首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Some enzymatic properties were examined with the purified alkaline proteinase from Aspergillus candidus. The isoelectric point was determined to be 4.9 by polyacrylamide gel disc electrofocusing. The optimum pH for milk casein was around 11.0 to 11.5 at 30°C. The maximum activity was found at 47°C at pH 7.0 for 10 min. The enzyme was stable between pH 5.0 and 9.0 at 30°C and most stable at pH 6.0 at 50°C. The enzyme activity over 95% remained at 40°C, but was almost completely lost at 60°C for 10 min. Calcium ions protected the enzyme from heat denaturation to some extent. No metal ions examined showed stimulatory effect and Hg2+ ions inhibited the enzyme. The enzyme was also inhibited by potato inhibitor and diisopropylphosphorofluoridate, but not by metal chelating agent or sulfhydryl reagents. A. candidus alkaline proteinase exhibited immunological cross-reacting properties similar to those of alkaline proteinases of A. sojae and A. oryzae.  相似文献   

2.
A novel intracellular serine proteinase from the marine aerobic hyperthermophilic archaeon Aeropyrum pernix K1 (JCM 9820) that we designated pernilase was purified by ammonium sulfate precipitation, anionic-exchange chromatography, affinity chromatography, and gel filtration chromatography. The purified enzyme was composed of a single polypeptide chain with a molecular mass of 50 kDa as determined by SDS-PAGE. The proteinase had a broad pH profile (pH 5–10) with an optimum pH of 9.0 for peptide hydrolysis. The optimum temperature for enzyme activity was 90°C. The enzyme was strongly inhibited by diisopropyl fluorophosphate (DFP) and phenylmethyl sulfonylfluoride (PMSF), suggesting that it corresponds to a serine proteinase. The enzyme was highly resistant to the reducing agents dithiothreitol and 2-mercaptoethanol but sensitive to the denaturing reagents guanidine-HCl and urea and also to the detergent sodium dodecyl sulfate (SDS). Pernilase showed high substrate specificity for Boc-Leu-Gly-Arg-MCA peptide. Thermostability of this enzyme showed half-lives of 85 min at 100°C and 12 min at 110°C. Received September 24, 1997 / Accepted May 20, 1998  相似文献   

3.
An alkaline proteinase of Aspergillus sydowi (Bainier et Sartory) Thom et Church has been purified approximately 4.5-fold from a culture filtrate by fractionation with ammonium sulfate, treatment with acrynol and Alumina gel Cγ, and DEAE-Sephadex column chromatography. The purified proteinase obtained as needle crystals was monodisperse in both the ultracentrifuge and the electrophoresis on polyacrylamide gel.

The optimum pH and temperature for the activity were 8.0 and 40°C, respectively. Fifty per cent of the activity was lost at 45°C within ten minutes and 95% at 50°C. At 5°C, the enzyme was highly stable at the range of pH 6 to 9. None of metallic salts tested promoted the activity, but Zn++, Ni++ and Hg++ were found to be inhibitory. Sulfhydryl reagent, reducing and oxidizing reagents tested except iodine had no effect on the activity, but potato inhibitor, DFP and NBS caused a marked inhibition.

The alkaline proteinase from Aspergillus sydowi was markedly protected from inactivation by the presence of Ca++ in the enzyme solution. The protective effect of Ca++ was influenced remarkably by the pH values of the enzyme solution, i.e., optimum concentrations of Ca++ for the protective effect at pH 7.1, 7.5 and 7.8 were 10?2, 10?3 and 10?4 M, respectively. Conversely, at higher pH values such as 9.0, Ca++ accelerated the rate of inactivation. There was a parallelism between the loss in activity and the increase in ninhydrin-positive material in the enzyme solution.

