首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Expression and inheritance of the wheat Glu-1DX5 gene in transgenic maize   总被引:5,自引:0,他引:5  
We have produced transgenic maize plants containing a wheat Glu-1Dx5 gene encoding the high-molecular-weight glutenin subunit 1Dx5. Analysis by SDS-PAGE showed that a protein similar in size to the wheat 1Dx5 subunit accumulates in the endosperm of transgenic maize from four independent transformation events. This protein reacts with a monoclonal antibody specific to the wheat 1Dx5 subunit and was not detected in nontransgenic controls or in pollen, anthers, leaves or embryos of plants grown from seeds expressing this protein in endosperm. Genomic Southern-blot analysis is consistent with results from SDS-PAGE and indicates that the transgene integration sites are complex and are different in the four events studied. Using the presence of this protein as a phenotypic marker, we studied the inheritance of this gene through three sexual generations. Reciprocal crosses with nontransgenic plants and self-pollinations were performed, and the resulting kernels were analyzed for the presence of the 1Dx5 subunit. These data, together with PCR analysis for the transgene, suggest that the transgene is inefficiently transmitted through pollen in all four events.  相似文献   

2.
目的:建立一种有效区分Glu-1D等位基因的Multiplex-PCR体系,快速检测转1Dx5小麦植株。方法:根据1Dx5和1Dx2亚基基因的区别设计特异的PCR引物,通过多重PCR技术检测花粉管通道法转化1Dx5核心片段的转基因T1代植株。结果:Multiplex-PCR能够在转基因T1代材料中扩增Glu-1D等位基因的特征条带,分别为343bp、320bp的1Dx5基因特异片段以及361bp的1Dx2基因特异片段,与预期结果一致。结论:该技术能够检测多个靶基因,有效地区分转基因Glu-1D上的等位基因,证实外源1Dx5基因已整合到受体基因组中,对检测基因组庞大、外源基因序列GC含量高且与内源基因同源性高的转基因小麦十分有效。  相似文献   

3.
A cDNA clone encoding the gamma-zein protein of maize was expressed in developing grain of barley using the starchy endosperm cell-specific promoter from the wheat Glu-1D-1 (HMW subunit 1Dx5) gene. Seven transgenic lines were recovered from 226 bombarded immature embryos, of which two were sterile and four tetraploid, while five were shown to express the gamma-zein protein based on western blotting. Southern blot analysis showed the presence of between about three and twelve transgene insertions. Detailed comparative studies of five null and five homozygous transformed sub-lines from transgenic line A showed that gamma-zein accounted for over 4% of the total prolamin fraction, corresponding to about 1.9% of the total grain N. Comparison of the proteins present in the gel protein fraction demonstrated that the gamma-zein was incorporated into polymers, as in maize. However, there was no effect on grain hardness measured using the Perten Single Kernel Characterisation System or on the vitreousness measured by visual inspection. This contrasts with the situation in maize where a clear association with vitreousness has been reported.  相似文献   

4.
Wheat bread-making quality is closely correlated with composition and quantity of gluten proteins, in particular with high-molecular weight (HMW) glutenin subunits encoded by the Glu-1 genes. A multiplex polymerase chain reaction (PCR) method was developed to identify the allele composition of HMW glutenin complex Glu-1 loci (Glu-A1, Glu-B1 and Glu-D1) in common wheat genotypes. The study of multiplex PCR to obtain a well-balanced set of amplicons involved examination of various combinations of selected primer sets and/or thermal cycling conditions. One to three simultaneously amplified DNA fragments of HMW glutenin Glu-1 genes were separated by agarose slab-gel electrophoresis and differences between Ax1, Ax2* and Axnull genes of Glu-A1 loci, Bx6, Bx7 and Bx17 of Glu-B1, and Dx2, Dx5 and Dy10 genes of Glu-D1 loci were revealed. A complete agreement was found in identification of HMW glutenin subunits by both multiplex PCR analysis and SDS-PAGE for seventy-six Polish cultivars/strains of both spring and winter common wheat. Rapid identification of molecular markers of Glu-1 alleles by multiplex PCR can be an efficient alternative to the standard separation procedure for early selection of useful wheat genotypes with good bread-making quality.  相似文献   

5.
The results of cloning and sequencing of the gene encoding 10 kD zein of maize (Zea mays L. ) with polymerase chain reaction (PCR) technique are here with presented. The genomic DNA template was extracted from sterilized seedlings of maize. Primered with a pair of synthetic 5′and 3′ PCR primers, a 0.57 kb DNA fragment was obtained after 30 PCR amplification cycles. The restriction map of the DNA fragment has been determined. The result indicated that the entire coding sequence of 10 kD zein gene has been cloned. The homologies of the DNA sequence and deduced amino acid sequences between our result and those published abroad are 96% and 90% respectively. As l0 kD zein is rich in sulphur, this gene might be used to improve the quality of crops, especially, the forage legumes by genetic engineering.  相似文献   

