首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An alkaline proteinase of Aspergillus sulphureus (Fresenius) Thorn et Church has been purified in good yields from wheat bran culture by fractionation with ammonium sulfate, treatment with acrynol, and DEAE-Sephadex A-50 column chromatography. The crystalline preparation was homogeneous on sedimentation analysis and polyacrylamide gel zone electrophoresis. The molecular weight was calculated to be 23,000 by gel filtration. The amino acid composition of the enzyme was determined. The enzyme did not precipitate with acrynol. Optimum pH for the hydrolysis of casein was 7 to 10 at 35°G for 15 min. Optimum temperature was 50°C at pH 7 for 10 min. The enzyme was highly stable at the range of pH 6 to 11 at 5°C, whereas relatively stable at pH 6 to 7 at 35°C. Metalic salts tested did not affect activity. Chelating agents, sulfhydryl reagents, TPCK, and oxidizing or reducing reagents tested, except iodine, had no effect on the activity. Diisopro-pylfluorophosphate and N-bromosuccinimide almost completely inactivated the proteinase.  相似文献   

2.
Tannin acyl hydrolase (Tannase) from Asp. oryzae No. 7 was purified. The purified enzyme was homogenous on column chromatography (DEAE-Sephadex A50, Sephadex G100), ultra centrifugation and electrophoresis.

The molecular weight of the enzyme estimated by gel filtration method was about 200,000.

The enzyme was stable in the range of pH 3 to 7.5 for 12 hr at 5°C, and for 25 hr at the same temperature in the range of pH 4.5 to 6. The optimum pH for the reaction was 5.5. It was stable under 30°C (over one day, in 0.05 M-citrate buffer of pH 5.5), and the optimum temperature was 30~40°C (reaction for 20min). The activity was lost completely at 55°C in 20 min at pH 5.5, or at 85°C in 10 min at the same pH.

Any metal salt tested did not activate the enzyme, Zink chloride and cupric chloride inhibited the activity or denatured the enzyme. The activity was lost completely by dialysis against EDTA-solution at pH 7.25, although it was not affected by dialysis against deionized water.  相似文献   

3.
Hydroxycinnamic acid ester hydrolase from the wheat bran culture medium of Aspergillus japonicus was purified 255-fold by ammonium sulfate fractionation, DEAE-Sephadex treatment and column chromatographies on DEAE-Sephadex, CM-Sephadex and various other Sephadexes. The purified enzyme was free from tannase and found to be homogeneous on polyacrylamide disc gel electrophoresis. Its molecular weight was estimated to be 150,000 by gel filtration and 142,000 by SDS-gel electrophoresis. The isoelectric point of the enzyme was pH 4.80. As to its amino acid composition, aspartic acid and glycine were abundant. The optimum pH and temperature for the enzyme reaction were, respectively, 6.5 and 55°C when chlorogenic acid was used as a substrate. The enzyme was stable between pH 3.0 to 7.5 and inactivated completely by heat treatment at 70°C for 10 min.

All metal ions examined did not activate the enzyme, while Hg++ reduced its activity. The enzyme was markedly inhibited by diisopropylfluorophosphate and an oxidizing reagent, iodine, although it was not affected so much by metal chelating or reducing reagents. The purified enzyme hydrolyzed not only esters of hydroxycinnamic acids such as chlorogenic acid, caffeoyl tartaric acid and p-coumaroyl tartaric acid, but also ethyl and benzyl esters of cinnamic acid. However, the enzyme did not act on ethyl esters of crotonic acid and acrylic acid or esters of hydroxybenzoic acids.  相似文献   

4.
An esterase with excellent stereoselectivity for (+)-trans-ethyl chrysanthemate was purified to homogeneity from Arthrobacter globiformis SC-6-98-28. The purified enzyme hydrolyzed a mixture of ethyl chrysanthemate isomers stereoselectively to produce (+)-trans-acid with 100% stereoisomeric purity. The apparent molecular weight of the purified enzyme was 43,000 on SDS–polyacrylamide gel electrophoresis, and 94,000 on gel filtration chromatography. The optimum conditions for the ester hydrolysis were pH 10.0 at 45°C. The purified esterase hydrolyzed short-chain fatty acid esters, but did not have detectable activity on long-chain water-insoluble fatty acid esters. The enzyme activity was inbibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride.  相似文献   

