首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A number of synthetically useful methods for asymmetric oxidation of the C–C double bond are briefly reviewed. This includes chemical asymmetric epoxidation, such as Sharpless, Julia, and Jacobsen epoxidation, asymmetric cis-dihydroxylation of olefins, monooxygenase-catalyzed epoxidation, dioxygenase-catalyzed cis-dihydroxylation of aromatics, and trans-dihydroxylation of C–C double bond catalyzed by a monooxygenase and an epoxide hydrolase. The catalytic system, substrate range, enantioselectivity, synthetic application, and scope and limitation of each method are described.  相似文献   

2.
The biotransformation of several monoterpenes by the locally isolated unicellular microalga, Oocystis pusilla was investigated. The metabolites were identified by thin layer chromatography and GC/MS. The results showed that O. pusilla had the ability to reduce the C=C double bond in (+)-carvone to yield trans-dihydrocarvone and traces of cis-dihydrocarvone. O. pusilla also converted (+)-limonene to trans-carveol, as the main product, and yielded carvone and trans-limonene oxide. Furthermore, (−)-linalool was converted to trans-furanoid and trans-pyranoid linalool oxide, thymol was converted to thymoquinone, (−)-carveol was converted to carvone and trans-dihydrocarvone, (−)-menthone and (+)-pulegone were converted to menthol, (L)-citronellal was converted to citronellol, and (+)-β-pinene was converted to trans-pinocarveol.  相似文献   

3.
A 9-hexadecenoic acid cis-trans isomerase (9-isomerase) that catalyzed the cis-to-trans isomerization of the double bond of free 9-cis-hexadecenoic acid [16:1(9c)] was purified to homogeneity from an extract of Pseudomonas sp. strain E-3 and characterized. Electrophoresis of the purified enzyme on both incompletely denaturing and denaturing polyacrylamide gels yielded a single band of a protein with a molecular mass of 80 kDa, suggesting that the isomerase is a monomeric protein of 80 kDa. The 9-isomerase, assayed with 16:1(9c) as a substrate, had a specific activity of 22.8 μmol h–1 (mg protein)–1 and a K m of 117.6 mM. The optimal pH and temperature for catalysis were approximately pH 7–8 and 30° C, respectively. The 9-isomerase catalyzed the cis-to-trans conversion of a double bond at positions 9, 10, or 11, but not that of a double bond at position 6 or 7 of cis-mono-unsaturated fatty acids with carbon chain lengths of 14, 15, 16, and 17. Octadecenoic acids with a double bond at position 9 or 11 were not susceptible to isomerization. These results suggest that 9-isomerase has a strict specificity for both the position of the double bond and the chain length of the fatty acid. The enzyme catalyzed the cis-to-trans isomerization of fatty acids in a free form, and in the presence of a membrane fraction it was also able to isomerize 16:1(9c) esterified to phosphatidylethanolamine. The 9-isomerase was strongly inhibited by catecholic antioxidants such as α-tocopherol and nordihydroguaiaretic acid, but was not inhibited by 1,10-phenanthroline or EDTA or under anoxic conditions. Based on these results, the possible mechanism of catalysis by this enzyme is discussed. Received: 21 May 1997 / Accepted: 5 September 1997  相似文献   

4.
Methyl 13-(2-cyclopentenyl)tridecanoate (chaulmoograte) and methyl 13-(2-cyclopentenyl)-cis-6-tridecenoate (gorlate) were hydrogenated using palladium on barium sulfate in hexane. Products obtained by partial hydrogenations were fractionated by argentation thin-layer chromatography, and the components characterised and quantitatively analysed by gas-liquid chromatography, nuclear magnetic resonance spectroscopy, infrared spectroscopy, and reductive ozonolysis. The double bond in position 2 of the cyclopentene ring was found to shift to both positions 1 and 3, but the double bond in position 1 was saturated slower than that either in position 2 or 3. Isomerisation of the ring double bond was faster than its saturation. In methyl gorlate trans-double bonds in the chain accumulated due to their faster formation and slower hydrogenation than cis-double bonds. Saturation of the ring double bond was faster than that of the chain double bond.  相似文献   

