首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An xylanase producing alkaliphilic Micrococcus sp was isolated from an alkaline soda lake. Xylose and xylan induced enzyme production but no activity was detected when it was grown using other carbohydrate sources. The level of xylanase production was higher in the presence of xylose than in the presence of xylan. The enzyme was purified to homogeneity and its molecular weight was estimated to be 56 kD on SDS-PAGE. The optimum temperature and pH for xylanase activity were 55°C and 7.5–9.0, respectively. Sixty per cent of the maximum activity was displayed at pH 11. The enzyme was very stable in the pH range of 6.5–10 and up to a temperature of 40°C. Xylanase activity was inhibited by Cu2+ and Hg2+. Received 03 October 1997/ Accepted in revised form 03 February 1998  相似文献   

2.
Bacillus No. K–12–5 isolated from soil produced a β-1,3-glucanase in alkaline media. The characteristic point of this bacteria was especially good growth in alkaline media, and no growth was observed in neutral media such as nutrient broth. The β-1,3-glucanase of Bacillus No. K–12–5 was purified by DEAE-cellulose, Sephadex G–100 and hydroxyl apatite columns. The enzyme was most active at pH 5.5 ~ 8.0 which was much broader and higher than those of Bacillus criculans enzyme. The sedimentation constant was about 3.6 and molecular weight was about 40,000. The isoelectric point was about pH 3.5 and the enzyme was most stable at pH 7. Calcium ion was not effective to stabilize the enzyme. The enzyme did not hydrolyse laminaritriose. Laminaritetraose was hydrolysed, and glucose and laminaritriose were detected in the hydrolysate. The enzyme split laminaran at random and yielded glucose, laminaribiose, laminaritriose and higher oligosaccharides. If the enzyme is a single entity, it is a type of endo-β-1,3-glucanase. However, activity of hydrolysis of fungal cell walls was lower than that of B. circulans enzyme.  相似文献   

3.
Bacillus No. Ku-1 isolated from soil produced and alkaline catalase in alkaline media. The characteristic point of this bacteria was especially good growth in alkaline media. The alkaline catalase in the culture fluid was purified by DEAE-cellulose and Sephadex columns. The enzyme was most active at pH 10.0 and was stable at pH 7.0 to 8.5. The sedimentation constant was about 12.5 S. The enzyme was strongly inhibited by NaN3, KCN, FeSO4 and Fe2 (SO4)3. Properties of the enzyme are almost same as those of catalases so far reported except optimum pH for enzyme action and Kat.f. value (4.4×104).  相似文献   

4.
Bacillus No. A–40–2 isolated from soil produced an alkaline amylase in alkaline media. The characteristic point of this microorganism was especially good growth in alkaline media, and no growth was detected in neutral media such as nutrient broth. The alkaline amylase of Bacillus No. A–40–2 was purified by DEAE-cellulose and hydroxyl apatite columns. The amylase was most active at pH 10.5 and stable pH was about 8.5. Calcium ion was effective to stabilize the enzyme especially at high temperatures. The sedimentation constant was about 3.8 S and molecular weight estimated by the Sephadex gel-filtration method was about 70,000. The enzyme was inactivated by urea, sodium laurylsulfate and sodium dodecylbenzene sulfonate. EDTA, PCMB and DFP did not show inhibitory effect. The enzyme hydrolyzed about 70% of starch and yielded glucose, maltose and maltotriose. If the enzyme is a single entity, this alkaline amylase is a type of saccharifying α-amylase.  相似文献   

5.
The novel fungus Aspergillus niveus RS2 isolated from rice straw showed relatively high xylanase production after 5 days of fermentation. Of the different xylan-containing agricultural by-products tested, rice husk was the best substrate; however, maximum xylanase production occurred when the organism was cultured on purified xylan. Yeast extract was found to be the best nitrogen source for xylanase production, followed by ammonium sulfate and peptone. The optimum pH for maximum enzyme production was 8 (18.2 U/ml); however, an appreciable level of activity was obtained at pH 7 (10.9 U/ml). Temperature and pH optima for xylanase were 50°C and 7.0, respectively; however the enzyme retained considerably high activity under high temperature (12.1 U/ml at 60°C) and high alkaline conditions (17.2 U/ml at pH 8 and 13.9 U/ml at pH 9). The enzyme was strongly inhibited by Hg2+, while Mn2+ was slight activator. The half-life of the enzyme was 48 min at 50°C. The enzyme was purified by 5.08-fold using carboxymethyl-sephadex chromatography. Zymogram analysis suggested the presence of a single candidate xylanase in the purified preparation. SDS-PAGE revealed a molecular weight of approximately 22.5 kDa. The enzyme had K m and V max values of 2.5 and 26 μmol/mg per minute, respectively.  相似文献   