The proteinase acted on various denaturated proteins, but not on native proteins. In digestion of casein by the proteinase, 92% of nitrogen was turned into soluble form in 0.2 m trichloroacetic acid solution, with 14~17% of peptide bonds being hydrolyzed. Casein hydrolyzed with the Asp. sydowi proteinase was further hydrolyzed by Pen. chrysogenum, B. subtilis or St. griseus proteinases, which further increased the free amino residues in the reaction mixtures. On the contrary, the Asp. sydowi proteinase reacted only slightly on casein hydrolyzed by the above-mentioned proteinases.  相似文献   

4.
Some enzymatic properties of purified alkaline proteinase from Aspergillus sojae were investigated. The optimum pH for casein digestion was 11.0. The enzyme activity was almost completely lost at 60°C within ten minutes. At low temperature, the enzyme was highly stable at the range of pH 4.5 to 10.0. At 50°C, the most stable pH was around 6.0. None of metallic ions tested promoted the activity, but Hg2+ showed a remarkable inhibition. The Hg2+-treatment seemed to cause a large unfolding of the enzyme molecule. The enzyme was inhibited by potato inhibitor and a number of animal sera. Metal chelating reagents and sulfhydryl reagents tested had no effect on the activity, but DFP caused a marked inhibition. The sensitivity to DFP of the enzyme was about 1/300 of that of α-chymotrypsin. The enzyme was inhibited neither by TPCK nor by TLCK. As the result it was assumed that the structure of the active site of the enzyme is fairly different from that of trypsin, or of chymotrypsin.  相似文献   

5.
Tannin acyl hydrolase (Tannase) from Asp. oryzae No. 7 was purified. The purified enzyme was homogenous on column chromatography (DEAE-Sephadex A50, Sephadex G100), ultra centrifugation and electrophoresis.

The molecular weight of the enzyme estimated by gel filtration method was about 200,000.

The enzyme was stable in the range of pH 3 to 7.5 for 12 hr at 5°C, and for 25 hr at the same temperature in the range of pH 4.5 to 6. The optimum pH for the reaction was 5.5. It was stable under 30°C (over one day, in 0.05 M-citrate buffer of pH 5.5), and the optimum temperature was 30~40°C (reaction for 20min). The activity was lost completely at 55°C in 20 min at pH 5.5, or at 85°C in 10 min at the same pH.

Any metal salt tested did not activate the enzyme, Zink chloride and cupric chloride inhibited the activity or denatured the enzyme. The activity was lost completely by dialysis against EDTA-solution at pH 7.25, although it was not affected by dialysis against deionized water.  相似文献   

6.
The extracellular proteinases of Aspergillus oryzae EI 212 were separated into two active fractions by (NH4)2SO4 and ethanol fractionation followed by diethylaminoethyl-Sephadex A-50 and hydroxyapatite chromatography. The molecular weight was estimated by gel filtration to be about 70,000 and 35,000 for proteinases I and II, respectively. Optimum pH for casein and hemoglobin hydrolysis was 6.5 at 60 C for proteinase I and 10.0 at 45 C for proteinase II, and for gelatin hydrolysis it was 6.5 at 45 C for both enzymes. The enzymes were stable over the pH range 6 to 8 at 30 C for 60 min. The enzyme activity for both the proteinases was accelerated by Cu2+ and inhibited by Fe2+, Fe3+, Hg2+, and Ag+. Halogenators (e.g., N-chlorosuccinimide) and diisopropyl fluorophosphate inhibited proteinase II. Sulfhydryl reagents such as p-chloromercuribenzoate and iodoacetate inhibited proteinase I. Sulfhydryl compounds accelerated the action of both enzymes.  相似文献   

7.
Purification was conducted on polyvinyl alcohol (PVA) degrading enzyme produced and secreted into the culture medium by Pseudomonas O–3 strain. The enzyme was found to separate into several fractions by ion-exchange chromatography and gel filtration. Among these fractions, a fraction adsorbed to SP-Sephadex C–50 at pH 6.0 was purified to homogeneity by polyacrylamide gel electrophoresis. Some properties of this purified enzyme were examined. Optimum pH and temperature were 9.0 and 40°C, respectively. The enzyme was stable up to 50°C and in a pH range between 5 and 11 at 5°C. The enzyme activity was inhibited by Co2+, Ni2+, EDTA, hydroxylamine and salicylaldoxime. In substrate specificity, this enzyme oxidized several kinds of modified PVA, as well as normal PVA, but did not oxidize other synthetic polymers, such as vinylon, polyacrylamide and polyvinyl acetate. The effect of oxygen on this enzyme was examined, and without oxygen, PVA was not broken down by this enzyme. The molecular weight of this enzyme was estimated by gel filtration on Sephadex G–100 to be approximately 26,000.  相似文献   