5.
The main component of Japanese Ho-leaf oil has been shown to be (?)-linalool (80~90%), and the following twenty minor constituents newly have been identified; methyl vinyl ketone, methyl isobutyl ketone, mesityl oxide, β-pinene, myrcene, (+)-limonene, cis- and trans-ocimene, n-hexanol, cis-3-hexenol, cis- and trans-linalool oxide, (?)-1-terpinen-4-ol, (+)-cis and (+)-trans-2,6,6-trimethyl-2-vinyl-5-hydroxytetrahydropyran, citronellol, nerol, (+)-β-selinene, (+)-tagetonol and (?)-trans-hotrienol. (+)-Tagetonol and (?)-trans-hotrienol have been demonstrated to be (+)-3,7-dimethyl-3-hydroxy-1-octen-5-one (III) and (3R)-(?)-trans-3,7-dimethyl-3-hydroxy-1,5,7-octatriene (IX), respectively.  相似文献   

6.
trans-Cyclooctene, cis,trans-1,5-cyclooctadiene, and cis,trans-1,3-cyclooctadiene have been compared with the cis and cis,cis isomers and with 2,5-norbornadiene for competition with ethylene for binding in mung bean sprouts and tobacco and for action (induction of chlorophyll degradation) in banana. The compounds containing a trans double bond were much more effective in competition for binding and action than the cis and cis,cis compounds. trans-Cyclooctene and cis,trans-1,3-cyclooctadiene were in the general range of 50–90 times more effective than 2,5-norbornadiene.R.J. Reynolds Research Apprentice  相似文献   

7.
Eubacterium lentum (33 strains) isomerized the 12-cis double bond of C18 fatty acids with cis double bonds at C-9 and C-12 into an 11-trans double bond before reduction of the 9-cis double bond. The 14-cis double bond of homo-γ-linolenic acid was isomerized by 29 strains into a 13-trans double bond. The same strains isomerized the 14-cis double bond of arachidonic acid into a 13-trans double bond and then isomerized the 8-cis double bond into a 7-trans double bond; the 13-cis double bond of 10-cis, 13-cis-nonadecadienoic acid was isomerized into a 12-trans double bond. None of these isomerization products was further reduced. Studies with resting cells showed optimal isomerization velocity at a linoleic acid concentration of 37.5 μM; higher concentrations were inhibitory. The pH optimum for isomerization was 7.5 to 8.5. The isomerase was inhibited by the sulfhydryl reagents iodoacetamide, bromoacetate, and N-ethylmaleimide and by the chelators EDTA and 1,10-phenanthroline.  相似文献   

8.
Geometric and position isomers of zeatin and of ribosylzeatin and other compounds closely related to zeatin have been tested in the tobacco (Nicotiana tabacum var. Wisconsin No. 38) bioassay. None was more active than zeatin itself. There was a much greater difference in activity (> 50-fold) between trans- and cis-zeatin than between trans-isozeatin [6-(4-hydroxy-2-methyl-trans-2-butenylamino) purine] and cis-isozeatin [6-(4-hydroxy-2-methyl-cis-2-butenylamino) purine], the latter being less active than cis-zeatin and trans-isozeatin. Higher concentrations were required for equivalent callus growth stimulated by the 9-ribosyl derivatives, which followed an order of decreasing activity: ribosyl-trans-zeatin > ribosyl-cis-zeatin > ribosyl-trans-isozeatin > ribosyl-cis-isozeatin, corresponding roughly to that of the bases. The effect of side chain, double bond saturation was to diminish the activity, and in the dihydro series the shift of the methyl group from the 3- to the 2-position in going from dihydrozeatin to dihydroisozeatin [6-(4-hydroxy-2-methylbutylamino) purine] resulted in a 70-fold decrease in activity. cis-Norzeatin [6-(4-hydroxy-cis-2-butenylamino) purine], which was less than one-fifth as active as cis-zeatin, showed the effect of complete removal of the side chain methyl group, and cyclic-norzeatin [6-(3,6-dihydro-1,2-oxazin-2-yl) purine] was about 1/100 as active as cis-norzeatin. These findings delineate completely the effect on the cytokinin activity of zeatin of variation in side chain geometry, presence and position of the methyl substituent, presence and geometry of hydroxyl substitution, presence of the double bond, and of side chain cyclization.  相似文献   