5.
Purification was conducted on polyvinyl alcohol (PVA) degrading enzyme produced and secreted into the culture medium by Pseudomonas O–3 strain. The enzyme was found to separate into several fractions by ion-exchange chromatography and gel filtration. Among these fractions, a fraction adsorbed to SP-Sephadex C–50 at pH 6.0 was purified to homogeneity by polyacrylamide gel electrophoresis. Some properties of this purified enzyme were examined. Optimum pH and temperature were 9.0 and 40°C, respectively. The enzyme was stable up to 50°C and in a pH range between 5 and 11 at 5°C. The enzyme activity was inhibited by Co2+, Ni2+, EDTA, hydroxylamine and salicylaldoxime. In substrate specificity, this enzyme oxidized several kinds of modified PVA, as well as normal PVA, but did not oxidize other synthetic polymers, such as vinylon, polyacrylamide and polyvinyl acetate. The effect of oxygen on this enzyme was examined, and without oxygen, PVA was not broken down by this enzyme. The molecular weight of this enzyme was estimated by gel filtration on Sephadex G–100 to be approximately 26,000.  相似文献   

6.
Summary An X-prolyl-dipeptidylaminopep tidase (Pep-XP) was purified from the crude intracellular extract of Lactococcus lactis subsp. cremoris NRRL 634 by ion exchange and gel filtration chromatographies. The enzyme was purified 80-fold with a recovery of 6%, and appeared as a single band with a molecular weight of about 80 kDa on polyacrylamide gel electrophoresis with sodium dodecyl sulphate (SDS-PAGE). The peptidase showed its maximal activity on arginyl-proline-p-nitroanilide at pH 7.0 and at a temperature of 45 °C, although there was a good activity of Pep-XP in the pH range of 5.5–7.0 and temperatures between 40 and 50 °C. The Michaelis constant (K m) and the maximum reaction velocity (V max) values were 0.92 mM and 7.9 U/mg protein min, respectively. The activity of Pep-XP was completely inhibited by phenylmethanesulphonyl fluoride, an inhibitor of serine peptidases, and metal chelators had little effect on enzyme activity. The purified enzyme hydrolyzed synthetic substrates whose structure is X-Pro-Y like Lys-Pro-pNA, but did not hydrolyse Pro-pNA or azocasein, showing that the enzyme did not have aminopeptidase or endopeptidase activities.  相似文献   

7.
Alcohol oxidase from Candida methanosorbosa was purified about sixfold with a yield of 37.6% from the culture broth of Candida methanosorbosa M-2003. The enzyme preparation was homogeneous on slab gel electrophoresis. The purified enzyme had an optimal pH from 6.0 to 9.0 and was stable in the range 6.0–8.5. Its optimal temperature of reaction was 50°C, and it was stable below 50°C. In the presence of NaN3, the enzyme retained its initial activity at 30°C for 35 days, indicating stability for a long term, so far. The isoelectric point was pH 4.3. Its molecular weight was 620,000 by gel filtration chromatography and 80,000 by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. These results indicate that the enzyme consists of 8 subunits. Received: 1 October 1996 / Accepted: 12 December 1996  相似文献   

8.
A dehydrodicaffeic acid dilactone-forming enzyme was purified from the mycelia of a mushroom, Inonotus sp. K-1410 by calcium acetate treatment, ammonium sulfate precipitation and column chromatography on Sephadex G-100, DEAE-Sephadex A-50 and caffeic acid-bound AH-Sepharose 4B. The enzyme was purified about 1200-fold from a crude extract and shown to be almost completely homogeneous by polyacrylamide gel electrophoresis. The molecular weight of this enzyme was estimated by gel filtration on Sephadex G-100 to be approximately 39,000. The optimal pH for the enzymic conversion of caffeic acid to dehydrodicaffeic acid dilactone is around 6.0. The enzyme is stable up to 60°C and preincubation of the enzyme at 40°C for 10 min gives 1.5-fold activation compared with preincubation at 0°C. The optimal temperature for the enzyme reaction is 40°C.  相似文献   

