首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Generating genomic resources in terms of molecular markers is imperative in molecular breeding for crop improvement. Though development and application of microsatellite markers in large-scale was reported in the model crop foxtail millet, no such large-scale study was conducted for intron-length polymorphic (ILP) markers. Considering this, we developed 5123 ILP markers, of which 4049 were physically mapped onto 9 chromosomes of foxtail millet. BLAST analysis of 5123 expressed sequence tags (ESTs) suggested the function for ∼71.5% ESTs and grouped them into 5 different functional categories. About 440 selected primer pairs representing the foxtail millet genome and the different functional groups showed high-level of cross-genera amplification at an average of ∼85% in eight millets and five non-millet species. The efficacy of the ILP markers for distinguishing the foxtail millet is demonstrated by observed heterozygosity (0.20) and Nei''s average gene diversity (0.22). In silico comparative mapping of physically mapped ILP markers demonstrated substantial percentage of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (∼50%), maize (∼46%), rice (∼21%) and Brachypodium (∼21%) chromosomes. Hence, for the first time, we developed large-scale ILP markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.  相似文献   

2.
Foxtail millet ( Setaria italica L.) is a tractable experimental model crop for studying functional genomics of millets and bioenergy grasses. But the limited availability of genomic resources, particularly expressed sequence-based genic markers is significantly impeding its genetic improvement. Considering this, we attempted to develop EST-derived-SSR (eSSR) markers and utilize them in germplasm characterization, cross-genera transferability and in silico comparative mapping. From 66,027 foxtail millet EST sequences 24,828 non-redundant ESTs were deduced, representing ~16 Mb, which revealed 534 (~2%) eSSRs in 495 SSR containing ESTs at a frequency of 1/30 kb. A total of 447 pp were successfully designed, of which 327 were mapped physically onto nine chromosomes. About 106 selected primer pairs representing the foxtail millet genome showed high-level of cross-genera amplification at an average of ~88% in eight millets and four non-millet species. Broad range of genetic diversity (0.02–0.65) obtained in constructed phylogenetic tree using 40 eSSR markers demonstrated its utility in germplasm characterizations and phylogenetics. Comparative mapping of physically mapped eSSR markers showed considerable proportion of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (~68%), maize (~61%) and rice (~42%) chromosomes. Synteny analysis of eSSRs of foxtail millet, rice, maize and sorghum suggested the nested chromosome fusion frequently observed in grass genomes. Thus, for the first time we had generated large-scale eSSR markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.  相似文献   

3.
Although the origin and domestication process of foxtail millet (Setaria italica subsp. italica (L.) P. Beauv.) has been studied by several groups, the issue is still ambiguous. It is essential to resolve this issue by studying a large number of accessions with sufficient markers covering the entire genome. Genetic structures were analyzed by transposon display (TD) using 425 accessions of foxtail millet and 12 of the wild ancestor green foxtail (Setaria italica subsp. viridis (L.) P. Beauv.). We used three recently active transposons (TSI-1, TSI-7, and TSI-10) as genome-wide markers and succeeded in demonstrating geographical structures of the foxtail millet. A neighbor-joining dendrogram based on TD grouped the foxtail millet accessions into eight major clusters, each of which consisted of accessions collected from adjacent geographical areas. Eleven out of 12 green foxtail accessions were grouped separately from the clusters of foxtail millet. These results indicated strong regional differentiations and a long history of cultivation in each region. Furthermore, we discuss the relationship between foxtail millet and green foxtail and suggest a monophyletic origin of foxtail millet domestication.  相似文献   

4.
In this study, 28 simple sequence repeat (SSR) primer sets were used to analyze the genetic diversity, population structure, and genetic relationships among 37 accessions of foxtail millet from Korea, China and Pakistan. A total of 298 alleles were detected with an average allele number of 10.6 per locus among 37 foxtail millet accessions. The number of alleles per locus ranged from 2 (b226) to 20 (b236). Of the 298 alleles, 138 alleles (46.3%) were rare (frequency < 0.05), 152 alleles (51.0%) were detected at an intermediate frequency (range, 0.05?C0.50), and eight alleles (2.7%) were abundant (frequency > 0.50), respectively. The average gene diversity values were 0.652, 0.692, and 0.491 and polymorphic information content values were 0.621, 0.653, and 0.438, for accessions from Korea, China, and Pakistan, respectively. The accessions from China showed higher SSR diversity than those from Korea and Pakistan. A phylogenetic tree constructed using the un-weighted pair group methods with arithmetic mean algorithm revealed three major groups of accessions that were not congruent with geographical distribution patterns with a few exceptions. The lack of correlation between the accession clusters and their geographic location indicates that the diffusion of foxtail millet from China to Korea might have occurred through multiple routes. Our results provide support for the origin and diffusion route of foxtail millet in East Asia. This SSR-based assessment of genetic diversity, genetic relationships, and population structure among genetic resources of foxtail millet landraces will be valuable to foxtail millet breeding and genetic conservation programs in Korea.  相似文献   