6.
The gene encoding a xylanase from Geobacillus sp. 71 was isolated, cloned, and sequenced. Purification of the Geobacillus sp 7.1 xylanase, XyzGeo71, following overexpression in E. coli produced an enzyme of 47 kDa with an optimum temperature of 75°C. The optimum pH of the enzyme is 8.0, but it is active over a broad pH range. This protein showed the highest sequence identity (93%) with the xylanase from Geobacillus thermodenitrificans NG80-2. XyzGeo71 contains a catalytic domain that belongs to the glycoside hydrolase family 10 (GH10). XyzGeo71 exhibited good pH stability, remaining stable after treatment with buffers ranging from pH 7.0 to 11.0 for 6 h. Its activity was partially inhibited by Al3+ and Cu2+ but strongly inhibited by Hg2+. The enzyme follows Michaelis–Menten kinetics, with Km and Vmax values of 0.425 mg xylan/ml and 500 μmol/min.mg, respectively. The enzyme was free from cellulase activity and degraded xylan in an endo fashion. The action of the enzyme on oat spelt xylan produced xylobiose and xylotetrose.  相似文献   

7.
Delignification efficacy of xylanases to facilitate the consequent chemical bleaching of Kraft pulps has been studied widely. In this work, an alkaline and thermally stable cellulase-less xylanase, derived from a xylanolytic Bacillus subtilis, has been purified by a combination of gel filtration and Q-Sepharose chromatography to its homogeneity. Molecular weight of the purified xylanase was 61 kDa by SDS–PAGE. The purified enzyme revealed an optimum assay temperature and pH of 60°C and 8.0, respectively. Xylanase was active in the pH range of 6.0–9.0 and stable up to 70°C. Divalent ions like Ca2+, Mg2+ and Zn2+ enhanced xylanase activity, whereas Hg2+, Fe2+, and Cu2+ were inhibitory to xylanase at 2 mM concentration. It showed K m and V max values of 9.5 mg/ml and 53.6 μmol/ml/min, respectively, using birchwood xylan as a substrate. Xylanase exhibited higher values of turn over number (K cat) and catalytic efficiency (K cat/K m) with birchwood xylan than oat spelt xylan. Bleach-boosting enzyme activity at 30 U/g dry pulp displayed the optimum bio-delignification of Kraft pulp resulting in 26.5% reduction in kappa number and 18.5% ISO induction in brightness at 55°C after 3 h treatment. The same treatment improved the pulp properties including tensile strength and burst index, demonstrating its potential application in pre-bleaching of Kraft pulp.  相似文献   

8.
Thermoalkaliphilic Bacillus sp. strain TAR-1 isolated from soil produced an extracellular xylanase. The enzyme (xylanase R) was purified to homogeneity by ammonium sulfate fractionation and anion-exchange chromatography. The molecular mass of xylanase R was 40 kDa and the isoelectric point was 4.1. The enzyme was most active over the range of pH 5.0 to 10.0 at 50°C. The optimum temperatures for activity were 75°C at pH 7.0 and 70°C at pH 9.0. Xylanase R was stable up to 65°C at pH 9.0 for 30 min in the presence of xylan. Mercury(ll) ion at 1 mM concentration abolished all the xylanase activity. The predominant products of xylan-hydrolysate were xylobiose, xylotriose, and higher oligosaccharides, indicating that xylanase R was an endo-acting enzyme. Xylanase R had a Km of 0.82 mg/ml and a Vmax of 280 μmol min−1 mg−1 for xylan at 50°C and pH 9.0.  相似文献   