6.
小麦HMW-GS 1Bx14基因特异标记体系的建立   总被引:2,自引:0,他引:2  
比较1Bx14及其它已知HMW-GS基因的启动子和编码区,根据其不同点设计出1Bx14基因特异扩增引物。以8种已知HMW-GS组成的小麦DNA为模板进行PCR扩增。结果表明:具有1Bx14亚基的品种扩增出1条400bp左朽特异条带。结合该特异标记和已报道的1Dx5特异标记对2个F2杂交群体进行检测,从184个F2单株中筛选出111个同时含有1Bx14和1Dx5基因的单株。该研究结果可为种质鉴定和亚基整合育种提供参考。  相似文献   

7.
High-molecular-weight glutenin subunits (HMW-GS) in wheat grain are the major determinants of dough elasticity and viscosity and thus of bread-making quality. PCR-based molecular markers designed based on DNA polymorphisms were used to analyze HMW-GS genes in wheat. The loop-mediated isothermal amplification (LAMP) assay is a simple and rapid method for specific detection of genomic DNA target sequences. In the present study, we designed a set of LAMP markers by targeting the unique sequences of 1Dx2 and 1Dx5 genes. The primers could effectively distinguish the 1Dx2 and 1Dx5 genes from other genes at the Glu-1 locus. The results were confirmed by agarose gel electrophoresis. For visualization, ethidium bromide was used, and fluorescence only appeared in the positive samples. Under optimal conditions, the detection could be finished in 1 h. Thirty-eight wheat cultivars with known HMW-GS were used to validate LAMP markers for 1Dx2 and 1Dx5 genes. Only DNA samples with target genes could be amplified, and the results could be read easily using this method. The tests using LAMP were easy to perform, rapid, and sensitive. Thus, the current study results have the potential to be a powerful tool for the detection of HMW-GS genes in wheat.  相似文献   

8.
Bread-making quality in hexaploid wheats is a complex trait. It has been shown that the amount and composition of protein can influence dough rheological properties. The high-molecular-weight (HMW) glutenins are encoded by a complex locus, Glu-1, on the long arm of group-1 homoeologus chromosome of the A, B and D genomes. In this work we used PCR-based DNA markers as a substitution tool to distinguish wheat bread-making quality. We detected PCR-based DNA markers for coding sequence of Glu-A1x, Glu-B1x and Glu-D1x to be 2300 bp, 2400 bp and 2500 bp respectively. DNA markers related to coding sequence of Glu-A1y, Glu-B1y and Glu-D1y were; 1800 bp, 2100 bp and 1950 bp, however, the repetitive region of their coding sequence were shown to be about 1300 bp, 1500 bp and 1600 bp. The results demonstrate that the size variation was due to different lengths of the central repetitive domain. Good or poor bread-making quality in wheat is associated with two allelic pairs of Glu-D1, designated 1Dx5-1Dy10 and 1Dx2-1Dy12. The 1Bx7 allele has moderate-to-good quality score. The specific DNA markers, of 450 bp, 576 bp, 612 bp and 2400 bp respectively were characterized for 1Dx5, 1Dy10, 1Dy12 and 1Bx7 alleles. These markers are very important in screening of wheat for bread-making quality.  相似文献   

9.
Molecular markers based on DNA sequence variations of the coding and/or promoter regions of the wheat (Triticum aestivum L.) HMW glutenin genes located at the Glu-1 loci were developed. Markers characteristic of alleles Glu-A1-1a (encoding Ax1 subunit) and Glu-A1-1c (encoding Ax2* subunit) at the Glu-A1 locus, alleles Glu-B1ak (encoding Bx7* subunit) and Glu-B1al for overexpressed Bx7 subunit at the Glu-B1 locus and alleles Glu-D1-1a (encoding Dx2 subunit) and Glu-D1-1d (encoding Dx5 subunit) at the Glu-D1 locus were tested using genomic DNA of haploid leaf tissue. A method for simultaneously extracting DNA from 96 haploid leaf tissue pieces is described. Two of the developed markers were dominant and two were co-dominant. A F1-derived population segregating for all HMW glutenin genes was used to test the validity of the markers and their usefulness in doubled haploid breeding programs. SDS-PAGE analysis of seed storage protein was performed on seeds from the doubled haploid lines. A total of 299 lines were tested with the DNA markers on the haploid tissue and validated by protein analysis of the corresponding DH seeds. PCR markers and SDS-PAGE analysis showed between 2 and 8.5% discrepancies depending on the marker. Applications of DNA markers for gene-assisted-selection of haploid tissue and use in breeding programs are discussed. Advantages and disadvantages of dominant and co-dominant markers are outlined.  相似文献   