9.
Dioxo and oxoperoxo molybdenum(VI) complexes, IIII, containing the non-labile bidentated oxazolinyl-pyridine ligand 1, were used as catalytic precursors in the epoxidation of cyclooctene and (R)-limonene, to explore the nature of the catalytic species. The high diastereoselectivity showed by I and II towards limonene epoxide formation (trans/cis-8 = 4/1) could be justified by the kinetic resolution observed to give the double epoxide (9), but also by the olefin coordination to the metal centre due to the presence of a labile ligand (isothiocyanate).95Mo NMR monitoring experiments of complex II in the presence of (R)-limonene, together with conductivity measurements, showed the formation of an ionic metallic species (1:1 electrolyte). These results point to a bimetallic species where one of the metal atoms is coordinated to the olefin by the dissociation of the isothiocyanate group, remaining coordinated the spectator chiral ligand, which is the responsible of the selectivity observed.  相似文献   

10.
Most studies of linoleic acid biohydrogenation propose that it converts to stearic acid through the production of cis-9 trans-11 CLA and trans-11 C18:1. However, several other CLA have been identified in ruminai contents, suggesting additional pathways may exist. To explore this possibility, this research investigated the linoleic acid biohydrogenation pathway to identify CLA isomers in cultures of ruminai microorganisms after dosing with a 13C stable isotope. The 13C enrichment was calculated as [(M+1/M)×100] in labeled minus unlabeled cultures. After 48 h incubation, significant 13C enrichment was observed in seven CLA isomers, indicating their formation from linoleic acid. All enriched CLA isomers had double bonds in either the 9,11 or 10,12 position except for trans-9 cis-11 CLA. The cis-9 trans-11 CLA exhibited the highest enrichment (30.65%), followed by enrichments from 21.06 to 23.08% for trans-10 cis-12, cis-10 trans-12, trans-9 trans-11, and trans-10 trans-12 CLA. The remaining two CLA (cis-9 cis-11 and cis-10 cis-12 CLA) exhibited enrichments of 18.38 and 19.29%, respectively. The results of this study verified the formation of cis-9 trans-11 and trans-10 cis-12 CLA isomers from linoleic acid biohydrogenation. An additional five CLA isomers also contained carbons originating from linoleic acid, indicating that pathways of linoleic acid biohydrogenation are more complex than previously described.  相似文献   

11.
We previously showed that sphingomyelin (SM) inhibits peroxidation of phosphatidylcholine (PC) and cholesterol. Since SM uniquely has a trans unsaturation in its sphingosine base, we investigated whether this feature is important for its antioxidant function. Substitution of the natural trans Δ4-double bond with a cis double bond (cis-SM), however, increased SM’s ability to inhibit Cu2+-mediated 16:0-18:2 PC oxidation by up to eightfold. Dihydro-SM, which lacks the double bond, was equally effective as trans-SM. In contrast to its effect in the sphingosine base, the presence of a cis double bond in the N-acyl group of trans-SM was not protective. cis-SM also inhibited the oxidation of cholesterol by FeSO4/ascorbate more efficiently than the trans isomer. The enhanced protective effect of cis-SM is selective for metal ion-promoted oxidation, and appears to arise from a decrease in the effective concentration of metal ions. These studies show that the trans double bond of SM is not essential for its antioxidant effects.  相似文献   

12.
The molecular mechanism of the unique cis to trans isomerization of unsaturated fatty acids in the solvent-tolerant bacterium Pseudomonas putida S12 was studied. For this purpose, the carbon isotope fractionation of the cistrans isomerase was estimated. In resting cell experiments, addition of 3-nitrotoluene for activation of the cistrans isomerase resulted in the conversion of the cis-unsaturated fatty acids into the corresponding trans isomers. For the conversion of C16:1 cis to its corresponding trans isomer, a significant fractionation was measured. The intensity of this fractionation strongly depended on the rate of cistrans isomerization and the added concentration of 3-nitrotoluene, respectively. The presence of a significant fractionation provides additional indication for a transition from the sp2 carbon linkage of the cis-double bond to an intermediate sp3 within an enzyme–substrate complex. The sp2 linkage is reconstituted after rotation to the trans configuration has occurred. As cytochrome c plays a major role in the catabolism of Cti polypeptide, these findings favour a mechanism for the enzyme in which electrophilic iron (Fe3+), provided by a heme domain, removes an electron of the cis double bond thereby transferring the sp2 linkage into sp3.  相似文献   