9.
An amylase was purified from the culture filtrate ofTermitomyces clypeatus by ammonium sulphate precipitation, DEAE-Sephadex chromatography and gel filtration on Bio-Gel P-200 column. The electrophoretically homogeneous preparation also exhibited hydrolytic activity (in a decreasing order) on amylose, xylan, amylopectin, glycogen, arabinogalactan and arabinoxylan. The enzyme had characteristically endo-hydrolytic activity on all the substrates tested and no xylose, glucose, arabinose or glucuronic acid could be detected even after prolonged enzymatic digestion of the polysaccharides. Interestingly the enzyme had similar pH optima (5.5), temperature optima (55°C), pH stability (pH 3–10) and thermal denaturation kinetics when acted on both starch and xylan (larch wood) .K m values were found to be 2.63 mg/ml for amylase and 6.25 mg/ml for xylanase activity. Hill’s plot also indicated that the enzyme contained a single active site for both activities. Hg2+ was found to be most potent inhibitor. Ca2+, a common activator for amylase activity, appeared to be an inhibitor for this enzyme. Thus it appeared that the enzyme had multisubstrate specificity acting as α-amylase on starch and also acting as xylanase on side chain oligosaccharides of xylan containing α-linked sugars.  相似文献   

10.
A xylanase gene was isolated from the genomic DNA of Streptomyces coelicolor Ac-738. The 723-bp full-length gene encoded a 241-amino acid peptide consisting of a 49-residue putative TAT signal peptide and a glycoside hydrolase family-11 domain. The mature enzyme called XSC738 was expressed in Escherichia coli M15[pREP4]. The electrophoretically homogeneous protein with a specific activity of 167 U/mg for beechwood xylan was purified. The pH optimum of XSC738 was at pH 6; a high activity was retained within a pH range of 4.5–8.5. The enzyme was thermostable at 50–60 °C and retained an activity at pH 3.0–7.0. Xylanase XSC738 was activated by Mn2+, Co2+ and largely inhibited by Cd2+, SDS and EDTA. The products of xylan hydrolysis were mainly xylobiose, xylotriose, xylopentaose and xylohexose. Xylotetraose appeared as a minor product. Processing of such agricultural xylan-containing products as wheat, oats, soy flour and wheat bran by xylanase resulted in an increased content of sugars.  相似文献   

11.
ABacillus sp (V1-4) was isolated from hardwood kraft pulp. It was capable of growing in diluted kraft black liquor at pH 11.5 and produced 49 IU (mol xylose min–1 ml–1) of xylanase when cultivated in alkaline medium at pH 9. Maximal enzyme activity was obtained by cultivation in a defined alkaline medium with 2% birchwood xylan and 1% corn steep liquor at pH 9, but high enzyme production was also obtained on wheat bran. The apparent pH optimum of the enzyme varied with the pH used for cultivation and the buffer system employed for enzyme assay. With cultivation at pH 10 and assays performed in glycine buffer, maximal activity was observed at pH 8.5; with phosphate buffer, maximal activity was between pH 6 and 7. The xylanase temperature optimum (at pH 7.0) was 55°C. In the absence of substrate, at pH 9.0, the enzyme was stable at 50°C for at least 30 min. Elecrophoretic analysis of the crude preparation showed one predominant xylanase with an alkaline pl. Biobleaching studies showed that the enzyme would brighten both hardwood and softwood kraft pulp and release chromophores at pH 7 and 9. Because kraft pulps are alkaline, this enzyme could be used for prebleaching with minimal pH adjustment.  相似文献   

12.
An extracellular xylanase from the fermented broth of Bacillus cereus BSA1 was purified and characterized. The enzyme was purified to 3.43 fold through ammonium sulphate precipitation, DEAE cellulose chromatography and followed by gel filtration through Sephadex-G-100 column. The molecular mass of the purified xylanse was about 33 kDa. The enzyme was an endoxylanase as it initially degraded xylan to xylooligomers. The purified enzyme showed optimum activity at 55°C and at pH 7.0 and remained reasonably stable in a wide range of pH (5.0–8.0) and temperature (40–65°C). The K m and V max values were found to be 8.2 mg/ml and 181.8 μmol/(min mg), respectively. The enzyme had no apparent requirement of cofactors, and its activity was strongly inhibited by Cu2+, Hg2+. It was also a salt tolerant enzyme and stable upto 2.5 M of NaCl and retained its 85% activity at 3.0 M. For stability and substrate binding, the enzyme needed hydrophobic interaction that revealed when most surfactants inhibited xylanase activity. Since the enzyme was active over wide range of pH, temperature and remained active in higher salt concentration, it could find potential uses in biobleaching process in paper industries.  相似文献   