10.
Pollen-mediated gene flow (PMGF) is the main mode of transgene flow in flowering plants. The study of pollen and gene flow of transgenic wheat can help to establish the corresponding strategy for preventing transgene escape and contamination between compatible genotypes in wheat. To investigate the pollen dispersal and gene flow frequency in various directions and distances around the pollen source and detect the association between frequency of transgene flow and pollen density from transgenic wheat, a concentric circle design was adopted to conduct a field experiment using transgenic wheat with resistance to wheat yellow mosaic virus (WYMV) as the pollen donor and dwarf male-sterile wheat as the pollen receptor. The results showed that the pollen and gene flow of transgenic wheat varied significantly among the different compass sectors. A higher pollen density and gene flow frequency was observed in the downwind SW and W sectors, with average frequencies of transgene flow of 26.37 and 23.69% respectively. The pollen and gene flow of transgenic wheat declined dramatically with increasing distance from its source. Most of the pollen grains concentrated within 5 m and only a few pollen grains were detected beyond 30 m. The percentage of transgene flow was the highest where adjacent to the pollen source, with an average of 48.24% for all eight compass directions at 0 m distance. Transgene flow was reduced to 50% and 95% between 1.61 to 3.15 m, and 10.71 to 20.93 m, respectively. Our results suggest that climate conditions, especially wind direction, may significantly affect pollen dispersal and gene flow of wheat. The isolation-by-distance model is one of the most effective methods for achieving stringent transgene confinement in wheat. The frequency of transgene flow is directly correlated with the relative density of GM pollen grains in air currents, and pollen competition may be a major factor influencing transgene flow.  相似文献   

11.
目的:高分子量麦谷蛋白亚基(HMW-GS)1Ax1、1Dx5是对小麦面包烘烤品质有重要影响的优质亚基。将转基因小麦株系与普通小麦栽培品种常规杂交并快速筛选后代,以选育含有外源优质亚基的主栽小麦品系。方法:将分别含有1Ax1、1Dx5亚基的转基因小麦株系B102-1-2、B73-6-1与3种普通小麦主栽品种鄂恩1号、鄂麦12号、日喀则8号常规杂交,用不连续SDS-PAGE方法鉴定12组杂交组合(正反交)F1代311颗籽粒的HMW-GS。结果:不连续SDS-PAGE分析大量子代带型,能够快速鉴定筛选出具有优质亚基的株系,转基因获得的外源优质HMW-GS基因在大部分F1子代中能够共显性遗传。结论:常规杂交育种能使外源基因有效地整合进主栽小麦的基因组中,进一步分析后代遗传的稳定性和遗传规律就可以培育出优质的新品种;不连续SDS-PAGE快速筛选优质亚基的株系具有可操作性和实用性。  相似文献   

12.
拟南芥psy基因cDNA的克隆及其植物表达载体的构建   总被引:1,自引:0,他引:1  
为了获得胚乳组织特异性表达八氢番茄红素的转基因小麦,以拟南芥幼叶RNA为模板,由特异型引物通过RT-PCR一步法得到大小约为1.3kb的基因片段,将此片段连接在克隆载体pMD18-T进行测序,结果表明,该基因片段为八氢番茄红素合成酶基因(psy)cDNA片段。将psy基因片段正向插入植物表达载体pLRPT中高分子量麦谷蛋白亚基基因1Dx5启动子与nos终止子之间,pLRPT载体无1Dx5基因开放阅读框,运用菌落PCR对重组子进行筛选与鉴定,说明拟南芥psy基因已正确插入pL-RPT,成功构建了植物表达载体pLRPTPSY。  相似文献   

13.
It has been proposed that transgenic plants of cereals can be generated by inoculating florets with Agrobacterium at or near anthesis. This procedure is shown to lead to the production of embryos of wheat and barley with enhanced resistance to antibiotic selection. It has also been possible to recover plants of wheat, barley and maize that gave positive hybridization signals with probes produced from within the T-DNA of the Agrobacterium vector. However, no evidence was found for transmission of the bands detected by hybridization in the progeny of the putative transgenic plants nor could enzyme activity associated with the resistance genes be found in plant extracts. Furthermore, undigested genomic DNA from the plants that were positive when probed with the T-DNA, showed hybridization to bands smaller than the genomic DNA. It is suggested that the apparent transformation is an artifact of the procedure and does not reflect transformation of the plant nuclear genome.  相似文献   