8.
The amylomaltase from Escherichia coli IFO 3806 was purified to homogeneity seen by SDS- polyacrylamide gel electrophoresis after DEAE-Sephadex, Ultrogel AcA 44, hydroxylapatite, and 1,6- hexane-diamine-Sepharose 4B column chromatographies. The molecular weight of the purified enzyme was 93,000 by SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 6.5 and at 35°C, and stable up to 45°C at pH 7.0 and from pH 6.0 —7.3 at 40°C on 30min incubation. The enzyme acted on maltotetraitol, maltopentaitol, and maltosylsucrose besides maltooligosaccharides, but did not act on maltitol, maltotriitol, glucosylsucrose, isomaltose, panose, isopanose, or isomaltosyl- maltose. This enzyme did not catalyze hydrolytic action on maltotetraitol, maltopentaitol, or maltosylsucrose.  相似文献   

9.
Alcohol oxidase from Candida methanosorbosa was purified about sixfold with a yield of 37.6% from the culture broth of Candida methanosorbosa M-2003. The enzyme preparation was homogeneous on slab gel electrophoresis. The purified enzyme had an optimal pH from 6.0 to 9.0 and was stable in the range 6.0–8.5. Its optimal temperature of reaction was 50°C, and it was stable below 50°C. In the presence of NaN3, the enzyme retained its initial activity at 30°C for 35 days, indicating stability for a long term, so far. The isoelectric point was pH 4.3. Its molecular weight was 620,000 by gel filtration chromatography and 80,000 by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. These results indicate that the enzyme consists of 8 subunits. Received: 1 October 1996 / Accepted: 12 December 1996  相似文献   

10.
Xylanase from Streptomyces xylophagus nov. sp. has been purified by ammonium sulfate fractionation and chromatography on DEAE-cellulose column. The purification of the enzyme was 276-fold with a yield of 18.6% on the basis of the activity per weight of total nitrogen. The purified enzyme was homogeneous on moving-boundary electrophoresis. Optimum pH and temperature for the enzyme activity were 6.2 and 55~60°C, respectively. The enzyme was stable up to 40°C and in the range of pH from 5.3 to 7.3, but inactivated at higher than 50°C and at extreme pH values of 2.4 and 9.4. Hydrolyzed products of xylan by the enzyme were xylose and xylobiose.  相似文献   

11.
Multiple proteases were produced and partially purified from an alkali-thermotolerant novel species of Streptomyces (i.e., Streptomyces gulbargensis DAS 131) after 48 h of growth at 45°C. The enzyme preparation exhibited activity over a broad range of pH (4–12) and temperature (27–55°C). Optimum activity was observed at a pH of 9.0 and a temperature of 45°C. Starch and protease peptone was found to be a good source of carbon and nitrogen to enhance the enzyme activity. Two active zones in the range of 19 to 35 kDa were detected on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).  相似文献   

12.
ATP: nucleotide pyrophosphotransferase was purified from culture filtrate of Streptomyces adephospholyticus A–4668 about 13,000 fold by the method including ammonium sulfate fractionation, Amberlite IRC–50 treatment and column chromatography with DEAE-cellulose, DEAE-Sephadex A–25, SP-Sephadex C–25 and Sephadex G–75. The purified enzyme was homogenous on disk gel electrophoresis and ultracentrifugation and the specific activity was 915 units per mg protein, The molecular weight was determined as 28,000 by gel filtration on Sephadex G–75. The enzyme was found to be stable in the pH range of 5.5 to 10.5. More than 80% of the activity was remained after heating at 60°C for 30 min. The enzyme exhibited maximum activity at 50°C.  相似文献   

13.
Some microorganisms, including some bacteria isolated from soil, were found to secrete an extracellular soymilk-clotting enzyme. Among them, strain No. K-295G-7 showed the highest soymilk-clotting activity and stability of the production of the soymilk-clotting enzyme. The enzyme system (culture filtrate) coagulated protein in soymilk, a curd being formed at pH 5.8~6.7 and at 55~75°C. The optimum temperature for the soymilk-clotting activity was 75°C and the enzyme system was stable at temperatures below 50°C down to 35°C. About 80~100% of the original activity remained after 1 hr at pH 5~7 and 35°C.  相似文献   