13.
Aspergillus fumigatus andA. oryzae were cultivated in laboratory fermenters on media containing xylan as the main carbon source.A. fumigatus produced xylanase on unsubstituted, insoluble beech xylan but growth and enzyme production on soluble xylo-oligosaccharides from the steaming of hardwood were poor due to the presence of inhibitors. An essential prerequisite for good xylanase production byA. fumigatus was decrease in the pH of the cultivation below 3.0 At higher pH values, the production of proteolytic enzymes caused degradation of the xylanase activity already produced.A. oryzae produced rather less xylanase activity thanA. fumigatus on the beech xylan medium but, after adaptation, was capable of efficient enzyme production on the steamed substrate.M.J. Bailey and L. Viikari are with the VTT, Biotechnical Laboratory, PO Box 202, SF-02151 Espoo, Finland  相似文献   

14.
Summary An extracellular xylanase was purified to homogeneity from the culture filtrate of a thermophilic Bacillus sp. The molecular weight of the purified xylanase was 44 kDa, as analysed by SDS/PAGE. The enzyme reaction followed Michaelis–Menten kinetics with Kmapp and Vmax values of 0.025 mg/ml and 450 U/mg protein, respectively, as obtained from a Lineweaver–Burk plot. The xylanase contained no other enzyme activity except for the hydrolysis of xylan substrate. The optimal temperature of the enzyme assay was 50 °C. The optimum pH for the xylanase activity was at three peaks 6.5, 8.5 and 10.5, respectively and the enzyme was stable over a broad range of pH from pH 6 to 10.5. Metal ions tested with demetalized enzyme had no effect, with the exception of Hg2+ and Pb2+ (both strong inhibitors). Inhibition of the enzyme activity by N-bromosuccinimide (amino acid modifier) indicated the role of tryptophan residues in the catalytic function of the enzyme. Due to these outstanding properties, the xylanase of Bacillussp. finds potential applications in biopulping, biobleaching and de-inking of recycled paper and other industrial processes.  相似文献   

15.
An alkaliphilic bacterium, Bacillus sp. strain K-1, produces extracellular xylanolytic enzymes such as xylanases, β-xylosidase, arabinofuranosidase, and acetyl esterase when grown in xylan medium. One of the extracellular xylanases that is stable in an alkaline state was purified to homogeneity by affinity adsorption-desorption on insoluble xylan. The enzyme bound to insoluble xylan but not to crystalline cellulose. The molecular mass of the purified xylan-binding xylanase was estimated to be approximately 23 kDa. The enzyme was stable at alkaline pHs up to 12. The optimum temperature and optimum pH of the enzyme activity were 60°C and 5.5, respectively. Metal ions such as Fe2+, Ca2+, and Mg2+ greatly increased the xylanase activity, whereas Mn2+ strongly inhibited it. We also demonstrated that the enzyme could hydrolyze the raw lignocellulosic substances effectively. The enzymatic products of xylan hydrolysis were a series of short-chain xylooligosaccharides, indicating that the enzyme was an endoxylanase.  相似文献   

16.
A novel xylanase-producing thermophilic strain MT-1 was isolated from a deep-sea hydrothermal field in east Pacific. A xylanase gene encoding 331 amino-acid peptide from this isolate was cloned and expressed in Escherichia coli. The recombinant xylanase exhibited maximum activity at 70°C and had an optimum pH of 7.0. It was active up to 90°C and showed activity over a wide pH ranging from 5.5 to 10.0. The crude xylanase presented similar properties in temperature and pH to those of the recombinant xylanase. The recombinant xylanase was stable in 1 mM of enzyme inhibitors (PMSF, EDTA, 2-ME or DTT) and in 0.1% detergents (Tween 20, Chaps or Triton X-100), whereas, it was strongly inhibited by sodium dodecyl sulfate (SDS) (1 mM). In addition, its catalytic function was stable in the presence of Li+, Na+ or K+. However, it was strongly inhibited by Ni2+, Mn2+, Co2+, Cu2+, Zn2+, Cd2+, Hg2+ and Al3+ (1 or 0.1 mM). The K m and V max of the recombinant xylanase for oat spelt xylan were calculated to be 1.579 mg/ml and 289 μmol/(min • mg), respectively. Our study, therefore, presented a rapid overexpression and purification of xylanase from deep-sea thermophile aimed at improving the enzyme yield for industrial applications and scientific research.  相似文献   