14.
We previously identified a 0.7 Kb cDNA fragment of Zm401, a novel pollen-specific gene in maize (Zea mays). However, little information is known about the function of Zm401 in pollen development. The full-length of Zm401 cDNA was amplified by 5′ RACE and 3′ RACE and both sequence analysis and in vitro translation of Zm401 showed that it belonged to an mRNA-like non-coding gene. To analyze its possible biological roles in pollen development, the Zm401 cDNA was overexpressed in transgenic maize under the control of a pollen specific promoter Zm13 or a CaMV 35S promoter. RT-PCR and RNA gel blot analysis indicated that the expression level of Zm401 in leaves and anthers of transgenic plants was much higher than that of non-transformants. Compared with the non-transformed maize, transgenic maize showed distinct phenotypes, such as abnormal tassels and degenerate anthers. The histological observation showed that the development of pollen grains and anthers in transgenic plants were abnormal. These abnormalities include delayed degradation of tapetum, asynchronous fusion of pollen sacs, and aborted pollen grain development. Furthermore, the pollen viability in six transgenic plants ranged from 1.24% to 6.63%. The reduced pollen viability cosegregated with the transgene in a selfed progeny. These results suggest that Zm401 is involved in the regulation of pollen development. This article demonstrated Zm401, as a non-coding RNA, plays an essential role in pollen development. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits   总被引:23,自引:0,他引:23  
Wheat HMW glutenin subunit genes 1Ax1 and 1Dx5 were introduced, and either expressed or overexpressed, into a commercial wheat cultivar that already expresses five subunits. Six independent transgenic events were obtained and characterized by SDS-PAGE and Southern analysis. The 1Dx5 gene was overexpressed in two events without changes in the other endosperm proteins. Overexpression of 1Dx5 increased the contribution of HMW glutenin subunits to total protein up to 22%. Two events express the 1Ax1 subunit transgene with associated silencing of the 1Ax2* endogenous subunit. In the SDS-PAGE one of them shows a new HMW glutenin band of an apparent Mr lower than that of the 1Dx5 subunit. Southern analysis of the four events confirmed transformation and suggest that the transgenes are present in a low copy number. Silencing of all the HMW glutenin subunits was observed in two different events of transgenic wheat expressing the 1Ax1 subunit transgene and overexpressing the Dx5 gene. Transgenes and expression patterns were stably transmitted to the progenies in all the events except one where in some of the segregating T2 seeds the silencing of all HMW glutenin subunits was reverted associated with a drastic lost of transgenes from a high to a low copy number. The revertant T2 seeds expressed the five endogenous subunits plus the 1Ax1 transgene. Received: 16 June 1999 / Accepted: 29 July 1999  相似文献   

17.
18.
转基因座位是指染色体上插入的转基因及相邻的特定DNA序列。大多数转基因座位是以转基因片段、基因组片段和填充DNA相间而存在,仅少数含有完整的单拷贝转基因,这是由于在转基因整合过程中,转基因及基因组DNA发生缺失、重复和染色体的重排。转基因整合主要通过双链DNA断裂修复中的异常重组所产生,而同源重组也发挥了一定的作用。异常重组主要由单链复性、合成依赖链复性和依赖Ku蛋白的非同源末端连接途径调节。  相似文献   

19.
Selecting a promoter for driving transgene expression is one of the most important factors to consider in a transformation project. Information about the native regulation of the promoter activity is important, but it is also necessary to consider how that activity will be affected when integrated into the genome of the transformed plants. Study of a promoter performance in individually transformed lines provides useful information in this area. The maize ubiquitin 1 (Ubi‐1) promoter has been widely used to drive constitutive transgene expression in monocotyledonous plants. However, lack of data on its activity in individual transformed wheat lines constitutes a gap in the understanding and predictability of this promoter's performance. In this paper, we began addressing this problem by examining the expression of the marker gene uidA, coding for β‐glucuronidase (GUS), under the control of the maize Ubi‐1 promoter in individual transgenic wheat (Triticum aestivum L.) lines from different wheat varieties. The expression of uidA driven by this promoter depended to a great extent on the specific transformation event. Whilst expression was strong and constitutive in all tissues in some of the lines analysed, there were also transgenic lines in which GUS activity was restricted to only a few tissues. In general the maize Ubi‐1 promoter had strong activity in young, metabolically active tissues and in pollen grains.  相似文献   

20.
Summary An EcoRI restriction endonuclease fragment of maize DNA coding for the 19,000 dalton zein protein was cloned in phage gt WES. The zein gene was identified by the electron microscopic analysis of RNA-DNA hybrids (R-loops) and DNA-DNA hybrids (D-loops). The R-loops were formed with poly(rA)-containing RNA isolated from 18 days post-pollination maize endosperm and showed no intervening non-hybridizing sequences (introns) within their 800 base length. A cDNA clone specific for the 19,000 dalton zein protein formed D-loops in the same position and orientation as the R-loops. The cloned fragment measured 4.4 kilobases (kb), the same size as an EcoRI fragment of maize DNA revealed by Southern analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号