5.
Zhang J  Lu H  Wu N  Yang X  Diao X 《PloS one》2011,6(5):e19726
Foxtail millet (Setaria italica) is one of the oldest domesticated cereal crops in Eurasia, but identifying foxtail millets, especially in charred grains, and differentiating it from its wild ancestor, green foxtail (Setaria viridis), in the archaeobotanical remains, is still problematic. Phytolithic analysis provides a meaningful method for identifying this important crop. In this paper, the silicon structure patterns in the glumes, lemmas, and paleas from inflorescence bracts in 16 modern plants of foxtail millet and green foxtail from China and Europe are examined using light microscopy with phase-contrast and a microscopic interferometer. Our research shows that the silicon structure of ΩIII from upper lemmas and paleas in foxtail millet and green foxtail can be correspondingly divided into two groups. The size of ΩIII type phytolith of foxtail millet is bigger than that from green foxtail. Discriminant function analysis reveals that 78.4% of data on foxtail millet and 76.9% of data on green foxtail are correctly classified. This means certain morphotypes of phytoliths are relatively reliable tools for distinguishing foxtail millet from green foxtail. Our results also revealed that the husk phytolith morphologies of foxtail millets from China and Eastern Europe are markedly different from those from Western Europe. Our research gives a meaningful method of separating foxtail millet and green foxtail. The implications of these findings for understanding the history of foxtail millet domestication and cultivation in ancient civilizations are significant.  相似文献   

6.
The unavailability of microsatellite markers and saturated genetic linkage map has restricted the genetic improvement of foxtail millet [Setaria italica (L.) P. Beauv.], despite the fact that in recent times it has been documented as a new model species for biofuel grasses. With the objective to generate a good number of microsatellite markers in foxtail millet cultivar ‘Prasad’, 690 clones were sequenced which generated 112.95 kb high quality sequences obtained from three genomic libraries each enriched with different microsatellite repeat motifs. Microsatellites were identified in 512 (74.2%) of the 690 positive clones and 172 primer pairs (pp) were successfully designed from 249 (48.6%) unique SSR-containing clones. The efficacies of the microsatellite containing genomic sequences were established by superior primer designing ability (69%), PCR amplification efficiency (85.5%) and polymorphic potential (52%) in the parents of F2 mapping population. Out of 172 pp, functional 147 markers showed high level of cross-species amplification (~74%) in six grass species. Higher polymorphism rate and broad range of genetic diversity (0.30–0.69 averaging 0.58) obtained in constructed phylogenetic tree using 52 microsatellite markers, demonstrated the utility of markers in germplasm characterizations. In silico comparative mapping of 147 foxtail millet microsatellite containing sequences against the mapping data of sorghum (~18%), maize (~16%) and rice (~5%) indicated the presence of orthologous sequences of the foxtail millet in the respective species. The result thus demonstrates the applicability of microsatellite markers in various genotyping applications, determining phylogenetic relationships and comparative mapping in several important grass species.  相似文献   

7.
SSR markers are desirable markers in analysis of genetic diversity, quantitative trait loci mapping and gene locating. In this study, SSR markers were developed from two genomic libraries enriched for (GA)n and (CA)n of foxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China. A total of 100 SSR markers among the 193 primer pairs detected polymorphism between two mapping parents of an F2 population, i.e. “B100” of cultivated S. italica and “A10” of wild S. viridis. Excluding 14 markers with unclear amplifications, and five markers unlinked with any linkage group, a foxtail millet SSR linkage map was constructed by integrating 81 new developed SSR markers with 20 RFLP anchored markers. The 81 SSRs covered nine chromosomes of foxtail millet. The length of the map was 1,654 cM, with an average interval distance between markers of 16.4 cM. The 81 SSR markers were not evenly distributed throughout the nine chromosomes, with Ch.8 harbouring the least (3 markers) and Ch.9 harbouring the most (18 markers). To verify the usefulness of the SSR markers developed, 37 SSR markers were randomly chosen to analyze genetic diversity of 40 foxtail millet accessions. Totally 228 alleles were detected, with an average 6.16 alleles per locus. Polymorphism information content (PIC) value for each locus ranged from 0.413 to 0.847, with an average of 0.697. A positive correlation between PIC and number of alleles and between PIC and number of repeat unit were found [0.802 and 0.429, respectively (P < 0.01)]. UPGMA analysis revealed that the 40 foxtail millet cultivars could be grouped into five clusters in which the landraces’ grouping was largely consistent with ecotypes while the breeding varieties from different provinces in China tended to be grouped together. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Genetic and Genomic Resources of Small Millets   总被引:1,自引:0,他引:1  
Small millets are very promising agricultural entity to ensure global food security. They gained remarkable importance in agriculture due to their resilience to climatic changes and increasing demand for nutritious food and feed. The genetic variability in the core and mini-core germplasm of small millets was characterized for nutritional composition and capacity to tolerate abiotic stresses that can be infused in breeding programs. Other than the foxtail millet, availability of genomic information in small millets is far below the mark for use in marker-assisted breeding and other genetic improvement programs. The genome sequence of foxtail millet has recently triggered a plethora of post-genomic analysis and envisaged foxtail millet as a model organism for the C4 grasses and bioenergy research. Recent developments in the next-generation sequencing technologies enabled us, with the simultaneous discovery of high-throughput markers and multiplexed genotyping of germplasm, to speedup marker-assisted breeding. In this context, an in-depth analysis of the wealth of diverse germplasm resources and future perspectives of integrating genomics in genome-wide marker-trait association and breeding in small millets is worthy.  相似文献   