13.
Rabbit hepatic microsomal epoxide hydrase catalyzes the rapid hydrolysis of 1,2-epoxy-4-heptanol to 1,2,4-heptanetriol. Both diastereomers of the substrate are hydrolyzed, and both product diastereomers are formed. Similarly, both cis- and trans-3,4-epoxy-1-hexanol are hydrolyzed, albeit more slowly, to give 1,3,4-hexanetriol. The trans isomer gives exclusively one diastereomer (erythro) of the triol, while the cis isomer gives the other diastereomer (threo). The product expected if a primary cationic intermediate were to be formed and trapped intramolecularly during the hydrolysis of 1,2-epoxy-4-heptanol, 2-propyl-4-tetrahydrofuranol, was not observed. A comparison of the mutagenic activity in the Ames test of 1-heptane, 1-hepten-4-ol, 1,2-epoxyheptane, and 1,2-epoxy-4-heptanol revealed that only the latter is a detectable mutagen. A vicinal hydroxyl therefore does not interfere significantly with enzymatic epoxide hydrolysis, but it does enhance the bioalkylating potential of even an aliphatic epoxide.  相似文献   

14.
Rumen biohydrogenation of dietary α-linolenic acid gives rise in ruminants to accumulation of fatty acid intermediates, some of which may be transferred into milk. Rumelenic acid [cis-9 trans-11 cis-15 C18:3 (RLnA)] has recently been characterized, but other C18:3 minor isomers are still unknown. The objective of this work was to identify a new isomer of octatridecenoic acid present in milk fat from ewes fed different sources of α-linolenic acid. Structural characterization of this fatty acid was achieved by GC-MS. Analysis of dimethyloxazoline and picolinyl ester derivatives allowed for location of the double bond positions. Covalent adduct chemical ionization tandem mass spectrometry confirmed the positional structure 9-11-15, identical to RLnA, and helped to establish double bond geometry (cis-trans-trans). This new C18:3 isomer could be formed by isomerization of cis-15 bond of RLnA and subsequently converted by hydrogenation to trans-11 trans-15 C18:2, an octadecadienoic acid also detected in this study.  相似文献   

15.
Leukotriene (LT)A4 and closely related allylic epoxides are pivotal intermediates in lipoxygenase (LOX) pathways to bioactive lipid mediators that include the leukotrienes, lipoxins, eoxins, resolvins, and protectins. Although the structure and stereochemistry of the 5-LOX product LTA4 is established through comparison to synthetic standards, this is the exception, and none of these highly unstable epoxides has been analyzed in detail from enzymatic synthesis. Understanding of the mechanistic basis of the cis or trans epoxide configuration is also limited. To address these issues, we developed methods involving biphasic reaction conditions for the LOX-catalyzed synthesis of LTA epoxides in quantities sufficient for NMR analysis. As proof of concept, human 15-LOX-1 was shown to convert 15S-hydroperoxy-eicosatetraenoic acid (15S-HPETE) to the LTA analog 14S,15S-trans-epoxy-eicosa-5Z,8Z,10E,12E-tetraenoate, confirming the proposed structure of eoxin A4. Using this methodology we then showed that recombinant Arabidopsis AtLOX1, an arachidonate 5-LOX, converts 5S-HPETE to the trans epoxide LTA4 and converts 5R-HPETE to the cis epoxide 5-epi-LTA4, establishing substrate chirality as a determinant of the cis or trans epoxide configuration. The results are reconciled with a mechanism based on a dual role of the LOX nonheme iron in LTA epoxide biosynthesis, providing a rational basis for understanding the stereochemistry of LTA epoxide intermediates in LOX-catalyzed transformations.  相似文献   

16.
Methyl linoleate hydroperoxide produced by autoxidation was refluxed with 10-4 M Cu-naphthenate in benzene. Two new geometrical isomers of oxooctadecadienoate (compounds I and II) were found in addition to the four known isomers. They were isolated by a Sephadex LH-20 column chromatography with chloroform-hexane (2:1) and purified by HPLC on Nucleosil ®100-5 and Zorbax ODS columns. UV, IR, MS, and 1H-NMR spectra were measured. The geometry of conjugated dienes were assigned from the coupling constants of the olefinic protons. Compounds I and II were identified as 13-oxo-trans-9, cis-11- and 9-oxo-cis-10, trans-12-octadecadienoate, respectively. Each of them had a cis double bond adjacent to the oxo group. The hydroperoxides of the same geometry as compounds I and II were also detected in autoxidation products.  相似文献   