9.
Cyclodextrin glucanotransferase (EC 2.4.1.19) from Brevibacterium sp. No. 9605 was purified to homogeneity by chromatography on butyl-Toyopearl 650M, γ-cyclodextrin-Sepharose 4B, and Toyopearl HW-55S. The molecular weight of the purified enzyme was estimated to be 75,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point of the purified enzyme was 2.8. The optimum pH and temperature were pH 10 and 45°C, respectively. The enzyme was stable at the range of pH 6–8 and at temperatures 50°C or less in the presence of CaCl2. The enzyme produced mainly γ-cyclodextrin from starch in the initial stage of reaction, but later, the proportion of β-cyclodextrin was increased.  相似文献   

10.
A Streptomyces-pepsin inhibitor (S-PI or Pepstatin Ac), and DAN-insensitive carboxyl proteinase was found in a still culture filtrate of Lentinus edodes. The new carboxyl proteinase was purified, and about 9 mg purified enzyme was obtained from 19 liters of culture filtrate, with 11% recovery. The enzyme showed a single band on polyacrylamide gel electrophoresis. The molecular weight and isoelectric point were 40,000 and pH 4.2, respectively. The enzyme did not contain histidine and was composed of 387 amino acid residues. The enzyme was most active between pH 2.7 ~ 2.9, and stable over a pH of 3.2 ~ 5.2 for 3 hr at 37°C. The enzyme was not inhibited by S-PI or synthetic pepsin inhibitors such as DAN and EPNP. The physicochemical and enzymological properties were very similar to those of Scytalidium lignicolum carboxyl proteinase A, which was reported to be an S-PI-, and DAN-insensitive carboxyl proteinase.  相似文献   

11.
Extracellular pullulanase was purified and crystallized from the culture fluid of Aerobacter aerogenes. Pullulanase was purified by means of ammonium sulfate fraction, DEAE-cellulose column chromatography and Sephadex column chromatography. Crystalline pullulanase was formed when saturated ammonium sulfate solution was added to the purified enzyme solution. The crystalline enzyme appeared as colorless fine rods. On ultracentrifugation analysis, the enzyme showed a single sharp and symmetrical Schlieren peak. The sedimentation coefficient, s20,w was 4.39S. Polyacrylamide gel electrophoresis at pH 8.4 gave a main band with two sub-bands and the molecular weight of the main enzyme was estimated to be 66,000 from Polyacrylamide gel electrophoresis and to be 58,000 from sedimentation equilibrium. The optimum pH and temperature for the enzyme action were pH 6.5 and 50°C, respectively.  相似文献   

12.
A β-mannanase was purified from the culture filtrate of Penicillium purpurogenum No. 618 by 1st and 2nd DEAE-cellulose column chromatographies, and subsequent Ultro-gel chromatography. The final preparation thus obtained showed a single band on polyacrylamide disc-gel and SDS-polyacrylamide gel electrophoresis. The molecular weight and isoelectric point were determined to be 57,000 and pH 4.1 by SDS-polyacrylamide gel electrophoresis and isoelectric focusing, respectively. The purified mannanase contained the following amino acids: glycine > serine >glutamic acid > alanine > aspartic acid. The mannanase exhibited maximum activity at pH 5 and 70°C, and was stable in the pH range of 4.5 to 8 and at temperatures up to 65°C. The enzyme activity was not affected considerably by either metal compounds or ethyl- enediaminetetraacetic acid. Copra galactomannan (Gal: Man =1 :14) was finally hydrolyzed to galactose, mannose and β-1,4-mannobiose through the sequential actions of the purified mannanase and the α-galactosidase purified from the same strain.  相似文献   