9.
10.
Fukunaga K  Ichitani K  Taura S  Sato M  Kawase M 《Hereditas》2005,142(2005):38-44
We determined the sequence of ribosomal DNA (rDNA) intergenic spacer (IGS) of foxtail millet isolated in our previous study, and identified subrepeats in the polymorphic region. We also developed a PCR-based method for identifying rDNA types based on sequence information and assessed 153 accessions of foxtail millet. Results were congruent with our previous works. This study provides new findings regarding the geographical distribution of rDNA variants. This new method facilitates analyses of numerous foxtail millet accessions. It is helpful for typing of foxtail millet germplasms and elucidating the evolution of this millet.  相似文献   

11.
12.
13.
Genetic diversity of crop species in sub-Sahelian Africa is still poorly documented. Among such crops, pearl millet is one of the most important staple species. In Niger, pearl millet covers more than 65% of the total cultivated area. Analyzing pearl millet genetic diversity, its origin and its dynamics is important for in situ and ex situ germplasm conservation and to increase knowledge useful for breeding programs. We developed new genetic markers and a high-throughput technique for the genetic analysis of pearl millet. Using 25 microsatellite markers, we analyzed genetic diversity in 46 wild and 421 cultivated accessions of pearl millet in Niger. We showed a significantly lower number of alleles and lower gene diversity in cultivated pearl millet accessions than in wild accessions. This result contrasts with a previous study using iso-enzyme markers showing similar genetic diversity between cultivated and wild pearl millet populations. We found a strong differentiation between the cultivated and wild groups in Niger. Analyses of introgressions between cultivated and wild accessions showed modest but statistically supported evidence of introgressions. Wild accessions in the central region of Niger showed introgressions of cultivated alleles. Accessions of cultivated pearl millet showed introgressions of wild alleles in the western, central, and eastern parts of Niger.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.Cedric Mariac and Viviane Luong have contributed equally to this work.  相似文献   

14.
Italian millet is a commercially important grain crop. Nineteen polymorphic simple sequence repeat (SSR) markers, developed through construction of an SSR-enriched library from genomic DNA of Italian millet (Setaria italica L., P. Beauv.), were used for assessment of molecular genetic diversity against 40 accessions of S. italica. In total, 85 alleles were detected, with an average of 4.5 alleles per locus. The average gene diversity and polymorphism information content (PIC) values were 0.412 and 0.376, ranging from 0.02 to 0.88 and from 0.02 to 0.87, respectively. Values for observed (H O) and expected (H E) heterozygosities ranged from 0 to 0.73 and from 0.03 to 0.89, respectively. Nine loci deviated from Hardy-Weinberg equilibrium. The mean similarity coefficient among accessions was 0.6593. Based on the UPGMA algorithm, six different groups were successfully identified. In this clustering analysis, all Korean accessions grouped in one cluster, indicating that Korean accessions are genetically quite distinct from other introduced accessions. These newly developed microsatellite markers should be very useful tools for several genetic studies, including an assessment of diversity and population structure in Italian millet.  相似文献   

15.
AFLP markers were used to assess genetic diversity and patterns of geographic variation among 39 accessions of foxtail millet (Setaria italica) and 22 accessions of green foxtail millet (S. viridis), its putative wild progenitor. A high level of polymorphism was revealed. Dendrograms based on Nei and Li distances from a neighbour joining procedure were constructed using 160 polymorphic bands. Bootstrap values revealed that no specific geographic structure can be extracted from these data. The high level of diversity among Chinese accessions was consistent with the hypothesis of a centre of domestication in China. The results also showed that accessions from Eastern Europe and Africa form two distinct clusters. The narrow genetic basis of these two gene pools may be the result of local-adaptation. Received: 1 June 1999 / Accepted: 16 September 1999  相似文献   