14.
ADP-glucose phosphorylase [adenosine diphosphate glucose: orthophosphate adenyl- yltransferase; Dankert et ah, Biochim. Biophys. Acta, 81, 78 (1964)] was found to be widely distributed in plant tissues. The enzyme was purified 570-fold in a 24% yield from cell- free extract of growing tubers of potato (Solanum tuberosum L.). The following reaction catalyzed by the purified enzyme was found to proceed stoichiometrically. ADP-glucose +P1→ADP+glucose-1-P

Maximal activity was observed at pH 8. The enzyme was the most stable at pH 7, showing 50% loss of its original activity after 50 min heating at 57°C. The following kinetic parameters were obtained: activation energy, 11.1 kcal/mole; Km (P1), 2.5 mm; Km (ADP-glucose), 0.05 mm. The enzyme did not act on GDP-mannose, GDP-glucose and UDP-glucose. Neither activator nor inhibitor was found among various phosphorylated metabolites tested. The enzyme was inhibited by metal-binding reagents, EDTA and o-phenanthroline. None of the metal ions tested was found to recover the activity of chelator-treated enzyme.  相似文献   

15.
The alfalfa weevil Hypera postica is a serious economic pest in most alfalfa grown in many countries worldwide. Digestive α-amylase and pectinase activities of larvae were investigated using general substrates. Midgut extracts from larvae showed an optimum activity for α-amylase against starch at acidic pH (pH 5.0). α-Amylase from larval midgut was more stable at mildly acidic pH (pH 5–6) than highly acidic and alkaline pH. The enzyme showed its maximum activity at 35°C. α-Amylase activity was significantly decreased in the presence of Ca2+, Mg2+ and sodium dodecylsulfate. On the contrary, K+ and Na+ did not significantly affect the enzyme activity. Zymogram analysis revealed the presence of one band of α-amylase activity in in-gel assays. Pectinase activity was assayed using agarose plate and colorimetric assays. Optimal pH for pectinase activity in the larval midgut was determined to be pH 5.0. Pectinase enzyme is more stable at pH 4.0–7.0 than highly acidic and alkaline pH. However, the enzyme was more stable at slightly acidic pH (pH 6.0) when incubation time increased. Maximum activity for the enzyme incubated at different temperatures was observed to be 40°C. Optimum pH activity for α-amylase and pectinase is not completely consistent with the pH prevailing in the larval midgut. This is the first report of the presence of pectinase activity in H. postica.  相似文献   

16.
Digestive proteinases were isolated and partially purified from the pyloric ceca of trout and salmon. Their stability and some catalytic properties were compared with those of a three-enzyme system that is used for determination of in vitro protein digestibility. In contrast to the three-enzyme system, pyloric ceca trypsin and total proteinase activity were least stable at pH values below 5.0 and most stable under alkaline conditions up to pH 10.0. Thermal inactivation (50%) occurred in 60 min at 55°C for trypsin activity of trout and salmon ceca proteinases and at 40°C for the three-enzyme system at the pH (8.0) of the in vitro assay. Thermal inactivation (50%) of total proteinase activity occurred in 60 min at about 55, 50 and 35°C for chinook, trout and three-enzyme preparations, respectively. SDS-PAGE zymograms of the ceca enzymes showed the presence of several proteolytic activity bands. Two of the bands corresponded in molecular weight to trypsin and chymotrypsin. Ceca proteinases differ from the three-enzyme system in their response to inhibitors; in particular, the ceca proteinases are much more sensitive to soybean trypsin inhibitor than the procine trypsin used in the three-enzyme system when assayed for trypsin, but less sensitive when assayed for total proteinase. The distinctive properties of ceca enzymes help explain why they are more appropriate than the three-enzyme system, and other enzyme cocktails for in vitro protein digestibility assay of saunonid feed components.  相似文献   