13.
A type II restriction endonuclease, designated as GceGLI, was purified from cells of Gluconobacter cerinus IFO 3285. The purified enzyme was found to be homogeneous on Polyacrylamide gel disc electrophoresis. The enzyme worked best at 37°C and pH 7.5 and required 7 mM MgCl2 and 100 mM NaCl. The purified enzyme was stable when preincubated over a pH range of 7.5 to 9.5 for 12 hr at 4°C and a temperature range of 37 to 40°C for 5 min at pH 7.5. The enzyme was shown to cleave λ φX174 RF, SV40, pBR322, M13 mp7 RF and Ad2 DNAs at 4, 1,0, 0, 0 and 25 or more sites, respectively, and to recognize the DNA sequence of 5′-C-C-G-C-G-G-3′ and to cut between C and G on the right side of the sequence, being an isoschizomer of SacII of Streptomyces achromogenes ATCC 12767.  相似文献   

14.
Thermostable trehalose synthase, which catalyzes the conversion of maltose into trehalose by intramolecular transglucosylation, was purified from a cell-free extract of the thermophilic bacterium Thermus aquaticus ATCC 33923 to an electrophoretically homogeneity by successive column chromatographies. The purified enzyme had a molecular weight of 105,000 by SDS-polyacrylamide gel electrophoresis and a pI of 4.6 by gel isoelectrofocusing. The N-terminal amino acid of the enzyme was methionine. The optimum pH and temperature were pH 6.5 and 65°C, respectively. The enzyme was stable from pH 5.5 to 9.5 and up to 80°C for 60min. The trehalose synthase from Thermus aquaticus is more thermoactive and thermostable than that from Pimelobacter sp. R48. The yield of trehalose from maltose by the enzyme was independent of the substrate concentration, and tended to increase at lower temperatures. The maximum yield of trehalose from maltose by the enzyme reached 80–82% at 30–40°C. The activity was inhibited by Cu2+ , Hg2+, Zn2+, and Tris.  相似文献   

15.
ATP: nucleotide pyrophosphotransferase was purified from culture filtrate of Streptomyces adephospholyticus A–4668 about 13,000 fold by the method including ammonium sulfate fractionation, Amberlite IRC–50 treatment and column chromatography with DEAE-cellulose, DEAE-Sephadex A–25, SP-Sephadex C–25 and Sephadex G–75. The purified enzyme was homogenous on disk gel electrophoresis and ultracentrifugation and the specific activity was 915 units per mg protein, The molecular weight was determined as 28,000 by gel filtration on Sephadex G–75. The enzyme was found to be stable in the pH range of 5.5 to 10.5. More than 80% of the activity was remained after heating at 60°C for 30 min. The enzyme exhibited maximum activity at 50°C.  相似文献   

16.
A screening test was undertaken to isolate microorganisms that produced ascorbate oxidase. The enzyme activity was found in a culture filtrate of a fungal strain (HI-25), newly isolated from a soil sample. Based on the morphological characteristics, this isolate was identified as Acremonium sp. From the examinations of cultural conditions, optimum conditions for enzyme production were found; strain HI-25 was aerobically cultured by a jar fermenter at 25°C in a medium containing 5% glycerol, 2% defatted soybeans, 0.1% monosodium L-glutamate, 0.1% KH2PO4, 0.02% MgSO4 ·7H2O, and 0.01% KCl, pH 6.0. After cultivation, an ascorbate oxidase was purified from the culture filtrate by an ammonium sulfate fractionation, column chromatographies on DEAE-cellulose and Butyl-Toyopearl, and gel filtration twice on Sephadex G-100. The purification was 850-fold with an activity yield of 8.8%. The purified enzyme gave a single band on SDS polyacrylamide gel electrophoresis, and had a molecular weight of 80,000 by SDS polyacrylamide gel electrophoresis and 76,000 by native gel filtration. This enzyme was most active at pH 4.0, 45°C, and was most stable between pH 6.0–10.0 and at temperatures below 60°C.  相似文献   

