natural coenzyme. The NAD+ analogs 3-acetylpyridine-NAD+ and deamino-NAD+ were much better coenzymes than NAD +. The enzyme activity was significantly reduced by sulfhydryl reagents and pyridoxal 5′-phosphate. d-Enantiomers of the substrate amino acids competitively inhibited the oxidation of l-valine.  相似文献   

18.
Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) produced N-acyl-D-aspartate amidohydrolase (D-AAase) in the presence of N-acetyl-D-aspartate as an inducer. The enzyme was purified to homogeneity. The enzyme had a molecular mass of 56 kDa and was shown by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) to be a monomer. The isoelectric point was 4.8. The enzyme had maximal activity at pH 7.5 to 8.0 and 50°C, and was stable at pH 8.0 and up to 45°C. N-Formyl (Km=12.5 mM), N-acetyl (Km=2.52 mM), N-propionyl (Km=0.194 mM), N-butyryl (Km=0.033 mM), and N-glycyl (Km =1.11 mM) derivatives of D-aspartate were hydrolyzed, but N-carbobenzoyl-D-aspartate, N-acetyl-L-aspartate, and N-acetyl-D-glutamate were not substrates. The enzyme was inhibited by both divalent cations (Hg2+, Ni2+, Cu2+) and thiol reagents (N-ethylmaleimide, iodoacetic acid, dithiothreitol, and p-chloromercuribenzoic acid). The N-terminal amino acid sequence and amino acid composition were analyzed.  相似文献   

19.
l-Arginase (l-arginine amidinohydrolase, EC 3.5.3.1) was purified in a crystalline form from cells of Bacillus subtilis KY 3281 with an overall yield of 23.2%. The crystalline enzyme had a specific activity of 858 i.u./mg-protein and was ultracentrifugally homogeneous. It was estimated to have a molecular weight of 115,000±5000 by the method of Yphantis.

The enzyme highly specific for l-arginine showed the maximum activity at pH 10 with Mn2+ ion. The Km for l-arginine was 1.35 × 10?2 m The activity was competitively inhibited by l-lysine, but not by l-ornithine and increased by the addition of Mn2+ or Co2+ ions. The stable pH and temperature ranges became wider in the presence of Mn2+ ion and l-threonine.  相似文献   

20.
Mucopolysaccharides were isolated from both human and cow colostrums. Each of the fractionated mucopolysaccharides was considered to be homogeneous from behaviors in chromatography, electrophoresis and sedimentation pattern. The fractions isolated from human colostrum were found to contain 51.0~78.3% carbohydrates consisting of d-galactose, 2-amino-2-deoxy-d-glucose, N-acetylneuraminic acid, l-fucose and d-glucose, and 31.6~11.0% peptides consisting of 16 kinds of amino acids. The sedimentation constants, s20, w, of these fractions were in the range of 0.75 to 1.73 S. The fraction isolated from cow colostrum was found to contain 19.3% carbohydrates consisting of d-galactose, 2-amino-2-deoxy-d-glucose and N-acetylneuraminic acid, and 65.2% peptides or proteins consisting of 18 kinds of amino acids. The sedimentation constant, s20, w, of the fraction was 3.68 S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号