17.
Extracellular chitosanase produced by Amycolatopsis sp. CsO-2 was purified to homogeneity by precipitation with ammonium sulfate followed by cation exchange chromatography. The molecular weight of the chitosanase was estimated to be about 27,000 using SDS-polyacrylamide gel electrophoresis and gel filtration. The maximum velocity of chitosan degradation by the enzyme was attained at 55°C when the pH was maintained at 5.3. The enzyme was stable over a temperature range of 0–50°C and a pH range of 4.5–6.0. About 50% of the initial activity remained after heating at 100°C for 10 min, indicating a thermostable nature of the enzyme. The isoelectric point of the enzyme was about 8.8. The enzyme degraded chitosan with a range of deacetylation degree from 70% to 100%, but not chitin or CM-cellulose. The most susceptible substrate was 100% deacetylated chitosan. The enzyme degraded glucosamine tetramer to dimer, and pentamer to dimer and trimer, but did not hydrolyze glucosamine dimer and trimer.  相似文献   

18.
An extracellular alkaline carboxymethycellulase (CMCase) from Bacillus subtilis was purified by salt precipitation followed by anion-exchange chromatography using DEAE-Sepharose. The cell-free supernatant containing crude enzyme had a CMCase activity of 0.34 U/mg. The purified enzyme gave a specific activity of 3.33 U/mg, with 10-fold purification and an overall activity yield of 5.6%. The purified enzyme displayed a protein band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular size of 30 kDa, which was also confirmed by zymogram analysis. The enzyme displayed multisubstrate specificity, showing significantly higher activity with lichenan and β-glucan as compared to carboxymethylcellulose (CMC), laminarin, hydroxyethylcellulose, and steam-exploded bagasse, and negligible activity with crystalline substrate such as Avicel and filter paper. It was optimally active at pH 9.2 and temperature 45°C. The enzyme was stable in the pH range 6–10 and retained 70% activity at pH 12. Thermal stability analysis revealed that the enzyme was stable in temperature range of 20°C to 45°C and retained more than 50% activity at 60°C for 30 min. The enzyme had a Km of 0.13 mg/ml and Vmax of 3.38 U/mg using CMC as substrate.  相似文献   

19.
Hydroxycinnamic acid ester hydrolase from the wheat bran culture medium of Aspergillus japonicus was purified 255-fold by ammonium sulfate fractionation, DEAE-Sephadex treatment and column chromatographies on DEAE-Sephadex, CM-Sephadex and various other Sephadexes. The purified enzyme was free from tannase and found to be homogeneous on polyacrylamide disc gel electrophoresis. Its molecular weight was estimated to be 150,000 by gel filtration and 142,000 by SDS-gel electrophoresis. The isoelectric point of the enzyme was pH 4.80. As to its amino acid composition, aspartic acid and glycine were abundant. The optimum pH and temperature for the enzyme reaction were, respectively, 6.5 and 55°C when chlorogenic acid was used as a substrate. The enzyme was stable between pH 3.0 to 7.5 and inactivated completely by heat treatment at 70°C for 10 min.

All metal ions examined did not activate the enzyme, while Hg++ reduced its activity. The enzyme was markedly inhibited by diisopropylfluorophosphate and an oxidizing reagent, iodine, although it was not affected so much by metal chelating or reducing reagents. The purified enzyme hydrolyzed not only esters of hydroxycinnamic acids such as chlorogenic acid, caffeoyl tartaric acid and p-coumaroyl tartaric acid, but also ethyl and benzyl esters of cinnamic acid. However, the enzyme did not act on ethyl esters of crotonic acid and acrylic acid or esters of hydroxybenzoic acids.  相似文献   

20.
A leaf protease of tobacco whose activity was enhanced during curing was purified about 60 times with ammonium sulfate fractionation, ethanol precipitation, calcium phosphate gel treatment and Sephadex G-200 column chromatography, and some properties of the protease were examined. The purified enzyme showed the optimum pH at 5.5 and the optimum temperature at 60°C. The protease activity was stable between pH 4.5 and 5.5 at 50°G or at pH 5.5 below 40°C for 1 hr, but completely destroyed at 70°C during 1 hr. The protease activity was greatly activated by reducing agents such as cysteine, glutathione or mercaptoethanol and inhibited by p-chloromercuribenzoate, phenyl- mercuric acetate or silver ions. Metal ions except for silver ion and ethylenediamine tetraacetic acid did not affect the protease activity so far examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号