17.
A phenylcarbamate degrading enzyme was isolated from Pseudomonas alcaligenes. The enzyme was purified to a specific activity of 119U/mg by ammonium sulphate precipitation, gel filtration, DEAE and hydroxy-apatite chromatographies. The purified enzyme was found to be homogeneous on SDS polyacrylamide gel electrophoresis. The molecular weight was estimated to 68,000. The pH optimum was around 9.5 and the temperature optimum was 28°C. The Km for CIPC was 1.19 × 10–5m. Hg2 +, PMSF inhibited the enzyme, but thiol reagents and EDTA had no effect. The enzyme degraded a number of phenylcarbamate herbicides (CIPC, BIPC, IPC and swep) and propanil but did not hydrolyse bar ban and carbetamide, which are phenylcarbamates, or monuron and linuron, which are phenylureas. The enzyme is probably an amidase.  相似文献   

18.
An extracellular phospholipase D from Actinomadura sp. Strain No. 362 was purified about 430-fold from the culture filtrate. The purified enzyme preparation was judged to be homogeneous on polyacrylamide gel electrophoresis. The molecular weight and isoelectric point of the enzyme were estimated to be about 50,000—60,000 and 6.4, respectively. The enzyme was most active at pH 5.5 and 50°C in the presence of Triton X-100, but showed the highest activity at pH 7.0 and 60 — 70°C in its absence. The enzyme was stable up to 30°C at pH 7.2 and also stable in the pH range of 4.0 to 8.0 on 2 hr incubation at 25°C. With regard to substrate specificity, this enzyme hydrolysed lecithin best among the phospholipids tested. It was activated by Fe3 +, Al3+, Mn2 +, Ca2 +, diethyl ether, sodium deoxycholate and Triton X-100, but was inhibited by cetyl pyridinium chloride and dodecylsulfate.  相似文献   

19.
Streptococcus dysgalactiae IID 678, belonging to group C of the streptococci, secreted a large amount of hyaluronidase (hyaluronate lyase, EC 4.2.2.1) into a culture medium containing hyaluronic acid. The purification procedures of hyaluronidase were 70% ammonium sulfate precipitation, ECTEOLA-cellulose chromatography, phospho-cellulose chromatography, and gel filtration on Sephacryl S-300. The hyaluronidase was purified approximately 27,000-fold from the culture filtrate. The purified enzyme was homogeneous by SDS-poIyacrylamide gel electrophoresis. The enzyme degradated only hyaluronic acid and chondroitin to zl 4,5-unsaturated disaccharides and did not act on other glycosaminoglycans containing sulfate groups, while the degradation rate of chondroitin was about 1/60 of that of hyaluronic acid. The optimum pH was wide, from pH 5.8 to pH 6.6, and the optimum temperature was 37°C. Fe2 +, Cu2 +, Pb2 +, and Hg2 + ions inhibited the activity strongly and Zn2+ inhibited it by half. The molecular weight of the enzyme was estimated to be 125,000 by gel filtration and 117,000 by SDS-polyacrylamide gel electrophoresis. The enzyme was different immunochemically from the hyaluronidase from Streptococcus pyogenes belonging to group A.  相似文献   

20.
A milk-clotting enzyme from Bacillus subtilis K-26 was purified by gel filtration and ion-exchange chromatography resulting in a 24-fold increase in specific activity with an 80% yield. Polyacrylamide gel electrophoresis and ultracentrifugel analysis revealed that the purified enzyme was homogeneous and had a molecular weight of 27,000 and a Km of 2.77mg/ml for κ-casein. The enzyme was most stable at pH 7.5 and showed increasing clotting activity with decrease in milk pH up to 5.0. The maximum milk-clotting activity was obtained at 60°C, but the enzyme was inactivated by heating for 30 min at 60°C. The enzyme was irreversibly inhibited by EDTA and unaffected by DFP. Heavy-metal ions (Hg2+, Pb2+) inactivated the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号