17.
Anaerobic enrichment cultures inoculated with neutral and alkaline (pH 7.0–9.0) sediment and biomat samples from hot-springs in Hveragerdi and Fluir, Iceland, were screened for growth on beech xylan from pH 8.0 to 10.0 at 68° C: no growth occured in cultures above pH 8.4. Five anaerobic xylanolytic bacteria were isolated from enrichment cultures at pH 8.4; all five microbes were Gram-positive rods with terminal spores, and produced CO2, H2, acetate, lactate and ethanol from xylan and xylose. One of the isolates, strain A2, grew from 50 to 75° C, with optimum growth near 68° C, and from pH 5.2 to 9.0 with an optimum between 6.8 and 7.4. Taxonomically, strain A2 was most similar to Clostridium thermohydrosulfuricum. At pH 7.0, the supernatant xylanases of strain A2 had a temperature range from 50 to 78° C with an optimum between 68 and 78° C. At 68° C, xylanase activity occurred from pH 4.9 to 9.1, with an optimum from pH 5.0 to 6.6. At pH 7.0 and 68° C, the K m of the supernatant xylanases was 2.75 g xylan/l and the V max was 2.65 × 10–6 kat/l culture supernatant. When grown on xylose, xylanase production was as high as when grown on xylan. Correspondence to: B. K. Ahring  相似文献   

18.
A thermo stable xylanase was purified and characterized from the cladodes of Cereus pterogonus plant species. The enzyme was purified to homogeneity by ammonium sulfate (80%) fractionation, ion exchange and size exclusion chromatography. The enzyme showed a final specific activity of 216.2 U/mg and the molecular mass of the protein was 80 KDa. The optimum pH and temperature for xylanase activity were 5.0 and 80 °C, respectively,. With oat spelt xylan as a substrate the enzyme yielded a Km value of 2.24 mg/mL and a Vmax of 5.8 μmol min−1 mg−1. In the presence of metal ions (1 mM) such as Co2+,Mn2+, Ni2+, Ca2+ and Fe3+ the activity of the enzyme increased, where as strong inhibition of the enzyme activity was observed with the use of Hg2+, Cd2+, Cu2+, while partial inhibition was noted with Zn2+ and Mg2+. The substrate specificity of the xylanase yielded maximum activity with oat spelt xylan.  相似文献   

19.
Thermomonospora curvata produced a thermostable β-xylosidase during growth on birch xylan. The enzyme, extracted by sonication of early stationary phase mycelia, was purified by isoelectric focusing and size exclusion HPLC. The isoelectric point was pH 4.8. The molecular weight was estimated to be 102 000 by size exclusion HPLC and 112 000 by SDS-PAGE. Maximal activity occurred at pH 6–7 and 60–68°C. K m values for xylobiose and p-nitrophenyl-β -D-xylopyranoside were 4.0 M and 0.6 M respectively. The enzyme was sensitive to low levels of Hg2+ (50% inhibition at 0.2 μM), but was stimulated by Co2+ and Pb2+. Addition of the xylosidase to a xylanase reaction mixture increased the liberation of xylose equivalents from xylan and decreased the proportion of xylobiose in the hydrolysate. Received 14 April 1997/ Accepted in revised form 21 October 1997  相似文献   

20.
An acidic xylanase from a culture filtrate of Aspergillus nidulans grown on oat-spelt xylan was purified to apparent homogeneity. The purified enzyme showed a single band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis with a molecular mass of 34,000 Da and had an isoelectric point of approximately 3.4. The enzyme was a non-debranching endoxylanase highly specific for xylans. The xylanase showed an optimal activity at pH 6.0 and 56° C and had a Michaelis constant Km of 0.97 mg oat-spelt xylan (soluble fraction) ml and a maximed reaction velocity (Vmax) of 1,091 mol min–1 (mg–1protein)–1. Using polyclonal antibodies raised against the purified enzyme, the regulation of its synthesis has been studied. The xylanase production is repressed by glucose and induced by oat-spelt xylan, arabinoxylan, 4-O-methylglucurono-xylan, birchwood xylan and xylose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号