16.
Expressed sequence tags (ESTs) in public databases and cross-species transferable markers are considered to be a cost-effective means for developing sequence-based markers for less-studied species. In this study, EST-simple sequence repeat (SSR) markers developed from Lathyrus sativus L. EST sequences and cross-transferable EST-SSRs derived from Medicago truncatula L. were utilized to investigate the genetic diversity among grass pea populations from Ethiopia. A total of 45 alleles were detected using eleven EST-SSRs with an average of four alleles per locus. The average polymorphism information content for all primers was 0.416. The average gene diversity was 0.477, ranging from 0.205 for marker Ls942 to 0.804 for MtBA32F05. F(ST) values estimated by analysis of molecular variance were 0.01, 0.15, and 0.84 for among regions, among accessions and within accessions respectively, indicating that most of the variation (84%) resides within accessions. Model-based cluster analysis grouped the accessions into three clusters, grouping accessions irrespective of their collection regions. Among the regions, high levels of diversity were observed in Gojam, Gonder, Shewa and Welo regions, with Gonder region showing a higher number of different alleles. From breeding and conservation aspects, conducting a close study on a specific population would be advisable for genetic improvement in the crop, and it would be appropriate if future collection and conservation plans give due attention to under-represented regions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9662-y) contains supplementary material, which is available to authorized users.  相似文献   

17.
Alfalfa (Medicago sativa L.) is the most widely cultivated forage legume around the world. Though development and application of microsatellite markers in large-scale was reported in this species, a systematic investigation and large-scale exploitation of intron-length polymorphic (ILP) markers has not been conducted. In the present study, the RNA-Seq sequences of alfalfa were aligned with the genomic sequences of Arabidopsis to predict the position of introns and develop ILP markers in alfalfa. A total of 693 putative ILPs were identified, and 502 ILP markers were successfully developed. Furthermore, 100 ILP markers exhibited relatively high levels of transferability to leguminous (40.0%–83.0%) and non-leguminous (21.0%–22.0%) species. Polymorphisms in 40 randomly selected MsILP markers were evaluated in 21 alfalfa accessions and collectively yielded 169 alleles with an average of 4.7 alleles per locus. The polymorphism information content (PIC) ranged from 0.15 to 0.87 with an average of 0.60, which indicated a high level of polymorphism in the MsILP markers. For the first time, we developed large-scale ILP markers in alfalfa and demonstrated their utility in transferability, which will be valuable for genetic relationship assessments, comparative genomic studies and marker-assisted breeding of leguminous and non-leguminous species.  相似文献   

18.
Efficient and robust molecular markers are essential for molecular breeding in plant. Compared to dominant and bi-allelic markers, multiple alleles of simple sequence repeat (SSR) markers are particularly informative and superior in genetic linkage map and QTL mapping in autotetraploid species like alfalfa. The objective of this study was to enrich SSR markers directly from alfalfa expressed sequence tags (ESTs). A total of 12,371 alfalfa ESTs were retrieved from the National Center for Biotechnology Information. Total 774 SSR-containing ESTs were identified from 716 ESTs. On average, one SSR was found per 7.7 kb of EST sequences. Tri-nucleotide repeats (48.8 %) was the most abundant motif type, followed by di—(26.1 %), tetra—(11.5 %), penta—(9.7 %), and hexanucleotide (3.9 %). One hundred EST–SSR primer pairs were successfully designed and 29 exhibited polymorphism among 28 alfalfa accessions. The allele number per marker ranged from two to 21 with an average of 6.8. The PIC values ranged from 0.195 to 0.896 with an average of 0.608, indicating a high level of polymorphism of the EST–SSR markers. Based on the 29 EST–SSR markers, assessment of genetic diversity was conducted and found that Medicago sativa ssp. sativa was clearly different from the other subspecies. The high transferability of those EST–SSR markers was also found for relative species.  相似文献   

19.
基于SSR标记的谷子遗传多样性研究   总被引:6,自引:2,他引:4  
用21个分布在谷子9条染色体上的SSR标记,对120份来自于核心种质的谷子材料进行遗传多样性研究。21个标记共检查出305个等位变异,各标记检测出的等位变异数在3~26个之间,平均每个位点检测出的等位变异数为14.5个;21个位点的平均多态信息量(PIC)为0.809。基于21个SSR标记的分子鉴定,计算了120份材料间的遗传相似系数,其变化范围为0.8393~0.9672,平均值为0.8906。根据计算的遗传距离,对120份谷子材料进行UPGMA聚类,在遗传相似系数0.8865处这些材料被划分为4个类群,分类结果与这些谷子来源地生态类型总体上表现一致,分别为西北内陆类群、黄土高原内蒙古高原类群、华北平原类群以及华北平原近年育成种类群。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号