17.
The acridone alkaloid acronycine first isolated from Acronychia baueri Schott (Rutaceae) in 1948, was later shown to exhibit a promising activity against a broad spectrum of solid tumors. Nevertheless, clinical trials only gave poor results, probably due to the moderate potency and low water solubility of this alkaloid. Early studies on structure-activity relationships in the series concluded that the 1,2-double bond was an essential structural requirement to observe cytotoxic activity. It is the reason why the isolation in our laboratory of the unstable acronycine epoxide from several New-Caledonian Sarcomelicope species led to the hypothesis of bioactivation of acronycine by transformation of the 1,2-double bond into the corresponding oxirane in vivo. Consequently, there was interest in the search for acronycine derivatives modified in the pyran ring and having improved stability, but a similar reactivity toward nucleophilic agents as acronycine epoxide. Accordingly, we synthesized a series of cis- and trans-1,2-dihydroxy-1,2-dihydroacronycine diesters which exhibited interesting antitumor properties with a broadened spectrum of activity and increased potency when compared with acronycine. (±)-Cis-1,2-diacetoxy-1,2-dihydroacronycine was of particular interest, due to its marked activity in vivo against the resistant solid tumor C 38 colon carcinoma. The demonstration that acronycine should interact with DNA by some noncovalent process able to stabilize the double helix against thermal denaturation prompted us to develop benzo[b]acronycine analogues possessing an additional aromatic ring linearly fused on the natural alkaloid basic skeleton. When tested against a panel of cancer cell lines in vitro, cis-1,2-dihydroxy-1,2-dihydrobenzo[b]acronycine diesters exhibited cytotoxic activities within the same range of potency as the most active drugs currently used in cancer chemotherapy. In vivo, cis-1,2-diacetoxy-1,2-dihydrobenzo[b]acronycine (S23906-1), selected for further preclinical development, demonstated a marked antitumor activity in human orthotopic models of lung, ovarian and colon cancers xenografted in nude mice. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The synthesis and bronchodilator activity in the guinea pig of several 15-deoxy-16-hydroxy-16-methylprostaglandin analogs is described. The E2 (VIa) and E1 (VIb) analogs are potent bronchodilators comparable in activity to the natural prostaglandins, but possessing a longer duration of effect. Replacement of the C13-C14 trans double bond by a cis double bond or an ethylene linkage causes a substantial diminishment of this activity.  相似文献   

19.
Oxymercuration-demercuration of hydroxy alkenes follows an intramolecular pathway to furnish 1,4-epoxides (tetrahydrofurans) when the hydroxyl group is β (trans only) or γ to a double bond and 1,5-epoxides (tetrahydropyrans) when the hydroxyl group is δ to the double bond. The cis and trans isomers of methyl ricinoleate and methyl 9-hydroxyoctadec-12-enoate, and a series of cis and trans octadecenols (Δ2–Δ6) are used to establish these relationships.1,4- and 1,5-Epoxides are also formed during the oxymercuration of methyl densipolate and methyl 12,13-dihydroxyoleate and during the hydroxymercuration of methyl octadeca-9,12 and 8,12-dienoates.  相似文献   

20.
We investigated the heat-induced cis/trans isomerization of double bonds in monounsaturated lipids. When triolein (9-cis, 18:1) was heated around 180 °C, small amounts of isomerization products were obtained depending on the heating period. The heat-induced isomerization of triolein was considerably suppressed by the addition of different antioxidants or under nitrogen stream, and these additives simultaneously inhibited the thermal oxidation of double bonds in triolein. Therefore, an intermediate of the thermal oxidation reaction might be responsible for the heat-induced isomerization of the double bonds in triolein. The thermodynamics of the heat-induced isomerization of triolein (9-cis, 18:1) and trielaidin (9-trans, 18:1) were investigated using Arrhenius plot. The Arrhenius activation energies of cis double bonds in triolein and trans double bonds in trielaidin were 106 kJ/mol and 137 kJ/mol, respectively. The calculated internal rotational barrier heights of these double bonds were similar to those of the double bond of 2-butene radical and significantly lower than those of non-radicalized double bonds in 2-butene. These results suggest that heat-induced cis/trans isomerization of triolein and trielaidin occurs mainly through the formation of radical species, which are the intermediates produced during thermal oxidation. The activation energy difference between the two forms suggests that trans trielaidin radicals are more stable than cis triolein radicals. The high thermodynamic stability of the trans double bonds in lipid radicals would influence the population of cis and trans isomers in edible oils and contribute to slight accumulation of trans-18:1 isomers during heating or industrial processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号